Gi3 does not contribute to the inhibition of adenylate cyclase when stimulation of an alpha 2-adrenergic receptor causes activation of both Gi2 and Gi3

Agonist occupancy of the alpha 2-C10 adrenergic receptor in a stable clone (1C) of Rat 1 fibroblasts produced by transfection of cells with genomic DNA encoding this receptor causes the activation of both of the pertussis-toxin-sensitive G-proteins Gi2 and Gi3 [Milligan, Carr, Gould, Mullaney &...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 1992-06, Vol.284 ( Pt 2) (Pt 2), p.565-568
Hauptverfasser: McClue, S J, Selzer, E, Freissmuth, M, Milligan, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Agonist occupancy of the alpha 2-C10 adrenergic receptor in a stable clone (1C) of Rat 1 fibroblasts produced by transfection of cells with genomic DNA encoding this receptor causes the activation of both of the pertussis-toxin-sensitive G-proteins Gi2 and Gi3 [Milligan, Carr, Gould, Mullaney & Lavan (1991) J. Biol. Chem. 266, 6447-6455]. An IgG fraction from an antiserum (I3B) which identifies the C-terminal decapeptide of Gi3 alpha only was able to inhibit partially receptor stimulation of high-affinity GTPase activity. An equivalent fraction from an antiserum (AS7) able to identify the C-terminal decapeptide of Gi1 alpha + Gi2 alpha, but not Gi3 alpha, was also able to inhibit partially receptor stimulation of GTPase activity, and the effects of the two antisera were additive. By contrast, agonist-mediated inhibition of forskolin-amplified adenylate cyclase activity was abolished completely by the IgG fraction of antiserum AS7, but was not decreased by treatment with antiserum 13B. Based on the proportion of agonist-stimulated high-affinity GTPase which was prevented by each antiserum and on the measured membrane levels of Gi2 and Gi3, calculations indicated that essentially all of the cellular Gi3, but only 15% of the available Gi2, can be activated by the alpha 2-C10 adrenergic receptor in these cells. These results demonstrate that, although Gi3 is activated by alpha 2-adrenergic agonists in membranes of clone 1C cells, it does not contribute to the transduction of receptor-mediated inhibition of adenylate cyclase.
ISSN:0264-6021
1470-8728