Ginsenoside Rg3 combined with near‐infrared photothermal reversal of multidrug resistance in breast cancer MCF‐7/ADR cells
Adriamycin (ADR) is a frequently employed chemotherapeutic agent for the management of breast cancer. Nevertheless, multidrug resistance (MDR) can impair its therapeutic efficacy in breast cancer. MDR is characterized by increased expression of the P‐glycoprotein (P‐gp) efflux pump, up‐regulation of...
Gespeichert in:
Veröffentlicht in: | Food Science & Nutrition 2024-08, Vol.12 (8), p.5750-5761 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5761 |
---|---|
container_issue | 8 |
container_start_page | 5750 |
container_title | Food Science & Nutrition |
container_volume | 12 |
creator | Chang, Ying Fu, Qiang Lu, Zhongqi Jin, Quanxin Jin, Tiefeng Zhang, Meihua |
description | Adriamycin (ADR) is a frequently employed chemotherapeutic agent for the management of breast cancer. Nevertheless, multidrug resistance (MDR) can impair its therapeutic efficacy in breast cancer. MDR is characterized by increased expression of the P‐glycoprotein (P‐gp) efflux pump, up‐regulation of anti‐apoptotic proteins, and downregulation of pro‐apoptotic proteins. Consequently, inhibition of ATP‐binding cassette (ABC) transporter proteins has been deemed the most efficacious approach to overcome MDR. In this study, we used MTT (3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5 diphenyl tetrazolium bromide), Western blots, flow cytometry, immunofluorescence, and constructed xenograft tumors to investigate whether ginsenoside Rg3‐near‐infrared photothermal (Rg3‐NIR) combination reversed multidrug resistance in MCF‐7/ADR breast cancer. In vivo and in vitro experiments, the results showed that Rg3‐NIR co‐treatment was effective in inducing the apoptosis of MCF‐7/ADR breast cancer cells. This was achieved by reversing the expression of drug resistance‐associated proteins, while also inhibiting cell proliferation, migration, and epithelial–mesenchymal transition (EMT) processes via attenuation of the phosphatidylinositol 3‐kinase (PI3K)/protein kinase B (AKT) signaling pathway transduction. Ginsenoside Rg3 combined with near‐infrared photothermal therapy (NIR) effectively reverses multidrug resistance in breast cancer MCF‐7/ADR cells, providing a new therapeutic strategy for breast cancer drug resistance.
In consequence, the ginsenoside Rg3–near‐infrared photothermal therapy (Rg3–NIR) combination treatment group could inhibit MCF‐7/ADR cell migration, invasion, angiogenesis, and epithelial–mesenchymal transition (EMT) process by inhibiting the phosphatidylinositol 3‐kinase protein kinase B–mammalian target of rapamycin (PI3K‐AKT–mTOR) signaling pathway, reverse the expression of drug resistance‐related proteins, such as ATP‐binding cassette subfamily G member 2 (ABCG2) and multidrug resistance (MDR), and also promote the increase of apoptosis in MCF‐7/ADR cells, and reverse the drug resistance of MCF‐7/ADR cells. |
doi_str_mv | 10.1002/fsn3.4205 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11317707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815227614</galeid><sourcerecordid>A815227614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4715-cb95fe0eb6e575e619351584001dcc211f2b62514821ff47cf0d4f895e3285f33</originalsourceid><addsrcrecordid>eNp1ks1u1DAQxyMEolXpgRdAlrjAYXf9GScntFq6BakUqcDZcpzxrqvEXuykVS8Vj8Az8iQ4bKlKJeyDx-Pf_MdjT1G8JHhOMKYLmzybc4rFk-KQYl7NJJHy6QP7oDhO6RLnUXNSUvq8OGA1YXUt5GFxe-p8Ah-SawFdbBgyoW-chxZdu2GLPOj468dP523UMTt32zCEYQux1x2KcAUxZSNY1I_d4No4brI3uTRobwA5j5oIOg3ITPuIPq3WWU0ulu8vkIGuSy-KZ1Z3CY7v1qPi2_rk6-rD7Ozz6cfV8mxmuCRiZppaWMDQlCCkgJLUTBBRcYxJawwlxNKmpILwihJruTQWt9xWtQBGK2EZOyre7XV3Y9NDa8APUXdqF12v440K2ql_T7zbqk24UoSw_IRYZoU3dwoxfB8hDap3aapBewhjUgzXtJKUM5HR14_QyzBGn-ubKMIlFoxmar6nNroDlV845MQmzxZ6Z4IH67J_WRFBqSwJzwFv9wEmhpQi2PvrE6ymVlBTK6ipFTL76mG99-Tfj8_AYg9c5yw3_1dS6y_n7I_kb0Miv30</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091470532</pqid></control><display><type>article</type><title>Ginsenoside Rg3 