Ni–Sr/TiZr for H2 from methane via POM: Sr loading & optimization
Achieving remarkable H2 yield with significantly high H2/CO over Ni-based catalysts through partial oxidation of methane (POM) is a realistic approach to depleting the concentration of CH4 and using H2 and CO as synthetic feedstock. This study examined Ni catalysts on titania–zirconia for methane co...
Gespeichert in:
Veröffentlicht in: | RSC advances 2024-08, Vol.14 (35), p.25273-25288 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25288 |
---|---|
container_issue | 35 |
container_start_page | 25273 |
container_title | RSC advances |
container_volume | 14 |
creator | Alwadai, Norah Abahussain, Abdulaziz A M Vadodariya, Dharmesh M Banabdwin, Khaled M Anis Hamza Fakeeha Abu-Dahrieh, Jehad K Almuqati, Naif S Alghamdi, Ahmad M Kumar, Rawesh Al-Fatesh, Ahmed S |
description | Achieving remarkable H2 yield with significantly high H2/CO over Ni-based catalysts through partial oxidation of methane (POM) is a realistic approach to depleting the concentration of CH4 and using H2 and CO as synthetic feedstock. This study examined Ni catalysts on titania–zirconia for methane conversion via POM at 600 °C and atmospheric pressure. The addition of strontium to the catalyst was explored to improve its performance. Catalysts were characterized by X-ray diffraction, Raman-infrared-UV-vis spectroscopy, and Temperature-programmed reduction-desorption techniques (TPR, TPD). 2.5 wt% Sr addition induced the formation of the highest concentration of extreme basic sites. Interestingly, over the unpromoted catalyst, active sites are majorly generated by hardly reducible NiO species whereas upon 2.5 wt% promoted Sr promotional addition, most of active sites are derived by easily reducible NiO species. 45% CH4 conversion and 47% H2 yield with H2/CO = 3.5 were achieved over 2.5 wt% Sr promoted 5Ni/30TiO2 + ZrO2 catalyst. These results provide insight into the role of basic sites in enhancing activity through switching indirect pathways over direct pathways for POM. Further process optimization was carried out in the range of 10 000–22 000 SV, 0.35–0.75 O2/CH4, and 600–800 °C reaction temperature over 5Ni2.5Sr/30TiO2 + ZrO2 by using central composite design under response surface methodology. The optimum activity as high as ∼88% CH4 conversion, 86–87% yield of H2, and 2.92H2/CO were predicted and experimentally validated at 800 °C reaction temperature, 0.35O2/CH4 ratio, and 10 000 space velocity. |
doi_str_mv | 10.1039/d4ra04781h |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11320059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092872720</sourcerecordid><originalsourceid>FETCH-LOGICAL-p238t-380cfdd2203fafa9a145deb41c9822a1c5b649cfe8ea80baeb3e9442751799373</originalsourceid><addsrcrecordid>eNpdj81Kw0AUhQdRsNRufIIBQdzEzl8yM25EilqhWqF14ybcJJN2SpKJk6SgK9_BN_RJjNiFejb3wDl83IPQMSXnlHA9zoQHIqSi6z00YEREASOR3v_lD9GoaTakVxRSFtEBmjzYz_ePhR8v7bPHufN4ynDuXYlL066hMnhrAT_O7y_wwuPCQWarFT7Frm5tad-gta46Qgc5FI0Z7e4QPd1cLyfTYDa_vZtczYKacdUGXJE0zzLGCM8hBw1UhJlJBE21YgxoGiaR0GlulAFFEjAJN1oIJkMqteaSD9HlD7fuktJkqalaD0Vce1uCf40d2PhvUtl1vHLbmFLOCAl1TzjbEbx76UzTxqVtUlMU_VDXNTEnminJZP_iEJ38q25c56t-33dLKs61ivgXeCFw6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097833986</pqid></control><display><type>article</type><title>Ni–Sr/TiZr for H2 from methane via POM: Sr loading & optimization</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Alwadai, Norah ; Abahussain, Abdulaziz A M ; Vadodariya, Dharmesh M ; Banabdwin, Khaled M ; Anis Hamza Fakeeha ; Abu-Dahrieh, Jehad K ; Almuqati, Naif S ; Alghamdi, Ahmad M ; Kumar, Rawesh ; Al-Fatesh, Ahmed S</creator><creatorcontrib>Alwadai, Norah ; Abahussain, Abdulaziz A M ; Vadodariya, Dharmesh M ; Banabdwin, Khaled M ; Anis Hamza Fakeeha ; Abu-Dahrieh, Jehad K ; Almuqati, Naif S ; Alghamdi, Ahmad M ; Kumar, Rawesh ; Al-Fatesh, Ahmed S</creatorcontrib><description>Achieving remarkable H2 yield with significantly high H2/CO over Ni-based catalysts through partial oxidation of methane (POM) is a realistic approach to depleting the concentration of CH4 and using H2 and CO as synthetic feedstock. This study examined Ni catalysts on titania–zirconia for methane conversion via POM at 600 °C and atmospheric pressure. The addition of strontium to the catalyst was explored to improve its performance. Catalysts were characterized by X-ray diffraction, Raman-infrared-UV-vis spectroscopy, and Temperature-programmed reduction-desorption techniques (TPR, TPD). 2.5 wt% Sr addition induced the formation of the highest concentration of extreme basic sites. Interestingly, over the unpromoted catalyst, active sites are majorly generated by hardly reducible NiO species whereas upon 2.5 wt% promoted Sr promotional addition, most of active sites are derived by easily reducible NiO species. 