Automatic rating of incomplete hippocampal inversions evaluated across multiple cohorts

Incomplete Hippocampal Inversion (IHI), sometimes called hippocampal malrotation, is an atypical anatomical pattern of the hippocampus found in about 20% of the general population. IHI can be visually assessed on coronal slices of T1 weighted MR images, using a composite score that combines four ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ArXiv.org 2024-08
Hauptverfasser: Hemforth, Lisa, Couvy-Duchesne, Baptiste, De Matos, Kevin, Brianceau, Camille, Joulot, Matthieu, Banaschewski, Tobias, Bokde, Arun L W, Desrivières, Sylvane, Flor, Herta, Grigis, Antoine, Garavan, Hugh, Gowland, Penny, Heinz, Andreas, Brühl, Rüdiger, Martinot, Jean-Luc, Paillère Martinot, Marie-Laure, Artiges, Eric, Papadopoulos, Dimitri, Lemaitre, Herve, Paus, Tomas, Poustka, Luise, Hohman, Sarah, Holz, Nathalie, Fröhner, Juliane H, Smolka, Michael N, Vaidya, Nilakshi, Walter, Henrik, Whelan, Robert, Schumann, Gunter, Büchel, Christian, Poline, J B, Itterman, Bernd, Frouin, Vincent, Martin, Alexandre, Cury, Claire, Colliot, Olivier
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title ArXiv.org
container_volume
creator Hemforth, Lisa
Couvy-Duchesne, Baptiste
De Matos, Kevin
Brianceau, Camille
Joulot, Matthieu
Banaschewski, Tobias
Bokde, Arun L W
Desrivières, Sylvane
Flor, Herta
Grigis, Antoine
Garavan, Hugh
Gowland, Penny
Heinz, Andreas
Brühl, Rüdiger
Martinot, Jean-Luc
Paillère Martinot, Marie-Laure
Artiges, Eric
Papadopoulos, Dimitri
Lemaitre, Herve
Paus, Tomas
Poustka, Luise
Hohman, Sarah
Holz, Nathalie
Fröhner, Juliane H
Smolka, Michael N
Vaidya, Nilakshi
Walter, Henrik
Whelan, Robert
Schumann, Gunter
Büchel, Christian
Poline, J B
Itterman, Bernd
Frouin, Vincent
Martin, Alexandre
Cury, Claire
Colliot, Olivier
description Incomplete Hippocampal Inversion (IHI), sometimes called hippocampal malrotation, is an atypical anatomical pattern of the hippocampus found in about 20% of the general population. IHI can be visually assessed on coronal slices of T1 weighted MR images, using a composite score that combines four anatomical criteria. IHI has been associated with several brain disorders (epilepsy, schizophrenia). However, these studies were based on small samples. Furthermore, the factors (genetic or environmental) that contribute to the genesis of IHI are largely unknown. Large-scale studies are thus needed to further understand IHI and their potential relationships to neurological and psychiatric disorders. However, visual evaluation is long and tedious, justifying the need for an automatic method. In this paper, we propose, for the first time, to automatically rate IHI. We proceed by predicting four anatomical criteria, which are then summed up to form the IHI score, providing the advantage of an interpretable score. We provided an extensive experimental investigation of different machine learning methods and training strategies. We performed automatic rating using a variety of deep learning models ("conv5-FC3", ResNet and "SECNN") as well as a ridge regression. We studied the generalization of our models using different cohorts and performed multi-cohort learning. We relied on a large population of 2,008 participants from the IMAGEN study, 993 and 403 participants from the QTIM and QTAB studies as well as 985 subjects from the UKBiobank. We showed that deep learning models outperformed a ridge regression. We demonstrated that the performances of the "conv5-FC3" network were at least as good as more complex networks while maintaining a low complexity and computation time. We showed that training on a single cohort may lack in variability while training on several cohorts improves generalization (acceptable performances on all tested cohorts including some that are not included in training). The trained models will be made publicly available should the manuscript be accepted.