combined with near‐infrared photothermal reversal of multidrug resistance in breast cancer MCF‐7/ADR cells</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Chang, Ying ; Fu, Qiang ; Lu, Zhongqi ; Jin, Quanxin ; Jin, Tiefeng ; Zhang, Meihua</creator><creatorcontrib>Chang, Ying ; Fu, Qiang ; Lu, Zhongqi ; Jin, Quanxin ; Jin, Tiefeng ; Zhang, Meihua</creatorcontrib><description>Adriamycin (ADR) is a frequently employed chemotherapeutic agent for the management of breast cancer. Nevertheless, multidrug resistance (MDR) can impair its therapeutic efficacy in breast cancer. MDR is characterized by increased expression of the P‐glycoprotein (P‐gp) efflux pump, up‐regulation of anti‐apoptotic proteins, and downregulation of pro‐apoptotic proteins. Consequently, inhibition of ATP‐binding cassette (ABC) transporter proteins has been deemed the most efficacious approach to overcome MDR. In this study, we used MTT (3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5 diphenyl tetrazolium bromide), Western blots, flow cytometry, immunofluorescence, and constructed xenograft tumors to investigate whether ginsenoside Rg3‐near‐infrared photothermal (Rg3‐NIR) combination reversed multidrug resistance in MCF‐7/ADR breast cancer. In vivo and in vitro experiments, the results showed that Rg3‐NIR co‐treatment was effective in inducing the apoptosis of MCF‐7/ADR breast cancer cells. This was achieved by reversing the expression of drug resistance‐associated proteins, while also inhibiting cell proliferation, migration, and epithelial–mesenchymal transition (EMT) processes via attenuation of the phosphatidylinositol 3‐kinase (PI3K)/protein kinase B (AKT) signaling pathway transduction. Ginsenoside Rg3 combined with near‐infrared photothermal therapy (NIR) effectively reverses multidrug resistance in breast cancer MCF‐7/ADR cells, providing a new therapeutic strategy for breast cancer drug resistance.
In consequence, the ginsenoside Rg3–near‐infrared photothermal therapy (Rg3–NIR) combination treatment group could inhibit MCF‐7/ADR cell migration, invasion, angiogenesis, and epithelial–mesenchymal transition (EMT) process by inhibiting the phosphatidylinositol 3‐kinase protein kinase B–mammalian target of rapamycin (PI3K‐AKT–mTOR) signaling pathway, reverse the expression of drug resistance‐related proteins, such as ATP‐binding cassette subfamily G member 2 (ABCG2) and multidrug resistance (MDR), and also promote the increase of apoptosis in MCF‐7/ADR cells, and reverse the drug resistance of MCF‐7/ADR cells.</description><identifier>ISSN: 2048-7177</identifier><identifier>EISSN: 2048-7177</identifier><identifier>DOI: 10.1002/fsn3.4205</identifier><identifier>PMID: 39139957</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>1-Phosphatidylinositol 3-kinase ; adriamycin ; AKT protein ; Anthracyclines ; Antibodies ; Apoptosis ; Breast cancer ; Cancer ; Cancer therapies ; Cell death ; Cell growth ; Cell migration ; Cell proliferation ; Chemotherapy ; Disease management ; Drug resistance ; Drug resistance in microorganisms ; Effectiveness ; Efflux ; Flow cytometry ; ginsenoside Rg3 ; Ginsenosides ; Glycoproteins ; Health aspects ; Immunofluorescence ; In vivo methods and tests ; Kinases ; Laboratory animals ; Medical research ; Membranes ; Multidrug resistance ; Near infrared radiation ; near‐infrared photothermal therapy ; Original ; Protein binding ; Protein kinases ; Protein transport ; Proteins ; reversing drug resistance ; Signal transduction ; Stem cells ; Western blotting ; Xenotransplantation</subject><ispartof>Food Science & Nutrition, 2024-08, Vol.12 (8), p.5750-5761</ispartof><rights>2024 The Authors. published by Wiley Periodicals LLC.</rights><rights>2024 The Authors. Food Science & Nutrition published by Wiley Periodicals LLC.</rights><rights>COPYRIGHT 2024 John Wiley & Sons, Inc.