Revealing Detailed Cartilage Function Through Nanoparticle Diffusion Imaging: A Computed Tomography & Finite Element Study
The ability of articular cartilage to withstand significant mechanical stresses during activities, such as walking or running, relies on its distinctive structure. Integrating detailed tissue properties into subject-specific biomechanical models is challenging due to the complexity of analyzing thes...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 2024-09, Vol.52 (9), p.2584-2595 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2595 |
---|---|
container_issue | 9 |
container_start_page | 2584 |
container_title | Annals of biomedical engineering |
container_volume | 52 |
creator | Tuppurainen, Juuso Paakkari, Petri Jäntti, Jiri Nissinen, Mikko T. Fugazzola, Maria C. van Weeren, René Ylisiurua, Sampo Nieminen, Miika T. Kröger, Heikki Snyder, Brian D. Joenathan, Anisha Grinstaff, Mark W. Matikka, Hanna Korhonen, Rami K. Mäkelä, Janne T. A. |
description | The ability of articular cartilage to withstand significant mechanical stresses during activities, such as walking or running, relies on its distinctive structure. Integrating detailed tissue properties into subject-specific biomechanical models is challenging due to the complexity of analyzing these characteristics. This limitation compromises the accuracy of models in replicating cartilage function and impacts predictive capabilities. To address this, methods revealing cartilage function at the constituent-specific level are essential. In this study, we demonstrated that computational modeling derived individual constituent-specific biomechanical properties could be predicted by a novel nanoparticle contrast-enhanced computer tomography (CECT) method. We imaged articular cartilage samples collected from the equine stifle joint (
n
= 60) using contrast-enhanced micro-computed tomography (µCECT) to determine contrast agents’ intake within the samples, and compared those to cartilage functional properties, derived from a fibril-reinforced poroelastic finite element model. Two distinct imaging techniques were investigated: conventional energy-integrating µCECT employing a cationic tantalum oxide nanoparticle (Ta
2
O
5
-cNP) contrast agent and novel photon-counting µCECT utilizing a dual-contrast agent, comprising Ta
2
O
5
-cNP and neutral iodixanol. The results demonstrate the capacity to evaluate fibrillar and non-fibrillar functionality of cartilage, along with permeability-affected fluid flow in cartilage. This finding indicates the feasibility of incorporating these specific functional properties into biomechanical computational models, holding potential for personalized approaches to cartilage diagnostics and treatment. |
doi_str_mv | 10.1007/s10439-024-03552-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11329549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081299519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-c295dfea3b4985283556d0eb2924df549d4f8889077e17dca966fcf5fbf6cd6c3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvhC3BAlpAQl4Adx07MBVXbLlSqQILlbHmdcdZVYqd2Umn59DhsKX8OnObwfvNmnh5Czyl5Qwmp3yZKKiYLUlYFYZyXRf0ArSivWSFFIx6iFSGSFEKK6gQ9SemaEEobxh-jEyYJLblgK_T9C9yC7p3v8DlM2vXQ4rWOk-t1B3gzezO54PF2H8Pc7fEn7cO4yKYHfO6sndMiXw66yxbv8Bleh2Gcp-yyDUPooh73B_wKb5x3E-CLHgbwE_46ze3hKXpkdZ_g2d08Rd82F9v1x-Lq84fL9dlVYRgXU2FKyVsLmu0q2fAyB-CiJbArZVm1lleyrWzTNJLUNdC6NVoKYY3ldmeFaYVhp-j90XecdwO0Jj8Qda_G6AYdDypop_5WvNurLtwqSlm-Xcns8PrOIYabGdKkBpcM9L32EOakGGloKSWnC_ryH_Q6zNHnfJmSTNSSVnWmyiNlYkgpgr3_hhK1dKuO3arcrfrZrVqWXvyZ437lV5kZYEcgZcl3EH_f_o_tD9tSsT4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093679147</pqid></control><display><type>article</type><title>Revealing Detailed Cartilage Function Through Nanoparticle Diffusion Imaging: A Computed Tomography & Finite Element Study</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tuppurainen, Juuso ; Paakkari, Petri ; Jäntti, Jiri ; Nissinen, Mikko T. ; Fugazzola, Maria C. ; van Weeren, René ; Ylisiurua, Sampo ; Nieminen, Miika T. ; Kröger, Heikki ; Snyder, Brian D. ; Joenathan, Anisha ; Grinstaff, Mark W. ; Matikka, Hanna ; Korhonen, Rami K. ; Mäkelä, Janne T. A.</creator><creatorcontrib>Tuppurainen, Juuso ; Paakkari, Petri ; Jäntti, Jiri ; Nissinen, Mikko T. ; Fugazzola, Maria C. ; van Weeren, René ; Ylisiurua, Sampo ; Nieminen, Miika T. ; Kröger, Heikki ; Snyder, Brian D. ; Joenathan, Anisha ; Grinstaff, Mark W. ; Matikka, Hanna ; Korhonen, Rami K. ; Mäkelä, Janne T. A.</creatorcontrib><description>The ability of articular cartilage to withstand significant mechanical stresses during activities, such as walking or running, relies on its distinctive structure. Integrating detailed tissue properties into subject-specific biomechanical models is challenging due to the complexity of analyzing these characteristics. This limitation compromises the accuracy of models in replicating cartilage function and impacts predictive capabilities. To address this, methods revealing cartilage function at the constituent-specific level are essential. In this study, we demonstrated that computational modeling derived individual constituent-specific biomechanical properties could be predicted by a novel nanoparticle contrast-enhanced computer tomography (CECT) method. We imaged articular cartilage samples collected from the equine stifle joint (