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11326423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093595721</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1123-154b5737115e4dfe036652321c1e6537edbece0e775ba704df06eff99a4d17d03</originalsourceid><addsrcrecordid>eNpVUMtqwzAQFKWlCWl-oejYi0HSWlZ8KiH0EQj00tKjkeV1oiJbriQH-vc1NC3pZXeZmZ2BuSBzAcCzVS7E5dk9I8sYPxhjolBCSrgmMyh5vipBzMn7eky-08kaGqbZ76lvqe2N7waHCenBDoM3uhu0m-Ajhmh9HyketRt1woZqE3yMtBtdstMLNf7gQ4o35KrVLuLytBfk7fHhdfOc7V6etpv1Lhs4F5BxmddSgeJcYt60yKAopADBDcdCgsKmRoMMlZK1VmySsALbtix13nDVMFiQ-x_fYaw7bAz2KWhXDcF2OnxVXtvqP9PbQ7X3x4pzEEU-lbQgdyeH4D9HjKnqbDTonO7Rj7ECVoIspRJ8kt6eh_2l_NYJ33KwdYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093595721</pqid></control><display><type>article</type><title>Automatic rating of incomplete hippocampal inversions evaluated across multiple cohorts</title><source>Free E- Journals</source><creator>Hemforth, Lisa ; Couvy-Duchesne, Baptiste ; De Matos, Kevin ; Brianceau, Camille ; Joulot, Matthieu ; Banaschewski, Tobias ; Bokde, Arun L W ; Desrivières, Sylvane ; Flor, Herta ; Grigis, Antoine ; Garavan, Hugh ; Gowland, Penny ; Heinz, Andreas ; Brühl, Rüdiger ; Martinot, Jean-Luc ; Paillère Martinot, Marie-Laure ; Artiges, Eric ; Papadopoulos, Dimitri ; Lemaitre, Herve ; Paus, Tomas ; Poustka, Luise ; Hohman, Sarah ; Holz, Nathalie ; Fröhner, Juliane H ; Smolka, Michael N ; Vaidya, Nilakshi ; Walter, Henrik ; Whelan, Robert ; Schumann, Gunter ; Büchel, Christian ; Poline, J B ; Itterman, Bernd ; Frouin, Vincent ; Martin, Alexandre ; Cury, Claire ; Colliot, Olivier</creator><creatorcontrib>Hemforth, Lisa ; Couvy-Duchesne, Baptiste ; De Matos, Kevin ; Brianceau, Camille ; Joulot, Matthieu ; Banaschewski, Tobias ; Bokde, Arun L W ; Desrivières, Sylvane ; Flor, Herta ; Grigis, Antoine ; Garavan, Hugh ; Gowland, Penny ; Heinz, Andreas ; Brühl, Rüdiger ; Martinot, Jean-Luc ; Paillère Martinot, Marie-Laure ; Artiges, Eric ; Papadopoulos, Dimitri ; Lemaitre, Herve ; Paus, Tomas ; Poustka, Luise ; Hohman, Sarah ; Holz, Nathalie ; Fröhner, Juliane H ; Smolka, Michael N ; Vaidya, Nilakshi ; Walter, Henrik ; Whelan, Robert ; Schumann, Gunter ; Büchel, Christian ; Poline, J B ; Itterman, Bernd ; Frouin, Vincent ; Martin, Alexandre ; Cury, Claire ; Colliot, Olivier ; IMAGEN study group</creatorcontrib><description>Incomplete Hippocampal Inversion (IHI), sometimes called hippocampal malrotation, is an atypical anatomical pattern of the hippocampus found in about 20% of the general population. IHI can be visually assessed on coronal slices of T1 weighted MR images, using a composite score that combines four anatomical criteria. IHI has been associated with several brain disorders (epilepsy, schizophrenia). However, these studies were based on small samples. Furthermore, the factors (genetic or environmental) that contribute to the genesis of IHI are largely unknown. Large-scale studies are thus needed to further understand IHI and their potential relationships to neurological and psychiatric disorders. However, visual evaluation is long and tedious, justifying the need for an automatic method. In this paper, we propose, for the first time, to automatically rate IHI. We proceed by predicting four anatomical criteria, which are then summed up