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4715-cb95fe0eb6e575e619351584001dcc211f2b62514821ff47cf0d4f895e3285f33</cites><orcidid>0000-0003-0631-7933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317707/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317707/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,1418,11567,27929,27930,45579,45580,46057,46481,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39139957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Ying</creatorcontrib><creatorcontrib>Fu, Qiang</creatorcontrib><creatorcontrib>Lu, Zhongqi</creatorcontrib><creatorcontrib>Jin, Quanxin</creatorcontrib><creatorcontrib>Jin, Tiefeng</creatorcontrib><creatorcontrib>Zhang, Meihua</creatorcontrib><title>Ginsenoside Rg3 combined with near‐infrared photothermal reversal of multidrug resistance in breast cancer MCF‐7/ADR cells</title><title>Food Science & Nutrition</title><addtitle>Food Sci Nutr</addtitle><description>Adriamycin (ADR) is a frequently employed chemotherapeutic agent for the management of breast cancer. Nevertheless, multidrug resistance (MDR) can impair its therapeutic efficacy in breast cancer. MDR is characterized by increased expression of the P‐glycoprotein (P‐gp) efflux pump, up‐regulation of anti‐apoptotic proteins, and downregulation of pro‐apoptotic proteins. Consequently, inhibition of ATP‐binding cassette (ABC) transporter proteins has been deemed the most efficacious approach to overcome MDR. In this study, we used MTT (3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5 diphenyl tetrazolium bromide), Western blots, flow cytometry, immunofluorescence, and constructed xenograft tumors to investigate whether ginsenoside Rg3‐near‐infrared photothermal (Rg3‐NIR) combination reversed multidrug resistance in MCF‐7/ADR breast cancer. In vivo and in vitro experiments, the results showed that Rg3‐NIR co‐treatment was effective in inducing the apoptosis of MCF‐7/ADR breast cancer cells. This was achieved by reversing the expression of drug resistance‐associated proteins, while also inhibiting cell proliferation, migration, and epithelial–mesenchymal transition (EMT) processes via attenuation of the phosphatidylinositol 3‐kinase (PI3K)/protein kinase B (AKT) signaling pathway transduction. Ginsenoside Rg3 combined with near‐infrared photothermal therapy (NIR) effectively reverses multidrug resistance in breast cancer MCF‐7/ADR cells, providing a new therapeutic strategy for breast cancer drug resistance.
In consequence, the ginsenoside Rg3–near‐infrared photothermal therapy (Rg3–NIR) combination treatment group could inhibit MCF‐7/ADR cell migration, invasion, angiogenesis, and epithelial–mesenchymal transition (EMT) process by inhibiting the phosphatidylinositol 3‐kinase protein kinase B–mammalian target of rapamycin (PI3K‐AKT–mTOR) signaling pathway, reverse the expression of drug resistance‐related proteins, such as ATP‐binding cassette subfamily G member 2 (ABCG2) and multidrug resistance (MDR), and also promote the increase of apoptosis in MCF‐7/ADR cells, and reverse the drug resistance of MCF‐7/ADR cells.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>adriamycin</subject><subject>AKT protein</subject><subject>Anthracyclines</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cell death</subject><subject>Cell growth</subject><subject>Cell migration</subject><subject>Cell proliferation</subject><subject>Chemotherapy</subject><subject>Disease management</subject><subject>Drug resistance</subject><subject>Drug resistance in microorganisms</subject><subject>Effectiveness</subject><subject>Efflux</subject><subject>Flow cytometry</subject><subject>ginsenoside Rg3</subject><subject>Ginsenosides</subject><subject>Glycoproteins</subject><subject>Health aspects</subject><subject>Immunofluorescence</subject><subject>In vivo methods and tests</subject><subject>Kinases</subject><subject>Laboratory animals</subject><subject>Medical research</subject><subject>Membranes</subject><subject>Multidrug resistance</subject><subject>Near infrared radiation</subject><subject>near‐infrared photothermal therapy</subject><subject>Original</subject><subject>Protein