n
= 60) using contrast-enhanced micro-computed tomography (µCECT) to determine contrast agents’ intake within the samples, and compared those to cartilage functional properties, derived from a fibril-reinforced poroelastic finite element model. Two distinct imaging techniques were investigated: conventional energy-integrating µCECT employing a cationic tantalum oxide nanoparticle (Ta
2
O
5
-cNP) contrast agent and novel photon-counting µCECT utilizing a dual-contrast agent, comprising Ta
2
O
5
-cNP and neutral iodixanol. The results demonstrate the capacity to evaluate fibrillar and non-fibrillar functionality of cartilage, along with permeability-affected fluid flow in cartilage. This finding indicates the feasibility of incorporating these specific functional properties into biomechanical computational models, holding potential for personalized approaches to cartilage diagnostics and treatment.</description><identifier>ISSN: 0090-6964</identifier><identifier>ISSN: 1573-9686</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-024-03552-7</identifier><identifier>PMID: 39012563</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animals ; Biochemistry ; Biological and Medical Physics ; Biomechanics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Cartilage ; Cartilage (articular) ; Cartilage, Articular - diagnostic imaging ; Cartilage, Articular - physiology ; Classical Mechanics ; Computed tomography ; Computer applications ; Constituents ; Contrast agents ; Contrast media ; Contrast Media - chemistry ; Finite Element Analysis ; Finite element method ; Fluid flow ; Horses ; Imaging techniques ; Mathematical models ; Mechanical properties ; Medical imaging ; Models, Biological ; Nanoparticles ; Original ; Original Article ; Tantalum ; Tantalum oxides ; Tomography ; X-Ray Microtomography</subject><ispartof>Annals of biomedical engineering, 2024-09, Vol.52 (9), p.2584-2595</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-c295dfea3b4985283556d0eb2924df549d4f8889077e17dca966fcf5fbf6cd6c3</cites><orcidid>0000-0001-9724-3903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-024-03552-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-024-03552-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39012563$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tuppurainen, Juuso</creatorcontrib><creatorcontrib>Paakkari, Petri</creatorcontrib><creatorcontrib>Jäntti, Jiri</creatorcontrib><creatorcontrib>Nissinen, Mikko T.</creatorcontrib><creatorcontrib>Fugazzola, Maria C.</creatorcontrib><creatorcontrib>van Weeren, René</creatorcontrib><creatorcontrib>Ylisiurua, Sampo</creatorcontrib><creatorcontrib>Nieminen, Miika T.</creatorcontrib><creatorcontrib>Kröger, Heikki</creatorcontrib><creatorcontrib>Snyder, Brian D.</creatorcontrib><creatorcontrib>Joenathan, Anisha</creatorcontrib><creatorcontrib>Grinstaff, Mark W.</creatorcontrib><creatorcontrib>Matikka, Hanna</creatorcontrib><creatorcontrib>Korhonen, Rami K.</creatorcontrib><creatorcontrib>Mäkelä, Janne T. A.</creatorcontrib><title>Revealing Detailed Cartilage Function Through Nanoparticle Diffusion Imaging: A Computed Tomography & Finite Element Study</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>The ability of articular cartilage to withstand significant mechanical stresses during activities, such as walking or running, relies on its distinctive structure. Integrating detailed tissue properties into subject-specific biomechanical models is challenging due to the complexity of analyzing these characteristics. This limitation compromises the accuracy of models in replicating cartilage function and impacts predictive capabilities. To address this, methods revealing cartilage function at the constituent-specific level are essential. In this study, we demonstrated that computational modeling derived individual constituent-specific biomechanical properties could be predicted by a novel nanoparticle contrast-enhanced computer tomography (CECT) method. We imaged articular cartilage samples collected from the equine stifle joint (
n
