Unidirectional imaging using deep learning-designed materials

A unidirectional imager would only permit image formation along one direction, from an input field-of-view (FOV) A to an output FOV B, and in the reverse path, B → A, the image formation would be blocked. We report the first demonstration of unidirectional imagers, presenting polarization-insensitiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2023-04, Vol.9 (17), p.eadg1505
Hauptverfasser: Li, Jingxi, Gan, Tianyi, Zhao, Yifan, Bai, Bijie, Shen, Che-Yung, Sun, Songyu, Jarrahi, Mona, Ozcan, Aydogan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page eadg1505
container_title Science advances
container_volume 9
creator Li, Jingxi
Gan, Tianyi
Zhao, Yifan
Bai, Bijie
Shen, Che-Yung
Sun, Songyu
Jarrahi, Mona
Ozcan, Aydogan
description A unidirectional imager would only permit image formation along one direction, from an input field-of-view (FOV) A to an output FOV B, and in the reverse path, B → A, the image formation would be blocked. We report the first demonstration of unidirectional imagers, presenting polarization-insensitive and broadband unidirectional imaging based on successive diffractive layers that are linear and isotropic. After their deep learning-based training, the resulting diffractive layers are fabricated to form a unidirectional imager. Although trained using monochromatic illumination, the diffractive unidirectional imager maintains its functionality over a large spectral band and works under broadband illumination. We experimentally validated this unidirectional imager using terahertz radiation, well matching our numerical results. We also created a wavelength-selective unidirectional imager, where two unidirectional imaging operations, in reverse directions, are multiplexed through different illumination wavelengths. Diffractive unidirectional imaging using structured materials will have numerous applications in, e.g., security, defense, telecommunications, and privacy protection.
doi_str_mv 10.1126/sciadv.adg1505
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11318665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807924034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-399603f722ad8fb3909ee9a8ac063313abdb309dbc4a2b99f93c780768918e7b3</originalsourceid><addsrcrecordid>eNpVUMlOwzAQtRCIVqVXjihHLilestgHhFDFJlXiQs-WY0-CUeIUO6nE3-OqpSqXWTRv3pt5CF0TvCCEFndBW2W2C2UakuP8DE0pK_OU5hk_P6knaB7CF8aYZEWRE3GJJqwkJBeUT9H92lljPejB9k61ie1UY12TjGEXDcAmaUF5F7vUQLCNA5N0agBvVRuu0EUdE8wPeYbWz08fy9d09f7ytnxcpZoJMqRMiAKzuqRUGV5XTGABIBRXGheMEaYqUzEsTKUzRSshasF0yXFZcEE4lBWboYc972asOjAa3OBVKzc-nut_ZK-s_D9x9lM2_VYSwgiPX0eG2wOD779HCIPsbNDQtspBPwZJo5ygGWZZhC72UO37EDzURx2C5c53ufddHnyPCzen1x3hfy6zX0xpgV4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807924034</pqid></control><display><type>article</type><title>Unidirectional imaging using deep learning-designed materials</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Li, Jingxi ; Gan, Tianyi ; Zhao, Yifan ; Bai, Bijie ; Shen, Che-Yung ; Sun, Songyu ; Jarrahi, Mona ; Ozcan, Aydogan</creator><creatorcontrib>Li, Jingxi ; Gan, Tianyi ; Zhao, Yifan ; Bai, Bijie ; Shen, Che-Yung ; Sun, Songyu ; Jarrahi, Mona ; Ozcan, Aydogan</creatorcontrib><description>A unidirectional imager would only permit image formation along one direction, from an input field-of-view (FOV) A to an output FOV B, and in the reverse path, B → A, the image formation would be blocked. We report the first demonstration of unidirectional imagers, presenting polarization-insensitive and broadband unidirectional imaging based on successive diffractive layers that are linear and isotropic. After their deep learning-based training, the resulting diffractive layers are fabricated to form a unidirectional imager. Although trained using monochromatic illumination, the diffractive unidirectional imager maintains its functionality over a large spectral band and works under broadband illumination. We experimentally validated this unidirectional imager using terahertz radiation, well matching our numerical results. We also created a wavelength-selective unidirectional imager, where two unidirectional imaging operations, in reverse directions, are multiplexed through different illumination wavelengths. Diffractive unidirectional imaging using structured materials will have numerous applications in, e.g., security, defense, telecommunications, and privacy protection.