45% CH4 conversion and 47% H2 yield with H2/CO = 3.5 were achieved over 2.5 wt% Sr promoted 5Ni/30TiO2 + ZrO2 catalyst. These results provide insight into the role of basic sites in enhancing activity through switching indirect pathways over direct pathways for POM. Further process optimization was carried out in the range of 10 000–22 000 SV, 0.35–0.75 O2/CH4, and 600–800 °C reaction temperature over 5Ni2.5Sr/30TiO2 + ZrO2 by using central composite design under response surface methodology. The optimum activity as high as ∼88% CH4 conversion, 86–87% yield of H2, and 2.92H2/CO were predicted and experimentally validated at 800 °C reaction temperature, 0.35O2/CH4 ratio, and 10 000 space velocity.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra04781h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Basic converters ; Catalysts ; Chemistry ; Methane ; Nickel oxides ; Optimization ; Oxidation ; Response surface methodology ; Zirconium dioxide</subject><ispartof>RSC advances, 2024-08, Vol.14 (35), p.25273-25288</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320059/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320059/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Alwadai, Norah</creatorcontrib><creatorcontrib>Abahussain, Abdulaziz A M</creatorcontrib><creatorcontrib>Vadodariya, Dharmesh M</creatorcontrib><creatorcontrib>Banabdwin, Khaled M</creatorcontrib><creatorcontrib>Anis Hamza Fakeeha</creatorcontrib><creatorcontrib>Abu-Dahrieh, Jehad K</creatorcontrib><creatorcontrib>Almuqati, Naif S</creatorcontrib><creatorcontrib>Alghamdi, Ahmad M</creatorcontrib><creatorcontrib>Kumar, Rawesh</creatorcontrib><creatorcontrib>Al-Fatesh, Ahmed S</creatorcontrib><title>Ni–Sr/TiZr for H2 from methane via POM: Sr loading & optimization</title><title>RSC advances</title><description>Achieving remarkable H2 yield with significantly high H2/CO over Ni-based catalysts through partial oxidation of methane (POM) is a realistic approach to depleting the concentration of CH4 and using H2 and CO as synthetic feedstock. This study examined Ni catalysts on titania–zirconia for methane conversion via POM at 600 °C and atmospheric pressure. The addition of strontium to the catalyst was explored to improve its performance. Catalysts were characterized by X-ray diffraction, Raman-infrared-UV-vis spectroscopy, and Temperature-programmed reduction-desorption techniques (TPR, TPD). 2.5 wt% Sr addition induced the formation of the highest concentration of extreme basic sites. Interestingly, over the unpromoted catalyst, active sites are majorly generated by hardly reducible NiO species whereas upon 2.5 wt% promoted Sr promotional addition, most of active sites are derived by easily reducible NiO species. 45% CH4 conversion and 47% H2 yield with H2/CO = 3.5 were achieved over 2.5 wt% Sr promoted 5Ni/30TiO2 + ZrO2 catalyst. These results provide insight into the role of basic sites in enhancing activity through switching indirect pathways over direct pathways for POM. Further process optimization was carried out in the range of 10 000–22 000 SV, 0.35–0.75 O2/CH4, and 600–800 °C reaction temperature over 5Ni2.5Sr/30TiO2 + ZrO2 by using central composite design under response surface methodology. The optimum activity as high as ∼88% CH4 conversion, 86–87% yield of H2, and 2.92H2/CO were predicted and experimentally validated at 800 °C reaction temperature, 0.35O2/CH4 ratio, and 10 000 space velocity.</description><subject>Basic converters</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Methane</subject><subject>Nickel oxides</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Response surface methodology</subject><subject>Zirconium dioxide</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdj81Kw0AUhQdRsNRufIIBQdzEzl8yM25EilqhWqF14ybcJJN2SpKJk6SgK9_BN_RJjNiFejb3wDl83IPQMSXnlHA9zoQHIqSi6z00YEREASOR3v_lD9GoaTakVxRSFtEBmjzYz_ePhR8v7bPHufN4ynDuXYlL066hMnhrAT_O7y_wwuPCQWarFT7Frm5tad-gta46Qgc5FI0Z7e4QPd1cLyfTYDa_vZtczYKacdUGXJE0zzLGCM8hBw1UhJlJBE21YgxoGiaR0GlulAFFEjAJN1oIJkMqteaSD9HlD7fuktJkqalaD0Vce1uCf40d2PhvUtl1vHLbmFLOCAl1TzjbEbx76UzTxqVtUlMU_VDXNTEnminJZP_iEJ38q25c56t-33dLKs61ivgXeCFw6w</recordid><startdate>20240812</startdate><enddate>20240812</enddate><creator>Alwadai, Norah</creator><creator>Abahussain, Abdulaziz A M</creator><creator>Vadodariya, Dharmesh M</creator><creator>Banabdwin, Khaled M</creator><creator>Anis Hamza Fakeeha</creator><creator>Abu-Dahrieh, Jehad K</creator><creator>Almuqati, Naif S</creator><creator>Alghamdi, Ahmad