Unidirectional imaging using deep learning-designed materials
A unidirectional imager would only permit image formation along one direction, from an input field-of-view (FOV) A to an output FOV B, and in the reverse path, B → A, the image formation would be blocked. We report the first demonstration of unidirectional imagers, presenting polarization-insensitiv...
Gespeichert in:
Veröffentlicht in: | Science advances 2023-04, Vol.9 (17), p.eadg1505 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | eadg1505 |
container_title | Science advances |
container_volume | 9 |
creator | Li, Jingxi Gan, Tianyi Zhao, Yifan Bai, Bijie Shen, Che-Yung Sun, Songyu Jarrahi, Mona Ozcan, Aydogan |
description | A unidirectional imager would only permit image formation along one direction, from an input field-of-view (FOV) A to an output FOV B, and in the reverse path, B → A, the image formation would be blocked. We report the first demonstration of unidirectional imagers, presenting polarization-insensitive and broadband unidirectional imaging based on successive diffractive layers that are linear and isotropic. After their deep learning-based training, the resulting diffractive layers are fabricated to form a unidirectional imager. Although trained using monochromatic illumination, the diffractive unidirectional imager maintains its functionality over a large spectral band and works under broadband illumination. We experimentally validated this unidirectional imager using terahertz radiation, well matching our numerical results. We also created a wavelength-selective unidirectional imager, where two unidirectional imaging operations, in reverse directions, are multiplexed through different illumination wavelengths. Diffractive unidirectional imaging using structured materials will have numerous applications in, e.g., security, defense, telecommunications, and privacy protection. |
doi_str_mv | 10.1126/sciadv.adg1505 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11318665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807924034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-399603f722ad8fb3909ee9a8ac063313abdb309dbc4a2b99f93c780768918e7b3</originalsourceid><addsrcrecordid>eNpVUMlOwzAQtRCIVqVXjihHLilestgHhFDFJlXiQs-WY0-CUeIUO6nE3-OqpSqXWTRv3pt5CF0TvCCEFndBW2W2C2UakuP8DE0pK_OU5hk_P6knaB7CF8aYZEWRE3GJJqwkJBeUT9H92lljPejB9k61ie1UY12TjGEXDcAmaUF5F7vUQLCNA5N0agBvVRuu0EUdE8wPeYbWz08fy9d09f7ytnxcpZoJMqRMiAKzuqRUGV5XTGABIBRXGheMEaYqUzEsTKUzRSshasF0yXFZcEE4lBWboYc972asOjAa3OBVKzc-nut_ZK-s_D9x9lM2_VYSwgiPX0eG2wOD779HCIPsbNDQtspBPwZJo5ygGWZZhC72UO37EDzURx2C5c53ufddHnyPCzen1x3hfy6zX0xpgV4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807924034</pqid></control><display><type>article</type><title>Unidirectional imaging using deep learning-designed materials</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Li, Jingxi ; Gan, Tianyi ; Zhao, Yifan ; Bai, Bijie ; Shen, Che-Yung ; Sun, Songyu ; Jarrahi, Mona ; Ozcan, Aydogan</creator><creatorcontrib>Li, Jingxi ; Gan, Tianyi ; Zhao, Yifan ; Bai, Bijie ; Shen, Che-Yung ; Sun, Songyu ; Jarrahi, Mona ; Ozcan, Aydogan</creatorcontrib><description>A unidirectional imager would only permit image formation along one direction, from an input field-of-view (FOV) A to an output FOV B, and in the reverse path, B → A, the image formation would be blocked. We report the first demonstration of unidirectional imagers, presenting polarization-insensitive and broadband unidirectional imaging based on successive diffractive layers that are linear and isotropic. After their deep learning-based training, the resulting diffractive layers are fabricated to form a unidirectional imager. Although trained using monochromatic illumination, the diffractive unidirectional imager maintains its functionality over a large spectral band and works under broadband illumination. We experimentally validated this unidirectional imager using terahertz radiation, well matching our numerical results. We also created a wavelength-selective unidirectional imager, where two unidirectional imaging operations, in reverse directions, are multiplexed through different illumination wavelengths. Diffractive unidirectional imaging using structured materials will have numerous applications in, e.g., security, defense, telecommunications, and privacy protection.