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adg1505</identifier><identifier>PMID: 37115928</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Optics ; Physical and Materials Sciences ; Physics ; SciAdv r-articles</subject><ispartof>Science advances, 2023-04, Vol.9 (17), p.eadg1505</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-399603f722ad8fb3909ee9a8ac063313abdb309dbc4a2b99f93c780768918e7b3</citedby><cites>FETCH-LOGICAL-c391t-399603f722ad8fb3909ee9a8ac063313abdb309dbc4a2b99f93c780768918e7b3</cites><orcidid>0000-0002-4744-996X ; 0000-0002-8812-6112 ; 0000-0001-9514-555X ; 0000-0001-8675-0053 ; 0000-0001-6595-8680 ; 0000-0002-0717-683X ; 0009-0009-4517-9714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318665/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318665/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37115928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jingxi</creatorcontrib><creatorcontrib>Gan, Tianyi</creatorcontrib><creatorcontrib>Zhao, Yifan</creatorcontrib><creatorcontrib>Bai, Bijie</creatorcontrib><creatorcontrib>Shen, Che-Yung</creatorcontrib><creatorcontrib>Sun, Songyu</creatorcontrib><creatorcontrib>Jarrahi, Mona</creatorcontrib><creatorcontrib>Ozcan, Aydogan</creatorcontrib><title>Unidirectional imaging using deep learning-designed materials</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>A unidirectional imager would only permit image formation along one direction, from an input field-of-view (FOV) A to an output FOV B, and in the reverse path, B → A, the image formation would be blocked. We report the first demonstration of unidirectional imagers, presenting polarization-insensitive and broadband unidirectional imaging based on successive diffractive layers that are linear and isotropic. After their deep learning-based training, the resulting diffractive layers are fabricated to form a unidirectional imager. Although trained using monochromatic illumination, the diffractive unidirectional imager maintains its functionality over a large spectral band and works under broadband illumination. We experimentally validated this unidirectional imager using terahertz radiation, well matching our numerical results. We also created a wavelength-selective unidirectional imager, where two unidirectional imaging operations, in reverse directions, are multiplexed through different illumination wavelengths. Diffractive unidirectional imaging using structured materials will have numerous applications in, e.g., security, defense, telecommunications, and privacy protection.</description><subject>Optics</subject><subject>Physical and Materials Sciences</subject><subject>Physics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVUMlOwzAQtRCIVqVXjihHLilestgHhFDFJlXiQs-WY0-CUeIUO6nE3-OqpSqXWTRv3pt5CF0TvCCEFndBW2W2C2UakuP8DE0pK_OU5hk_P6knaB7CF8aYZEWRE3GJJqwkJBeUT9H92lljPejB9k61ie1UY12TjGEXDcAmaUF5F7vUQLCNA5N0agBvVRuu0EUdE8wPeYbWz08fy9d09f7ytnxcpZoJMqRMiAKzuqRUGV5XTGABIBRXGheMEaYqUzEsTKUzRSshasF0yXFZcEE4lBWboYc972asOjAa3OBVKzc-nut_ZK-s_D9x9lM2_VYSwgiPX0eG2wOD779HCIPsbNDQtspBPwZJo5ygGWZZhC72UO37EDzURx2C5c53ufddHnyPCzen1x3hfy6zX0xpgV4</recordid><startdate>20230428</startdate><enddate>20230428</enddate><creator>Li, Jingxi</creator><creator>Gan, Tianyi</creator><creator>Zhao, Yifan</creator><creator>Bai, Bijie</creator><creator>Shen, Che-Yung</creator><creator>Sun, Songyu</creator><creator>Jarrahi, Mona</creator><creator>Ozcan, Aydogan</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4744-996X</orcidid><orcidid>https://orcid.org/0000-0002-8812-6112</orcidid><orcidid>https://orcid.org/0000-0001-9514-555X</orcidid><orcidid>https://orcid.org/0000-0001-8675-0053</orcidid><orcidid>https://orcid.org/0000-0001-6595-8680</orcidid><orcidid>https://orcid.org/0000-0002-0717-683X</orcidid><orcidid>https://orcid.org/0009-0009-4517-9714</orcidid></search><sort><creationdate>20230428</creationdate><title>Unidirectional