to form the IHI score, providing the advantage of an interpretable score. We provided an extensive experimental investigation of different machine learning methods and training strategies. We performed automatic rating using a variety of deep learning models ("conv5-FC3", ResNet and "SECNN") as well as a ridge regression. We studied the generalization of our models using different cohorts and performed multi-cohort learning. We relied on a large population of 2,008 participants from the IMAGEN study, 993 and 403 participants from the QTIM and QTAB studies as well as 985 subjects from the UKBiobank. We showed that deep learning models outperformed a ridge regression. We demonstrated that the performances of the "conv5-FC3" network were at least as good as more complex networks while maintaining a low complexity and computation time. We showed that training on a single cohort may lack in variability while training on several cohorts improves generalization (acceptable performances on all tested cohorts including some that are not included in training). The trained models will be made publicly available should the manuscript be accepted.</description><identifier>ISSN: 2331-8422</identifier><identifier>EISSN: 2331-8422</identifier><identifier>PMID: 39148932</identifier><language>eng</language><publisher>United States: Cornell University</publisher><ispartof>ArXiv.org, 2024-08</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39148932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hemforth, Lisa</creatorcontrib><creatorcontrib>Couvy-Duchesne, Baptiste</creatorcontrib><creatorcontrib>De Matos, Kevin</creatorcontrib><creatorcontrib>Brianceau, Camille</creatorcontrib><creatorcontrib>Joulot, Matthieu</creatorcontrib><creatorcontrib>Banaschewski, Tobias</creatorcontrib><creatorcontrib>Bokde, Arun L W</creatorcontrib><creatorcontrib>Desrivières, Sylvane</creatorcontrib><creatorcontrib>Flor, Herta</creatorcontrib><creatorcontrib>Grigis, Antoine</creatorcontrib><creatorcontrib>Garavan, Hugh</creatorcontrib><creatorcontrib>Gowland, Penny</creatorcontrib><creatorcontrib>Heinz, Andreas</creatorcontrib><creatorcontrib>Brühl, Rüdiger</creatorcontrib><creatorcontrib>Martinot, Jean-Luc</creatorcontrib><creatorcontrib>Paillère Martinot, Marie-Laure</creatorcontrib><creatorcontrib>Artiges, Eric</creatorcontrib><creatorcontrib>Papadopoulos, Dimitri</creatorcontrib><creatorcontrib>Lemaitre, Herve</creatorcontrib><creatorcontrib>Paus, Tomas</creatorcontrib><creatorcontrib>Poustka, Luise</creatorcontrib><creatorcontrib>Hohman, Sarah</creatorcontrib><creatorcontrib>Holz, Nathalie</creatorcontrib><creatorcontrib>Fröhner, Juliane H</creatorcontrib><creatorcontrib>Smolka, Michael N</creatorcontrib><creatorcontrib>Vaidya, Nilakshi</creatorcontrib><creatorcontrib>Walter, Henrik</creatorcontrib><creatorcontrib>Whelan, Robert</creatorcontrib><creatorcontrib>Schumann, Gunter</creatorcontrib><creatorcontrib>Büchel, Christian</creatorcontrib><creatorcontrib>Poline, J B</creatorcontrib><creatorcontrib>Itterman, Bernd</creatorcontrib><creatorcontrib>Frouin, Vincent</creatorcontrib><creatorcontrib>Martin, Alexandre</creatorcontrib><creatorcontrib>Cury, Claire</creatorcontrib><creatorcontrib>Colliot, Olivier</creatorcontrib><creatorcontrib>IMAGEN study group</creatorcontrib><title>Automatic rating of incomplete hippocampal inversions evaluated across multiple cohorts</title><title>ArXiv.org</title><addtitle>ArXiv</addtitle><description>Incomplete Hippocampal Inversion (IHI), sometimes called hippocampal malrotation, is an atypical anatomical pattern of the hippocampus