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adg1505</identifier><identifier>PMID: 37115928</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Optics ; Physical and Materials Sciences ; Physics ; SciAdv r-articles</subject><ispartof>Science advances, 2023-04, Vol.9 (17), p.eadg1505</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-399603f722ad8fb3909ee9a8ac063313abdb309dbc4a2b99f93c780768918e7b3</citedby><cites>FETCH-LOGICAL-c391t-399603f722ad8fb3909ee9a8ac063313abdb309dbc4a2b99f93c780768918e7b3</cites><orcidid>0000-0002-4744-996X ; 0000-0002-8812-6112 ; 0000-0001-9514-555X ; 0000-0001-8675-0053 ; 0000-0001-6595-8680 ; 0000-0002-0717-683X ; 0009-0009-4517-9714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318665/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318665/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37115928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jingxi</creatorcontrib><creatorcontrib>Gan, Tianyi</creatorcontrib><creatorcontrib>Zhao, Yifan</creatorcontrib><creatorcontrib>Bai, Bijie</creatorcontrib><creatorcontrib>Shen, Che-Yung</creatorcontrib><creatorcontrib>Sun, Songyu</creatorcontrib><creatorcontrib>Jarrahi, Mona</creatorcontrib><creatorcontrib>Ozcan, Aydogan</creatorcontrib><title>Unidirectional imaging using deep learning-designed materials</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>A unidirectional imager would only permit image formation along one direction, from an input field-of-view (FOV) A to an output FOV B, and in the reverse path, B → A, the image formation would be blocked. We report the first demonstration of unidirectional imagers, presenting polarization-insensitive and broadband unidirectional imaging based on successive diffractive layers that are linear and isotropic. After their deep learning-based training, the resulting diffractive layers are fabricated to form a unidirectional imager. Although trained using monochromatic illumination, the diffractive unidirectional imager maintains its functionality over a large spectral band and works under broadband illumination. We experimentally validated this unidirectional imager using terahertz radiation, well matching our numerical results. We also created a wavelength-selective unidirectional imager, where two unidirectional imaging operations, in reverse directions, are multiplexed through different illumination wavelengths. Diffractive unidirectional imaging using structured materials will have numerous applications in, e.g., security, defense, telecommunications, and privacy protection.</description><subject>Optics</subject><subject>Physical and Materials Sciences</subject><subject>Physics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVUMlOwzAQtRCIVqVXjihHLilestgHhFDFJlXiQs-WY0-CUeIUO6nE3-OqpSqXWTRv3pt5CF0TvCCEFndBW2W2C2UakuP8DE0pK_OU5hk_P6knaB7CF8aYZEWRE3GJJqwkJBeUT9H92lljPejB9k61ie1UY12TjGEXDcAmaUF5F7vUQLCNA5N0agBvVRuu0EUdE8wPeYbWz08fy9d09f7ytnxcpZoJMqRMiAKzuqRUGV5XTGABIBRXGheMEaYqUzEsTKUzRSshasF0yXFZcEE4lBWboYc972asOjAa3OBVKzc-nut_ZK-s_D9x9lM2_VYSwgiPX0eG2wOD779HCIPsbNDQtspBPwZJo5ygGWZZhC72UO37EDzURx2C5c53ufddHnyPCzen1x3hfy6zX0xpgV4</recordid><startdate>20230428</startdate><enddate>20230428</enddate><creator>Li, Jingxi</creator><creator>Gan, Tianyi</creator><creator>Zhao, Yifan</creator><creator>Bai, Bijie</creator><creator>Shen, Che-Yung</creator><creator>Sun, Songyu</creator><creator>Jarrahi, Mona</creator><creator>Ozcan, Aydogan</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4744-996X</orcidid><orcidid>https://orcid.org/0000-0002-8812-6112</orcidid><orcidid>https://orcid.org/0000-0001-9514-555X</orcidid><orcidid>https://orcid.org/0000-0001-8675-0053</orcidid><orcidid>https://orcid.org/0000-0001-6595-8680</orcidid><orcidid>https://orcid.org/0000-0002-0717-683X</orcidid><orcidid>https://orcid.org/0009-0009-4517-9714</orcidid></search><sort><creationdate>20230428</creationdate><title>Unidirectional