= 60) using contrast-enhanced micro-computed tomography (µCECT) to determine contrast agents’ intake within the samples, and compared those to cartilage functional properties, derived from a fibril-reinforced poroelastic finite element model. Two distinct imaging techniques were investigated: conventional energy-integrating µCECT employing a cationic tantalum oxide nanoparticle (Ta
2
O
5
-cNP) contrast agent and novel photon-counting µCECT utilizing a dual-contrast agent, comprising Ta
2
O
5
-cNP and neutral iodixanol. The results demonstrate the capacity to evaluate fibrillar and non-fibrillar functionality of cartilage, along with permeability-affected fluid flow in cartilage. This finding indicates the feasibility of incorporating these specific functional properties into biomechanical computational models, holding potential for personalized approaches to cartilage diagnostics and treatment.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomechanics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Cartilage</subject><subject>Cartilage (articular)</subject><subject>Cartilage, Articular - diagnostic imaging</subject><subject>Cartilage, Articular - physiology</subject><subject>Classical Mechanics</subject><subject>Computed tomography</subject><subject>Computer applications</subject><subject>Constituents</subject><subject>Contrast agents</subject><subject>Contrast media</subject><subject>Contrast Media - chemistry</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Horses</subject><subject>Imaging techniques</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Medical imaging</subject><subject>Models, Biological</subject><subject>Nanoparticles</subject><subject>Original</subject><subject>Original Article</subject><subject>Tantalum</subject><subject>Tantalum oxides</subject><subject>Tomography</subject><subject>X-Ray Microtomography</subject><issn>0090-6964</issn><issn>1573-9686</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EokvhC3BAlpAQl4Adx07MBVXbLlSqQILlbHmdcdZVYqd2Umn59DhsKX8OnObwfvNmnh5Czyl5Qwmp3yZKKiYLUlYFYZyXRf0ArSivWSFFIx6iFSGSFEKK6gQ9SemaEEobxh-jEyYJLblgK_T9C9yC7p3v8DlM2vXQ4rWOk-t1B3gzezO54PF2H8Pc7fEn7cO4yKYHfO6sndMiXw66yxbv8Bleh2Gcp-yyDUPooh73B_wKb5x3E-CLHgbwE_46ze3hKXpkdZ_g2d08Rd82F9v1x-Lq84fL9dlVYRgXU2FKyVsLmu0q2fAyB-CiJbArZVm1lleyrWzTNJLUNdC6NVoKYY3ldmeFaYVhp-j90XecdwO0Jj8Qda_G6AYdDypop_5WvNurLtwqSlm-Xcns8PrOIYabGdKkBpcM9L32EOakGGloKSWnC_ryH_Q6zNHnfJmSTNSSVnWmyiNlYkgpgr3_hhK1dKuO3arcrfrZrVqWXvyZ437lV5kZYEcgZcl3EH_f_o_tD9tSsT4</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Tuppurainen, Juuso</creator><creator>Paakkari, Petri</creator><creator>Jäntti, Jiri</creator><creator>Nissinen, Mikko T.</creator><creator>Fugazzola, Maria C.</creator><creator>van Weeren, René</creator><creator>Ylisiurua, Sampo</creator><creator>Nieminen, Miika T.</creator><creator>Kröger, Heikki</creator><creator>Snyder, Brian D.</creator><creator>Joenathan, Anisha</creator><creator>Grinstaff, Mark W.</creator><creator>Matikka, Hanna</creator><creator>Korhonen, Rami K.</creator><creator>Mäkelä, Janne T. A.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9724-3903</orcidid></search><sort><creationdate>20240901</creationdate><title>Revealing Detailed Cartilage Function Through Nanoparticle Diffusion Imaging: A Computed Tomography & Finite Element Study</title><author>Tuppurainen, Juuso ; Paakkari, Petri ; Jäntti, Jiri ; Nissinen, Mikko T. ; Fugazzola, Maria C. ; van Weeren, René ; Ylisiurua, Sampo ; Nieminen, Miika T. ; Kröger, Heikki ; Snyder, Brian D. ; Joenathan, Anisha ; Grinstaff, Mark W. ; Matikka, Hanna ; Korhonen, Rami K. ; Mäkelä, Janne T. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-c295dfea3b4985283556d0eb2924df549d4f8889077e17dca966fcf5fbf6cd6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomechanics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Cartilage</topic><topic>Cartilage (articular)</topic><topic>Cartilage, Articular - diagnostic imaging</topic><topic>Cartilage, Articular - physiology</topic><topic>Classical Mechanics</topic><topic>Computed tomography</topic><topic>Computer applications</topic><topic>Constituents</topic><topic>Contrast agents</topic><topic>Contrast media</topic><topic>Contrast Media - chemistry</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Horses</topic><topic>Imaging techniques</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Medical imaging</topic><topic>Models, Biological</topic><topic>Nanoparticles</topic><topic>Original</topic><topic>Original Article</topic><topic>Tantalum</topic><topic>Tantalum oxides</topic><topic>Tomography</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuppurainen, Juuso</creatorcontrib><creatorcontrib>Paakkari, Petri</creatorcontrib><creatorcontrib>Jäntti, Jiri</creatorcontrib><creatorcontrib>Nissinen, Mikko T.</creatorcontrib><creatorcontrib>Fugazzola, Maria C.