M</creator><creator>Kumar, Rawesh</creator><creator>Al-Fatesh, Ahmed S</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240812</creationdate><title>Ni–Sr/TiZr for H2 from methane via POM: Sr loading & optimization</title><author>Alwadai, Norah ; Abahussain, Abdulaziz A M ; Vadodariya, Dharmesh M ; Banabdwin, Khaled M ; Anis Hamza Fakeeha ; Abu-Dahrieh, Jehad K ; Almuqati, Naif S ; Alghamdi, Ahmad M ; Kumar, Rawesh ; Al-Fatesh, Ahmed S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p238t-380cfdd2203fafa9a145deb41c9822a1c5b649cfe8ea80baeb3e9442751799373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Basic converters</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Methane</topic><topic>Nickel oxides</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Response surface methodology</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alwadai, Norah</creatorcontrib><creatorcontrib>Abahussain, Abdulaziz A M</creatorcontrib><creatorcontrib>Vadodariya, Dharmesh M</creatorcontrib><creatorcontrib>Banabdwin, Khaled M</creatorcontrib><creatorcontrib>Anis Hamza Fakeeha</creatorcontrib><creatorcontrib>Abu-Dahrieh, Jehad K</creatorcontrib><creatorcontrib>Almuqati, Naif S</creatorcontrib><creatorcontrib>Alghamdi, Ahmad M</creatorcontrib><creatorcontrib>Kumar, Rawesh</creatorcontrib><creatorcontrib>Al-Fatesh, Ahmed S</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alwadai, Norah</au><au>Abahussain, Abdulaziz A M</au><au>Vadodariya, Dharmesh M</au><au>Banabdwin, Khaled M</au><au>Anis Hamza Fakeeha</au><au>Abu-Dahrieh, Jehad K</au><au>Almuqati, Naif S</au><au>Alghamdi, Ahmad M</au><au>Kumar, Rawesh</au><au>Al-Fatesh, Ahmed S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ni–Sr/TiZr for H2 from methane via POM: Sr loading & optimization</atitle><jtitle>RSC advances</jtitle><date>2024-08-12</date><risdate>2024</risdate><volume>14</volume><issue>35</issue><spage>25273</spage><epage>25288</epage><pages>25273-25288</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Achieving remarkable H2 yield with significantly high H2/CO over Ni-based catalysts through partial oxidation of methane (POM) is a realistic approach to depleting the concentration of CH4 and using H2 and CO as synthetic feedstock. This study examined Ni catalysts on titania–zirconia for methane conversion via POM at 600 °C and atmospheric pressure. The addition of strontium to the catalyst was explored to improve its performance. Catalysts were characterized by X-ray diffraction, Raman-infrared-UV-vis spectroscopy, and Temperature-programmed reduction-desorption techniques (TPR, TPD). 2.5 wt% Sr addition induced the formation of the highest concentration of extreme basic sites. Interestingly, over the unpromoted catalyst, active sites are majorly generated by hardly reducible NiO species whereas upon 2.5 wt% promoted Sr promotional addition, most of active sites are derived by easily reducible NiO species. 45% CH4 conversion and 47% H2 yield with H2/CO = 3.5 were achieved over 2.5 wt% Sr promoted 5Ni/30TiO2 + ZrO2 catalyst. These results provide insight into the role of basic sites in enhancing activity through switching indirect pathways over direct pathways for POM. Further process optimization was carried out in the range of 10 000–22 000 SV, 0.35–0.75 O2/CH4, and 600–800 °C reaction temperature over 5Ni2.5Sr/30TiO2 + ZrO2 by using central composite design under response surface methodology. The optimum activity as high as ∼88% CH4 conversion, 86–87% yield of H2, and 2.92H2/CO were predicted and experimentally validated at 800 °C reaction temperature, 0.35O2/CH4 ratio, and 10 000 space velocity.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ra04781h</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2024-08, Vol.14 (35), p.25273-25288 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11320059 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Basic converters Catalysts Chemistry Methane Nickel oxides Optimization Oxidation Response surface methodology Zirconium dioxide |
title | Ni–Sr/TiZr for H2 from methane via POM: Sr loading & optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T02%3A33%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ni%E2%80%93Sr/TiZr%20for%20H2%20from%20methane%20via%20POM:%20Sr%20loading%20&%20optimization&rft.jtitle=RSC%20advances&rft.au=Alwadai,%20Norah&rft.date=2024-08-12&rft.volume=14&rft.issue=35&rft.spage=25273&rft.epage=25288&rft.pages=25273-25288&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra04781h&rft_dat=%3Cproquest_pubme%3E3092872720%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097833986&rft_id=info:pmid/&rfr_iscdi=true |