imaging using deep learning-designed materials</title><author>Li, Jingxi ; Gan, Tianyi ; Zhao, Yifan ; Bai, Bijie ; Shen, Che-Yung ; Sun, Songyu ; Jarrahi, Mona ; Ozcan, Aydogan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-399603f722ad8fb3909ee9a8ac063313abdb309dbc4a2b99f93c780768918e7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Optics</topic><topic>Physical and Materials Sciences</topic><topic>Physics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jingxi</creatorcontrib><creatorcontrib>Gan, Tianyi</creatorcontrib><creatorcontrib>Zhao, Yifan</creatorcontrib><creatorcontrib>Bai, Bijie</creatorcontrib><creatorcontrib>Shen, Che-Yung</creatorcontrib><creatorcontrib>Sun, Songyu</creatorcontrib><creatorcontrib>Jarrahi, Mona</creatorcontrib><creatorcontrib>Ozcan, Aydogan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jingxi</au><au>Gan, Tianyi</au><au>Zhao, Yifan</au><au>Bai, Bijie</au><au>Shen, Che-Yung</au><au>Sun, Songyu</au><au>Jarrahi, Mona</au><au>Ozcan, Aydogan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unidirectional imaging using deep learning-designed materials</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2023-04-28</date><risdate>2023</risdate><volume>9</volume><issue>17</issue><spage>eadg1505</spage><pages>eadg1505-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>A unidirectional imager would only permit image formation along one direction, from an input field-of-view (FOV) A to an output FOV B, and in the reverse path, B → A, the image formation would be blocked. We report the first demonstration of unidirectional imagers, presenting polarization-insensitive and broadband unidirectional imaging based on successive diffractive layers that are linear and isotropic. After their deep learning-based training, the resulting diffractive layers are fabricated to form a unidirectional imager. Although trained using monochromatic illumination, the diffractive unidirectional imager maintains its functionality over a large spectral band and works under broadband illumination. We experimentally validated this unidirectional imager using terahertz radiation, well matching our numerical results. We also created a wavelength-selective unidirectional imager, where two unidirectional imaging operations, in reverse directions, are multiplexed through different illumination wavelengths. Diffractive unidirectional imaging using structured materials will have numerous applications in, e.g., security, defense, telecommunications, and privacy protection.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>37115928</pmid><doi>10.1126/sciadv.adg1505</doi><orcidid>https://orcid.org/0000-0002-4744-996X</orcidid><orcidid>https://orcid.org/0000-0002-8812-6112</orcidid><orcidid>https://orcid.org/0000-0001-9514-555X</orcidid><orcidid>https://orcid.org/0000-0001-8675-0053</orcidid><orcidid>https://orcid.org/0000-0001-6595-8680</orcidid><orcidid>https://orcid.org/0000-0002-0717-683X</orcidid><orcidid>https://orcid.org/0009-0009-4517-9714</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2023-04, Vol.9 (17), p.eadg1505 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11318665 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Optics Physical and Materials Sciences Physics SciAdv r-articles |
title | Unidirectional imaging using deep learning-designed materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unidirectional%20imaging%20using%20deep%20learning-designed%20materials&rft.jtitle=Science%20advances&rft.au=Li,%20Jingxi&rft.date=2023-04-28&rft.volume=9&rft.issue=17&rft.spage=eadg1505&rft.pages=eadg1505-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adg1505&rft_dat=%3Cproquest_pubme%3E2807924034%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807924034&rft_id=info:pmid/37115928&rfr_iscdi=true |