found in about 20% of the general population. IHI can be visually assessed on coronal slices of T1 weighted MR images, using a composite score that combines four anatomical criteria. IHI has been associated with several brain disorders (epilepsy, schizophrenia). However, these studies were based on small samples. Furthermore, the factors (genetic or environmental) that contribute to the genesis of IHI are largely unknown. Large-scale studies are thus needed to further understand IHI and their potential relationships to neurological and psychiatric disorders. However, visual evaluation is long and tedious, justifying the need for an automatic method. In this paper, we propose, for the first time, to automatically rate IHI. We proceed by predicting four anatomical criteria, which are then summed up to form the IHI score, providing the advantage of an interpretable score. We provided an extensive experimental investigation of different machine learning methods and training strategies. We performed automatic rating using a variety of deep learning models ("conv5-FC3", ResNet and "SECNN") as well as a ridge regression. We studied the generalization of our models using different cohorts and performed multi-cohort learning. We relied on a large population of 2,008 participants from the IMAGEN study, 993 and 403 participants from the QTIM and QTAB studies as well as 985 subjects from the UKBiobank. We showed that deep learning models outperformed a ridge regression. We demonstrated that the performances of the "conv5-FC3" network were at least as good as more complex networks while maintaining a low complexity and computation time. We showed that training on a single cohort may lack in variability while training on several cohorts improves generalization (acceptable performances on all tested cohorts including some that are not included in training). The trained models will be made publicly available should the manuscript be accepted.</description><issn>2331-8422</issn><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVUMtqwzAQFKWlCWl-oejYi0HSWlZ8KiH0EQj00tKjkeV1oiJbriQH-vc1NC3pZXeZmZ2BuSBzAcCzVS7E5dk9I8sYPxhjolBCSrgmMyh5vipBzMn7eky-08kaGqbZ76lvqe2N7waHCenBDoM3uhu0m-Ajhmh9HyketRt1woZqE3yMtBtdstMLNf7gQ4o35KrVLuLytBfk7fHhdfOc7V6etpv1Lhs4F5BxmddSgeJcYt60yKAopADBDcdCgsKmRoMMlZK1VmySsALbtix13nDVMFiQ-x_fYaw7bAz2KWhXDcF2OnxVXtvqP9PbQ7X3x4pzEEU-lbQgdyeH4D9HjKnqbDTonO7Rj7ECVoIspRJ8kt6eh_2l_NYJ33KwdYA</recordid><startdate>20240805</startdate><enddate>20240805</enddate><creator>Hemforth, Lisa</creator><creator>Couvy-Duchesne, Baptiste</creator><creator>De Matos, Kevin</creator><creator>Brianceau, Camille</creator><creator>Joulot, Matthieu</creator><creator>Banaschewski, Tobias</creator><creator>Bokde, Arun L W</creator><creator>Desrivières, Sylvane</creator><creator>Flor, Herta</creator><creator>Grigis, Antoine</creator><creator>Garavan, Hugh</creator><creator>Gowland, Penny</creator><creator>Heinz, Andreas</creator><creator>Brühl, Rüdiger</creator><creator>Martinot, Jean-Luc</creator><creator>Paillère Martinot, Marie-Laure</creator><creator>Artiges, Eric</creator><creator>Papadopoulos, Dimitri</creator><creator>Lemaitre, Herve</creator><creator>Paus, Tomas</creator><creator>Poustka, Luise</creator><creator>Hohman, Sarah</creator><creator>Holz, Nathalie</creator><creator>Fröhner, Juliane H</creator><creator>Smolka, Michael N</creator><creator>Vaidya, Nilakshi</creator><creator>Walter, Henrik</creator><creator>Whelan, Robert</creator><creator>Schumann, Gunter</creator><creator>Büchel, Christian</creator><creator>Poline, J