The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts

Chimeric oligonucleotides (chimeras), consisting of RNA and DNA bases folded by complementarity into a double hairpin conformation, have been shown to alter or repair single bases in plant and animal genomes. An uninterrupted stretch of DNA bases within the chimera is known to be active in the seque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2000-11, Vol.28 (21), p.4332-4339
Hauptverfasser: Gamper, H B, Parekh, H, Rice, M C, Bruner, M, Youkey, H, Kmiec, E B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4339
container_issue 21
container_start_page 4332
container_title Nucleic acids research
container_volume 28
creator Gamper, H B
Parekh, H
Rice, M C
Bruner, M
Youkey, H
Kmiec, E B
description Chimeric oligonucleotides (chimeras), consisting of RNA and DNA bases folded by complementarity into a double hairpin conformation, have been shown to alter or repair single bases in plant and animal genomes. An uninterrupted stretch of DNA bases within the chimera is known to be active in the sequence alteration while RNA residues aid in complex stability. In this study, the two strands were separated in the hope of defining the role each plays in conversion. Using a series of single-stranded oligonucleotides, comprised of all RNA or DNA residues and various mixtures, several new structures have emerged as viable molecules in nucleotide conversion. When extracts from mammalian and plant cells and a genetic readout assay in bacteria are used, single-stranded oligonucleotides, containing a defined number of thioate backbone modifications, were found to be more active than the original chimera structure in the process of gene repair. Single-stranded oligonucleotides containing fully modified backbones were found to have low repair activity and in fact induce mutation. Molecules containing various lengths of modified RNA bases (2'-O-methyl) were also found to possess low activity. Taken together, these results confirm the directionality of nucleotide conversion by the DNA strand of the chimera and further present a novel, modified single-stranded DNA molecule that directs conversion in plant and animal cell-free extracts.
doi_str_mv 10.1093/nar/28.21.4332
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_113138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17860355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-9f2366f37581618b65556263c638db68b9c26703dcb1b0b6a47bf4e154d8617a3</originalsourceid><addsrcrecordid>eNqFUk1v1DAUtBAVLYUrR2Rx4JZdPztxnAOHVfmUqiKhcrYc52XXVWIvdrKi_4CfjaOuoO2lJ1t6M543niHkDbAVsEasvYlrrlYcVqUQ_Bk5AyF5UTaSP793PyUvU7phDEqoyhfkFIBVCoQ4I3-ud0g_Xm1omqLxHQ09tTs3YnSW_rjarJdRGNw2-NkOGCbXYaLWeNq5iHaiW_RII-6Ni2sb_AFjcsFTYyd3cNMtdZ6OZhzN4DJnEdgPxk_U4jAUfUSk-DsL2ym9Iie9GRK-Pp7n5OfnT9cXX4vL71--XWwuC1uxZiqangspe1Hn_SWoVlZVJbkUVgrVtVK1jeWyZqKzLbSslaas277EbLtTEmojzsmHu3f3cztiZ9Fn_UHvoxtNvNXBOP1w4t1Ob8NBAwgQKvPfH_kx_JoxTXp0abFjPIY56ZoLVSpongRCrSQTVZWB7x4Bb8Icff4EzVnOKQcrMmh1B7IxpBSx_7cxML00QecmaK40B700IRPe3vf5H36MXvwFPQywQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200584333</pqid></control><display><type>article</type><title>The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gamper, H B ; Parekh, H ; Rice, M C ; Bruner, M ; Youkey, H ; Kmiec, E B</creator><creatorcontrib>Gamper, H B ; Parekh, H ; Rice, M C ; Bruner, M ; Youkey, H ; Kmiec, E B</creatorcontrib><description>Chimeric oligonucleotides (chimeras), consisting of RNA and DNA bases folded by complementarity into a double hairpin conformation, have been shown to alter or repair single bases in plant and animal genomes. An uninterrupted stretch of DNA bases within the chimera is known to be active in the sequence alteration while RNA residues aid in complex stability. In this study, the two strands were separated in the hope of defining the role each plays in conversion. Using a series of single-stranded oligonucleotides, comprised of all RNA or DNA residues and various mixtures, several new structures have emerged as viable molecules in nucleotide conversion. When extracts from mammalian and plant cells and a genetic readout assay in bacteria are used, single-stranded oligonucleotides, containing a defined number of thioate backbone modifications, were found to be more active than the original chimera structure in the process of gene repair. Single-stranded oligonucleotides containing fully modified backbones were found to have low repair activity and in fact induce mutation. Molecules containing various lengths of modified RNA bases (2'-O-methyl) were also found to possess low activity. Taken together, these results confirm the directionality of nucleotide conversion by the DNA strand of the chimera and further present a novel, modified single-stranded DNA molecule that directs conversion in plant and animal cell-free extracts.