Coupled oscillations orchestrate selective information transmission in visual cortex

Abstract Performing visually guided behavior involves flexible routing of sensory information towards associative areas. We hypothesize that in visual cortical areas, this routing is shaped by a gating influence of the local neuronal population on the activity of the same population's single ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PNAS nexus 2024-08, Vol.3 (8), p.pgae288
Hauptverfasser: Khamechian, Mohammad Bagher, Daliri, Mohammad Reza, Treue, Stefan, Esghaei, Moein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page pgae288
container_title PNAS nexus
container_volume 3
creator Khamechian, Mohammad Bagher
Daliri, Mohammad Reza
Treue, Stefan
Esghaei, Moein
description Abstract Performing visually guided behavior involves flexible routing of sensory information towards associative areas. We hypothesize that in visual cortical areas, this routing is shaped by a gating influence of the local neuronal population on the activity of the same population's single neurons. We analyzed beta frequencies (representing local population activity), high-gamma frequencies (representative of the activity of local clusters of neurons), and the firing of single neurons in the medial temporal (MT) area of behaving rhesus monkeys. Our results show an influence of beta activity on single neurons, predictive of behavioral performance. Similarly, the temporal dependence of high-gamma on beta predicts behavioral performance. These demonstrate a unidirectional influence of network-level neural dynamics on single-neuron activity, preferentially routing relevant information. This demonstration of a local top-down influence unveils a previously unexplored perspective onto a core feature of cortical information processing: the selective transmission of sensory information to downstream areas based on behavioral relevance.
doi_str_mv 10.1093/pnasnexus/pgae288
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11331424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814934041</galeid><oup_id>10.1093/pnasnexus/pgae288</oup_id><sourcerecordid>A814934041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-76e9207888205695a33a1dc397a8de14188e11b2340a9b4f3c8b52eb79bf0093</originalsourceid><addsrcrecordid>eNqNkU9r3DAQxUVpSUKaD5BLMfTSQzfRSLItnUpYmrYQyGXvQpbHGxVbciV7Sb595e5mSaCHoIP-_d5jZh4hl0CvgCp-PXqTPD7O6XrcGmRSviNnrC7ZqioFe__ifEouUvpNKWV1DSDKE3LKFVRQM3VGNuswjz22RUjW9b2ZXPCpCNE-YJqimbBI2KOd3A4L57sQh39Ikf98GlxKy8X5YufSbPrChjjh40fyoTN9wovDfk42t98365-ru_sfv9Y3dyvLZTWt6goVo7WUktGyUqXh3EBruaqNbBEESIkADeOCGtWIjlvZlAybWjUdzSM4J9_2tuPcDNha9LmqXo_RDSY-6WCcfv3j3YPehp0G4BwEE9nhy8Ehhj9z7ljnlizmOXgMc9KcKiGZYOWCft6jW9OjXkaRLe2C6xsJQuUiBWTq6j9UXi0OzgaPncvvrwSwF9gYUorYHcsHqpec9TFnfcg5az697PuoeE41A1_3QM72DX5_AdAYuCo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094824254</pqid></control><display><type>article</type><title>Coupled oscillations orchestrate selective information transmission in visual cortex</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Khamechian, Mohammad Bagher ; Daliri, Mohammad Reza ; Treue, Stefan ; Esghaei, Moein</creator><contributor>Klann, Eric</contributor><creatorcontrib>Khamechian, Mohammad Bagher ; Daliri, Mohammad Reza ; Treue, Stefan ; Esghaei, Moein ; Klann, Eric</creatorcontrib><description>Abstract Performing visually guided behavior involves flexible routing of sensory information towards associative areas. We hypothesize that in visual cortical areas, this routing is shaped by a gating influence of the local neuronal population on the activity of the same population's single neurons. We analyzed beta frequencies (representing local population activity), high-gamma frequencies (representative of the activity of local clusters of neurons), and the firing of single neurons in the medial temporal (MT) area of behaving rhesus monkeys. Our results show an influence of beta activity on single neurons, predictive of behavioral performance. Similarly, the temporal dependence of high-gamma on beta predicts behavioral performance. These demonstrate a unidirectional influence of network-level neural dynamics on single-neuron activity, preferentially routing relevant information. This demonstration of a local top-down influence unveils a previously unexplored perspective onto a core feature of cortical information processing: the selective transmission of sensory information to downstream areas based on behavioral relevance.</description><identifier>ISSN: 2752-6542</identifier><identifier>EISSN: 2752-6542</identifier><identifier>DOI: 10.1093/pnasnexus/pgae288</identifier><identifier>PMID: 39161729</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Analysis ; Biological, Health, and Medical Sciences ; Neurons</subject><ispartof>PNAS nexus, 2024-08, Vol.3 (8), p.pgae288</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of National Academy of Sciences. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of National Academy of Sciences.