imaging using deep learning-designed materials</title><author>Li, Jingxi ; Gan, Tianyi ; Zhao, Yifan ; Bai, Bijie ; Shen, Che-Yung ; Sun, Songyu ; Jarrahi, Mona ; Ozcan, Aydogan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-399603f722ad8fb3909ee9a8ac063313abdb309dbc4a2b99f93c780768918e7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Optics</topic><topic>Physical and Materials Sciences</topic><topic>Physics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jingxi</creatorcontrib><creatorcontrib>Gan, Tianyi</creatorcontrib><creatorcontrib>Zhao, Yifan</creatorcontrib><creatorcontrib>Bai, Bijie</creatorcontrib><creatorcontrib>Shen, Che-Yung</creatorcontrib><creatorcontrib>Sun, Songyu</creatorcontrib><creatorcontrib>Jarrahi, Mona</creatorcontrib><creatorcontrib>Ozcan, Aydogan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jingxi</au><au>Gan, Tianyi</au><au>Zhao, Yifan</au><au>Bai, Bijie</au><au>Shen, Che-Yung</au><au>Sun, Songyu</au><au>Jarrahi, Mona</au><au>Ozcan, Aydogan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unidirectional imaging using deep learning-designed materials</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2023-04-28</date><risdate>2023</risdate><volume>9</volume><issue>17</issue><spage>eadg1505</spage><pages>eadg1505-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>A unidirectional imager would only permit image formation along one direction, from an input field-of-view (FOV) A to an output FOV B, and in the reverse path, B → A, the image formation would be blocked. We report the first demonstration of unidirectional imagers, presenting polarization-insensitive and broadband unidirectional imaging based on successive diffractive layers that are linear and isotropic. After their deep learning-based training, the resulting diffractive layers are fabricated to form a unidirectional imager. Although trained using monochromatic illumination, the diffractive unidirectional imager maintains its functionality over a large spectral band and works under broadband illumination. We experimentally validated this unidirectional imager using terahertz radiation, well matching our numerical results. We also created a wavelength-selective unidirectional imager, where two unidirectional imaging operations, in reverse directions, are multiplexed through different illumination wavelengths. Diffractive unidirectional imaging using structured materials will have numerous applications in, e.g., security, defense, telecommunications, and privacy protection.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>37115928</pmid><doi>10.1126/sciadv.adg1505</doi><orcidid>https://orcid.org/0000-0002-4744-996X</orcidid><orcidid>https://orcid.org/0000-0002-8812-6112</orcidid><orcidid>https://orcid.org/0000-0001-9514-555X</orcidid><orcidid>https://orcid.org/0000-0001-8675-0053</orcidid><orcidid>https://orcid.org/0000-0001-6595-8680</orcidid><orcidid>https://orcid.org/0000-0002-0717-683X</orcidid><orcidid>https://orcid.org/0009-0009-4517-9714</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2023-04, Vol.9 (17), p.eadg1505
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11318665
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Optics
Physical and Materials Sciences
Physics
SciAdv r-articles
title Unidirectional imaging using deep learning-designed materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unidirectional%20imaging%20using%20deep%20learning-designed%20materials&rft.jtitle=Science%20advances&rft.au=Li,%20Jingxi&rft.date=2023-04-28&rft.volume=9&rft.issue=17&rft.spage=eadg1505&rft.pages=eadg1505-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adg1505&rft_dat=%3Cproquest_pubme%3E2807924034%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807924034&rft_id=info:pmid/37115928&rfr_iscdi=true