binding</subject><subject>Protein kinases</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>reversing drug resistance</subject><subject>Signal transduction</subject><subject>Stem cells</subject><subject>Western blotting</subject><subject>Xenotransplantation</subject><issn>2048-7177</issn><issn>2048-7177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1ks1u1DAQxyMEolXpgRdAlrjAYXf9GScntFq6BakUqcDZcpzxrqvEXuykVS8Vj8Az8iQ4bKlKJeyDx-Pf_MdjT1G8JHhOMKYLmzybc4rFk-KQYl7NJJHy6QP7oDhO6RLnUXNSUvq8OGA1YXUt5GFxe-p8Ah-SawFdbBgyoW-chxZdu2GLPOj468dP523UMTt32zCEYQux1x2KcAUxZSNY1I_d4No4brI3uTRobwA5j5oIOg3ITPuIPq3WWU0ulu8vkIGuSy-KZ1Z3CY7v1qPi2_rk6-rD7Ozz6cfV8mxmuCRiZppaWMDQlCCkgJLUTBBRcYxJawwlxNKmpILwihJruTQWt9xWtQBGK2EZOyre7XV3Y9NDa8APUXdqF12v440K2ql_T7zbqk24UoSw_IRYZoU3dwoxfB8hDap3aapBewhjUgzXtJKUM5HR14_QyzBGn-ubKMIlFoxmar6nNroDlV845MQmzxZ6Z4IH67J_WRFBqSwJzwFv9wEmhpQi2PvrE6ymVlBTK6ipFTL76mG99-Tfj8_AYg9c5yw3_1dS6y_n7I_kb0Miv30</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Chang, Ying</creator><creator>Fu, Qiang</creator><creator>Lu, Zhongqi</creator><creator>Jin, Quanxin</creator><creator>Jin, Tiefeng</creator><creator>Zhang, Meihua</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>3V.</scope><scope>7RV</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0K</scope><scope>M0S</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0631-7933</orcidid></search><sort><creationdate>202408</creationdate><title>Ginsenoside Rg3 combined with near‐infrared photothermal reversal of multidrug resistance in breast cancer MCF‐7/ADR cells</title><author>Chang, Ying ; Fu, Qiang ; Lu, Zhongqi ; Jin, Quanxin ; Jin, Tiefeng ; Zhang, Meihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4715-cb95fe0eb6e575e619351584001dcc211f2b62514821ff47cf0d4f895e3285f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>adriamycin</topic><topic>AKT protein</topic><topic>Anthracyclines</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cell death</topic><topic>Cell growth</topic><topic>Cell migration</topic><topic>Cell proliferation</topic><topic>Chemotherapy</topic><topic>Disease management</topic><topic>Drug resistance</topic><topic>Drug resistance in microorganisms</topic><topic>Effectiveness</topic><topic>Efflux</topic><topic>Flow cytometry</topic><topic>ginsenoside Rg3</topic><topic>Ginsenosides</topic><topic>Glycoproteins</topic><topic>Health aspects</topic><topic>Immunofluorescence</topic><topic>In vivo methods and tests</topic><topic>Kinases</topic><topic>Laboratory animals</topic><topic>Medical research</topic><topic>Membranes</topic><topic>Multidrug resistance</topic><topic>Near infrared radiation</topic><topic>near‐infrared photothermal therapy</topic><topic>Original</topic><topic>Protein binding</topic><topic>Protein kinases</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>reversing drug resistance</topic><topic>Signal transduction</topic><topic>Stem cells</topic><topic>Western blotting</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ying</creatorcontrib><creatorcontrib>Fu, Qiang</creatorcontrib><creatorcontrib>Lu, Zhongqi</creatorcontrib><creatorcontrib>Jin, Quanxin</creatorcontrib><creatorcontrib>Jin, Tiefeng</creatorcontrib><creatorcontrib>Zhang, Meihua</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Food Science & Nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Ying</au><au>Fu, Qiang</au><au>Lu, Zhongqi</au><au>Jin, Quanxin</au><au>Jin, Tiefeng</au><au>Zhang, Meihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ginsenoside Rg3 combined with near‐infrared photothermal reversal of multidrug resistance in breast cancer MCF‐7/ADR cells</atitle><jtitle>Food Science & Nutrition</jtitle><addtitle>Food Sci Nutr</addtitle><date>2024-08</date><risdate>2024</risdate><volume>12</volume><issue>8</issue><spage>5750</spage><epage>5761</epage><pages>5750-5761</pages><issn>2048-7177</issn><eissn>2048-7177</eissn><abstract>Adriamycin (ADR) is a frequently employed chemotherapeutic agent for the management of breast cancer. Nevertheless, multidrug resistance (MDR) can impair its therapeutic efficacy in breast cancer. MDR is characterized by increased expression of the P‐glycoprotein (P‐gp) efflux pump, up‐regulation of anti‐apoptotic proteins, and downregulation of pro‐apoptotic proteins. Consequently, inhibition of ATP‐binding cassette (ABC) transporter proteins has been deemed the most efficacious approach to overcome MDR. In this study, we used MTT (3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5 diphenyl tetrazolium bromide), Western blots, flow cytometry, immunofluorescence, and constructed xenograft tumors to investigate whether ginsenoside Rg3‐near‐infrared photothermal (Rg3‐NIR) combination reversed multidrug resistance in MCF‐7/ADR breast cancer. In vivo and in vitro experiments, the results showed that Rg3‐NIR co‐treatment was effective in inducing the apoptosis of MCF‐7/ADR breast cancer cells. This was achieved by reversing the expression of drug resistance‐associated proteins, while also inhibiting cell proliferation, migration, and epithelial–mesenchymal transition (EMT) processes via attenuation of the phosphatidylinositol 3‐kinase (PI3K)/protein kinase B (AKT) signaling pathway transduction. Ginsenoside Rg3 combined with near‐infrared photothermal therapy (NIR) effectively reverses multidrug resistance in breast cancer MCF‐7/ADR cells, providing a new therapeutic strategy for breast cancer drug resistance.
In consequence, the ginsenoside Rg3–near‐infrared photothermal therapy (Rg3–NIR) combination treatment group could inhibit MCF‐7/ADR cell migration, invasion, angiogenesis, and epithelial–mesenchymal transition (EMT) process by inhibiting the phosphatidylinositol 3‐kinase protein kinase B–mammalian target of rapamycin (PI3K‐AKT–mTOR) signaling pathway, reverse the expression of drug resistance‐related proteins, such as ATP‐binding cassette subfamily G member 2 (ABCG2) and multidrug resistance (MDR), and also promote the increase of apoptosis in MCF‐7/ADR cells, and reverse the drug resistance of MCF‐7/ADR cells.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>39139957</pmid><doi>10.1002/fsn3.4205</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0631-7933</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2048-7177 |
ispartof | Food Science & Nutrition, 2024-08, Vol.12 (8), p.5750-5761 |
issn | 2048-7177 2048-7177 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11317707 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Online Library (Open Access Collection); PubMed Central |
subjects | 1-Phosphatidylinositol 3-kinase adriamycin AKT protein Anthracyclines Antibodies Apoptosis Breast cancer Cancer Cancer therapies Cell death Cell growth Cell migration Cell proliferation Chemotherapy Disease management Drug resistance Drug resistance in microorganisms Effectiveness Efflux Flow cytometry ginsenoside Rg3 Ginsenosides Glycoproteins Health aspects Immunofluorescence In vivo methods and tests Kinases Laboratory animals Medical research Membranes Multidrug resistance Near infrared radiation near‐infrared photothermal therapy Original Protein binding Protein kinases Protein transport Proteins reversing drug resistance Signal transduction Stem cells Western blotting Xenotransplantation |
title | Ginsenoside Rg3 combined with near‐infrared photothermal reversal of multidrug resistance in breast cancer MCF‐7/ADR cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T03%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ginsenoside%20Rg3%20combined%20with%20near%E2%80%90infrared%20photothermal%20reversal%20of%20multidrug%20resistance%20in%20breast%20cancer%20MCF%E2%80%907/ADR%20cells&rft.jtitle=Food%20Science%20&%20Nutrition&rft.au=Chang,%20Ying&rft.date=2024-08&rft.volume=12&rft.issue=8&rft.spage=5750&rft.epage=5761&rft.pages=5750-5761&rft.issn=2048-7177&rft.eissn=2048-7177&rft_id=info:doi/10.1002/fsn3.4205&rft_dat=%3Cgale_pubme%3EA815227614%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091470532&rft_id=info:pmid/39139957&rft_galeid=A815227614&rfr_iscdi=true |