B</creator><creator>Itterman, Bernd</creator><creator>Frouin, Vincent</creator><creator>Martin, Alexandre</creator><creator>Cury, Claire</creator><creator>Colliot, Olivier</creator><general>Cornell University</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240805</creationdate><title>Automatic rating of incomplete hippocampal inversions evaluated across multiple cohorts</title><author>Hemforth, Lisa ; Couvy-Duchesne, Baptiste ; De Matos, Kevin ; Brianceau, Camille ; Joulot, Matthieu ; Banaschewski, Tobias ; Bokde, Arun L W ; Desrivières, Sylvane ; Flor, Herta ; Grigis, Antoine ; Garavan, Hugh ; Gowland, Penny ; Heinz, Andreas ; Brühl, Rüdiger ; Martinot, Jean-Luc ; Paillère Martinot, Marie-Laure ; Artiges, Eric ; Papadopoulos, Dimitri ; Lemaitre, Herve ; Paus, Tomas ; Poustka, Luise ; Hohman, Sarah ; Holz, Nathalie ; Fröhner, Juliane H ; Smolka, Michael N ; Vaidya, Nilakshi ; Walter, Henrik ; Whelan, Robert ; Schumann, Gunter ; Büchel, Christian ; Poline, J B ; Itterman, Bernd ; Frouin, Vincent ; Martin, Alexandre ; Cury, Claire ; Colliot, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1123-154b5737115e4dfe036652321c1e6537edbece0e775ba704df06eff99a4d17d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Hemforth, Lisa</creatorcontrib><creatorcontrib>Couvy-Duchesne, Baptiste</creatorcontrib><creatorcontrib>De Matos, Kevin</creatorcontrib><creatorcontrib>Brianceau, Camille</creatorcontrib><creatorcontrib>Joulot, Matthieu</creatorcontrib><creatorcontrib>Banaschewski, Tobias</creatorcontrib><creatorcontrib>Bokde, Arun L W</creatorcontrib><creatorcontrib>Desrivières, Sylvane</creatorcontrib><creatorcontrib>Flor, Herta</creatorcontrib><creatorcontrib>Grigis, Antoine</creatorcontrib><creatorcontrib>Garavan, Hugh</creatorcontrib><creatorcontrib>Gowland, Penny</creatorcontrib><creatorcontrib>Heinz, Andreas</creatorcontrib><creatorcontrib>Brühl, Rüdiger</creatorcontrib><creatorcontrib>Martinot, Jean-Luc</creatorcontrib><creatorcontrib>Paillère Martinot, Marie-Laure</creatorcontrib><creatorcontrib>Artiges, Eric</creatorcontrib><creatorcontrib>Papadopoulos, Dimitri</creatorcontrib><creatorcontrib>Lemaitre, Herve</creatorcontrib><creatorcontrib>Paus, Tomas</creatorcontrib><creatorcontrib>Poustka, Luise</creatorcontrib><creatorcontrib>Hohman, Sarah</creatorcontrib><creatorcontrib>Holz, Nathalie</creatorcontrib><creatorcontrib>Fröhner, Juliane H</creatorcontrib><creatorcontrib>Smolka, Michael N</creatorcontrib><creatorcontrib>Vaidya, Nilakshi</creatorcontrib><creatorcontrib>Walter, Henrik</creatorcontrib><creatorcontrib>Whelan, Robert</creatorcontrib><creatorcontrib>Schumann, Gunter</creatorcontrib><creatorcontrib>Büchel, Christian</creatorcontrib><creatorcontrib>Poline, J B</creatorcontrib><creatorcontrib>Itterman, Bernd</creatorcontrib><creatorcontrib>Frouin, Vincent</creatorcontrib><creatorcontrib>Martin, Alexandre</creatorcontrib><creatorcontrib>Cury, Claire</creatorcontrib><creatorcontrib>Colliot, Olivier</creatorcontrib><creatorcontrib>IMAGEN study group</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ArXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hemforth, Lisa</au><au>Couvy-Duchesne, Baptiste</au><au>De Matos, Kevin</au><au>Brianceau, Camille</au><au>Joulot, Matthieu</au><au>Banaschewski, Tobias</au><au>Bokde, Arun L W</au><au>Desrivières, Sylvane</au><au>Flor, Herta</au><au>Grigis, Antoine</au><au>Garavan, Hugh</au><au>Gowland, Penny</au><au>Heinz, Andreas</au><au>Brühl, Rüdiger</au><au>Martinot, Jean-Luc</au><au>Paillère Martinot, Marie-Laure</au><au>Artiges, Eric</au><au>Papadopoulos, Dimitri</au><au>Lemaitre, Herve</au><au>Paus, Tomas</au><au>Poustka, Luise</au><au>Hohman, Sarah</au><au>Holz, Nathalie</au><au>Fröhner, Juliane