</creatorcontrib><creatorcontrib>van Weeren, René</creatorcontrib><creatorcontrib>Ylisiurua, Sampo</creatorcontrib><creatorcontrib>Nieminen, Miika T.</creatorcontrib><creatorcontrib>Kröger, Heikki</creatorcontrib><creatorcontrib>Snyder, Brian D.</creatorcontrib><creatorcontrib>Joenathan, Anisha</creatorcontrib><creatorcontrib>Grinstaff, Mark W.</creatorcontrib><creatorcontrib>Matikka, Hanna</creatorcontrib><creatorcontrib>Korhonen, Rami K.</creatorcontrib><creatorcontrib>Mäkelä, Janne T. A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuppurainen, Juuso</au><au>Paakkari, Petri</au><au>Jäntti, Jiri</au><au>Nissinen, Mikko T.</au><au>Fugazzola, Maria C.</au><au>van Weeren, René</au><au>Ylisiurua, Sampo</au><au>Nieminen, Miika T.</au><au>Kröger, Heikki</au><au>Snyder, Brian D.</au><au>Joenathan, Anisha</au><au>Grinstaff, Mark W.</au><au>Matikka, Hanna</au><au>Korhonen, Rami K.</au><au>Mäkelä, Janne T. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing Detailed Cartilage Function Through Nanoparticle Diffusion Imaging: A Computed Tomography & Finite Element Study</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>52</volume><issue>9</issue><spage>2584</spage><epage>2595</epage><pages>2584-2595</pages><issn>0090-6964</issn><issn>1573-9686</issn><eissn>1573-9686</eissn><abstract>The ability of articular cartilage to withstand significant mechanical stresses during activities, such as walking or running, relies on its distinctive structure. Integrating detailed tissue properties into subject-specific biomechanical models is challenging due to the complexity of analyzing these characteristics. This limitation compromises the accuracy of models in replicating cartilage function and impacts predictive capabilities. To address this, methods revealing cartilage function at the constituent-specific level are essential. In this study, we demonstrated that computational modeling derived individual constituent-specific biomechanical properties could be predicted by a novel nanoparticle contrast-enhanced computer tomography (CECT) method. We imaged articular cartilage samples collected from the equine stifle joint (
n
= 60) using contrast-enhanced micro-computed tomography (µCECT) to determine contrast agents’ intake within the samples, and compared those to cartilage functional properties, derived from a fibril-reinforced poroelastic finite element model. Two distinct imaging techniques were investigated: conventional energy-integrating µCECT employing a cationic tantalum oxide nanoparticle (Ta
2
O
5
-cNP) contrast agent and novel photon-counting µCECT utilizing a dual-contrast agent, comprising Ta
2
O
5
-cNP and neutral iodixanol. The results demonstrate the capacity to evaluate fibrillar and non-fibrillar functionality of cartilage, along with permeability-affected fluid flow in cartilage. This finding indicates the feasibility of incorporating these specific functional properties into biomechanical computational models, holding potential for personalized approaches to cartilage diagnostics and treatment.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>39012563</pmid><doi>10.1007/s10439-024-03552-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9724-3903</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2024-09, Vol.52 (9), p.2584-2595 |
issn | 0090-6964 1573-9686 1573-9686 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11329549 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animals Biochemistry Biological and Medical Physics Biomechanics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Cartilage Cartilage (articular) Cartilage, Articular - diagnostic imaging Cartilage, Articular - physiology Classical Mechanics Computed tomography Computer applications Constituents Contrast agents Contrast media Contrast Media - chemistry Finite Element Analysis Finite element method Fluid flow Horses Imaging techniques Mathematical models Mechanical properties Medical imaging Models, Biological Nanoparticles Original Original Article Tantalum Tantalum oxides Tomography X-Ray Microtomography |
title | Revealing Detailed Cartilage Function Through Nanoparticle Diffusion Imaging: A Computed Tomography & Finite Element Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20Detailed%20Cartilage%20Function%20Through%20Nanoparticle%20Diffusion%20Imaging:%20A%20Computed%20Tomography%20&%20Finite%20Element%20Study&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Tuppurainen,%20Juuso&rft.date=2024-09-01&rft.volume=52&rft.issue=9&rft.spage=2584&rft.epage=2595&rft.pages=2584-2595&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-024-03552-7&rft_dat=%3Cproquest_pubme%3E3081299519%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093679147&rft_id=info:pmid/39012563&rfr_iscdi=true |