</rights><rights>COPYRIGHT 2024 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c386t-76e9207888205695a33a1dc397a8de14188e11b2340a9b4f3c8b52eb79bf0093</cites><orcidid>0009-0001-8938-5810 ; 0000-0001-9241-8751 ; 0000-0003-3978-7050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331424/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331424/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39161729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Klann, Eric</contributor><creatorcontrib>Khamechian, Mohammad Bagher</creatorcontrib><creatorcontrib>Daliri, Mohammad Reza</creatorcontrib><creatorcontrib>Treue, Stefan</creatorcontrib><creatorcontrib>Esghaei, Moein</creatorcontrib><title>Coupled oscillations orchestrate selective information transmission in visual cortex</title><title>PNAS nexus</title><addtitle>PNAS Nexus</addtitle><description>Abstract Performing visually guided behavior involves flexible routing of sensory information towards associative areas. We hypothesize that in visual cortical areas, this routing is shaped by a gating influence of the local neuronal population on the activity of the same population's single neurons. We analyzed beta frequencies (representing local population activity), high-gamma frequencies (representative of the activity of local clusters of neurons), and the firing of single neurons in the medial temporal (MT) area of behaving rhesus monkeys. Our results show an influence of beta activity on single neurons, predictive of behavioral performance. Similarly, the temporal dependence of high-gamma on beta predicts behavioral performance. These demonstrate a unidirectional influence of network-level neural dynamics on single-neuron activity, preferentially routing relevant information. This demonstration of a local top-down influence unveils a previously unexplored perspective onto a core feature of cortical information processing: the selective transmission of sensory information to downstream areas based on behavioral relevance.</description><subject>Analysis</subject><subject>Biological, Health, and Medical Sciences</subject><subject>Neurons</subject><issn>2752-6542</issn><issn>2752-6542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkU9r3DAQxUVpSUKaD5BLMfTSQzfRSLItnUpYmrYQyGXvQpbHGxVbciV7Sb595e5mSaCHoIP-_d5jZh4hl0CvgCp-PXqTPD7O6XrcGmRSviNnrC7ZqioFe__ifEouUvpNKWV1DSDKE3LKFVRQM3VGNuswjz22RUjW9b2ZXPCpCNE-YJqimbBI2KOd3A4L57sQh39Ikf98GlxKy8X5YufSbPrChjjh40fyoTN9wovDfk42t98365-ru_sfv9Y3dyvLZTWt6goVo7WUktGyUqXh3EBruaqNbBEESIkADeOCGtWIjlvZlAybWjUdzSM4J9_2tuPcDNha9LmqXo_RDSY-6WCcfv3j3YPehp0G4BwEE9nhy8Ehhj9z7ljnlizmOXgMc9KcKiGZYOWCft6jW9OjXkaRLe2C6xsJQuUiBWTq6j9UXi0OzgaPncvvrwSwF9gYUorYHcsHqpec9TFnfcg5az697PuoeE41A1_3QM72DX5_AdAYuCo</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Khamechian, Mohammad Bagher</creator><creator>Daliri, Mohammad Reza</creator><creator>Treue, Stefan</creator><creator>Esghaei, Moein</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0001-8938-5810</orcidid><orcidid>https://orcid.org/0000-0001-9241-8751</orcidid><orcidid>https://orcid.org/0000-0003-3978-7050</orcidid></search><sort><creationdate>202408</creationdate><title>Coupled oscillations orchestrate selective information transmission in visual cortex</title><author>Khamechian, Mohammad Bagher ; Daliri, Mohammad Reza ; Treue, Stefan ; Esghaei, Moein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-76e9207888205695a33a1dc397a8de14188e11b2340a9b4f3c8b52eb79bf0093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Biological, Health, and Medical Sciences</topic><topic>Neurons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khamechian, Mohammad Bagher</creatorcontrib><creatorcontrib>Daliri, Mohammad Reza</creatorcontrib><creatorcontrib>Treue, Stefan</creatorcontrib><creatorcontrib>Esghaei, Moein</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PNAS nexus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khamechian, Mohammad Bagher</au><au>Daliri, Mohammad Reza</au><au>Treue, Stefan</au><au>Esghaei, Moein</au><au>Klann, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled oscillations orchestrate selective information transmission in visual cortex</atitle><jtitle>PNAS nexus</jtitle><addtitle>PNAS Nexus</addtitle><date>2024-08</date><risdate>2024</risdate><volume>3</volume><issue>8</issue><spage>pgae288</spage><pages>pgae288-</pages><issn>2752-6542</issn><eissn>2752-6542</eissn><abstract>Abstract Performing visually guided behavior involves flexible routing of sensory information towards associative areas. We hypothesize that in visual cortical areas, this routing is shaped by a gating influence of the local neuronal population on the activity of the same population's single neurons. We analyzed beta frequencies (representing local population activity), high-gamma frequencies (representative of the activity of local clusters of neurons), and the firing of single neurons in the medial temporal (MT) area of behaving rhesus monkeys. Our results show an influence of beta activity on single neurons, predictive of behavioral performance. Similarly, the temporal dependence of high-gamma on beta predicts behavioral performance. These demonstrate a unidirectional influence of network-level neural dynamics on single-neuron activity, preferentially routing relevant information. This demonstration of a local top-down influence unveils a previously unexplored perspective onto a core feature of cortical information processing: the selective transmission of sensory information to downstream areas based on behavioral relevance.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>39161729</pmid><doi>10.1093/pnasnexus/pgae288</doi><orcidid>https://orcid.org/0009-0001-8938-5810</orcidid><orcidid>https://orcid.org/0000-0001-9241-8751</orcidid><orcidid>https://orcid.org/0000-0003-3978-7050</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2752-6542
ispartof PNAS nexus, 2024-08, Vol.3 (8), p.pgae288
issn 2752-6542
2752-6542
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11331424
source Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Biological, Health, and Medical Sciences
Neurons
title Coupled oscillations orchestrate selective information transmission in visual cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20oscillations%20orchestrate%20selective%20information%20transmission%20in%20visual%20cortex&rft.jtitle=PNAS%20nexus&rft.au=Khamechian,%20Mohammad%20Bagher&rft.date=2024-08&rft.volume=3&rft.issue=8&rft.spage=pgae288&rft.pages=pgae288-&rft.issn=2752-6542&rft.eissn=2752-6542&rft_id=info:doi/10.1093/pnasnexus/pgae288&rft_dat=%3Cgale_pubme%3EA814934041%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094824254&rft_id=info:pmid/39161729&rft_galeid=A814934041&rft_oup_id=10.1093/pnasnexus/pgae288&rfr_iscdi=true