H</au><au>Smolka, Michael N</au><au>Vaidya, Nilakshi</au><au>Walter, Henrik</au><au>Whelan, Robert</au><au>Schumann, Gunter</au><au>Büchel, Christian</au><au>Poline, J B</au><au>Itterman, Bernd</au><au>Frouin, Vincent</au><au>Martin, Alexandre</au><au>Cury, Claire</au><au>Colliot, Olivier</au><aucorp>IMAGEN study group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic rating of incomplete hippocampal inversions evaluated across multiple cohorts</atitle><jtitle>ArXiv.org</jtitle><addtitle>ArXiv</addtitle><date>2024-08-05</date><risdate>2024</risdate><issn>2331-8422</issn><eissn>2331-8422</eissn><abstract>Incomplete Hippocampal Inversion (IHI), sometimes called hippocampal malrotation, is an atypical anatomical pattern of the hippocampus found in about 20% of the general population. IHI can be visually assessed on coronal slices of T1 weighted MR images, using a composite score that combines four anatomical criteria. IHI has been associated with several brain disorders (epilepsy, schizophrenia). However, these studies were based on small samples. Furthermore, the factors (genetic or environmental) that contribute to the genesis of IHI are largely unknown. Large-scale studies are thus needed to further understand IHI and their potential relationships to neurological and psychiatric disorders. However, visual evaluation is long and tedious, justifying the need for an automatic method. In this paper, we propose, for the first time, to automatically rate IHI. We proceed by predicting four anatomical criteria, which are then summed up to form the IHI score, providing the advantage of an interpretable score. We provided an extensive experimental investigation of different machine learning methods and training strategies. We performed automatic rating using a variety of deep learning models ("conv5-FC3", ResNet and "SECNN") as well as a ridge regression. We studied the generalization of our models using different cohorts and performed multi-cohort learning. We relied on a large population of 2,008 participants from the IMAGEN study, 993 and 403 participants from the QTIM and QTAB studies as well as 985 subjects from the UKBiobank. We showed that deep learning models outperformed a ridge regression. We demonstrated that the performances of the "conv5-FC3" network were at least as good as more complex networks while maintaining a low complexity and computation time. We showed that training on a single cohort may lack in variability while training on several cohorts improves generalization (acceptable performances on all tested cohorts including some that are not included in training). The trained models will be made publicly available should the manuscript be accepted.</abstract><cop>United States</cop><pub>Cornell University</pub><pmid>39148932</pmid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2331-8422
ispartof ArXiv.org, 2024-08
issn 2331-8422
2331-8422
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11326423
source Free E- Journals
title Automatic rating of incomplete hippocampal inversions evaluated across multiple cohorts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20rating%20of%20incomplete%20hippocampal%20inversions%20evaluated%20across%20multiple%20cohorts&rft.jtitle=ArXiv.org&rft.au=Hemforth,%20Lisa&rft.aucorp=IMAGEN%20study%20group&rft.date=2024-08-05&rft.issn=2331-8422&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E3093595721%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093595721&rft_id=info:pmid/39148932&rfr_iscdi=true