</description><identifier>ISSN: 1362-4962</identifier><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/28.21.4332</identifier><identifier>PMID: 11058133</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford Publishing Limited (England)</publisher><subject>Animals ; Base Sequence ; Cell Extracts ; Cell Line ; Cell-Free System ; DNA Repair - genetics ; DNA, Recombinant - genetics ; DNA, Recombinant - metabolism ; DNA, Single-Stranded - genetics ; DNA, Single-Stranded - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - physiology ; Electroporation ; Gene Conversion - genetics ; Kanamycin Resistance - genetics ; Mice ; Multidrug Resistance-Associated Proteins ; Mutation - genetics ; MutS Homolog 2 Protein ; MutS Homolog 3 Protein ; Nucleic Acid Heteroduplexes - genetics ; Nucleic Acid Heteroduplexes - metabolism ; Oligonucleotides - genetics ; Oligonucleotides - metabolism ; Plant Cells ; Plants - genetics ; Plasmids - genetics ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - physiology ; RNA - genetics ; RNA - metabolism ; Tetracycline Resistance - genetics ; Transformation, Bacterial</subject><ispartof>Nucleic acids research, 2000-11, Vol.28 (21), p.4332-4339</ispartof><rights>Copyright Oxford University Press(England) Nov 1, 2000</rights><rights>Copyright © 2000 Oxford University Press 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-9f2366f37581618b65556263c638db68b9c26703dcb1b0b6a47bf4e154d8617a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC113138/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC113138/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11058133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gamper, H B</creatorcontrib><creatorcontrib>Parekh, H</creatorcontrib><creatorcontrib>Rice, M C</creatorcontrib><creatorcontrib>Bruner, M</creatorcontrib><creatorcontrib>Youkey, H</creatorcontrib><creatorcontrib>Kmiec, E B</creatorcontrib><title>The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Chimeric oligonucleotides (chimeras), consisting of RNA and DNA bases folded by complementarity into a double hairpin conformation, have been shown to alter or repair single bases in plant and animal genomes. An uninterrupted stretch of DNA bases within the chimera is known to be active in the sequence alteration while RNA residues aid in complex stability. In this study, the two strands were separated in the hope of defining the role each plays in conversion. Using a series of single-stranded oligonucleotides, comprised of all RNA or DNA residues and various mixtures, several new structures have emerged as viable molecules in nucleotide conversion. When extracts from mammalian and plant cells and a genetic readout assay in bacteria are used, single-stranded oligonucleotides, containing a defined number of thioate backbone modifications, were found to be more active than the original chimera structure in the process of gene repair. Single-stranded oligonucleotides containing fully modified backbones were found to have low repair activity and in fact induce mutation. Molecules containing various lengths of modified RNA bases (2'-O-methyl) were also found to possess low activity. Taken together, these results confirm the directionality of nucleotide conversion by the DNA strand of the chimera and further present a novel, modified single-stranded DNA molecule that directs conversion in plant and animal cell-free extracts.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Cell Extracts</subject><subject>Cell Line</subject><subject>Cell-Free System</subject><subject>DNA Repair - genetics</subject><subject>DNA, Recombinant - genetics</subject><subject>DNA, Recombinant - metabolism</subject><subject>DNA, Single-Stranded - genetics</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Electroporation</subject><subject>Gene Conversion - genetics</subject><subject>Kanamycin Resistance - genetics</subject><subject>Mice</subject><subject>Multidrug Resistance-Associated Proteins</subject><subject>Mutation - genetics</subject><subject>MutS Homolog 2 Protein</subject><subject>MutS Homolog 3 Protein</subject><subject>Nucleic Acid Heteroduplexes - genetics</subject><subject>Nucleic Acid Heteroduplexes - metabolism</subject><subject>Oligonucleotides - genetics</subject><subject>Oligonucleotides - metabolism</subject><subject>Plant Cells</subject><subject>Plants - genetics</subject><subject>Plasmids - genetics</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - physiology</subject><subject>RNA - genetics</subject><subject>RNA - metabolism</subject><subject>Tetracycline Resistance - genetics</subject><subject>Transformation, Bacterial</subject><issn>1362-4962</issn><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUk1v1DAUtBAVLYUrR2Rx4JZdPztxnAOHVfmUqiKhcrYc52XXVWIvdrKi_4CfjaOuoO2lJ1t6M543niHkDbAVsEasvYlrrlYcVqUQ_Bk5AyF5UTaSP793PyUvU7phDEqoyhfkFIBVCoQ4I3-ud0g_Xm1omqLxHQ09tTs3YnSW_rjarJdRGNw2-NkOGCbXYaLWeNq5iHaiW_RII-6Ni2sb_AFjcsFTYyd3cNMtdZ6OZhzN4DJnEdgPxk_U4jAUfUSk-DsL2ym9Iie9GRK-Pp7n5OfnT9cXX4vL71--XWwuC1uxZiqangspe1Hn_SWoVlZVJbkUVgrVtVK1jeWyZqKzLbSslaas277EbLtTEmojzsmHu3f3cztiZ9Fn_UHvoxtNvNXBOP1w4t1Ob8NBAwgQKvPfH_kx_JoxTXp0abFjPIY56ZoLVSpongRCrSQTVZWB7x4Bb8Icff4EzVnOKQcrMmh1B7IxpBSx_7cxML00QecmaK40B700IRPe3vf5H36MXvwFPQywQg</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Gamper, H B</creator><creator>Parekh, H</creator><creator>Rice, M C</creator><creator>Bruner, M</creator><creator>Youkey, H</creator><creator>Kmiec, E B</creator><general>Oxford Publishing Limited (England)</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20001101</creationdate><title>The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts</title><author>Gamper, H B ; Parekh, H ; Rice, M C ; Bruner, M ; Youkey, H ; Kmiec, E B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-9f2366f37581618b65556263c638db68b9c26703dcb1b0b6a47bf4e154d8617a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Cell Extracts</topic><topic>Cell Line</topic><topic>Cell-Free System</topic><topic>DNA Repair - genetics</topic><topic>DNA, Recombinant - genetics</topic><topic>DNA, Recombinant - metabolism</topic><topic>DNA, Single-Stranded - genetics</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Electroporation</topic><topic>Gene Conversion - genetics</topic><topic>Kanamycin Resistance - genetics</topic><topic>Mice</topic><topic>Multidrug Resistance-Associated Proteins</topic><topic>Mutation - genetics</topic><topic>MutS Homolog 2 Protein</topic><topic>MutS Homolog 3 Protein</topic><topic>Nucleic Acid Heteroduplexes - genetics</topic><topic>Nucleic Acid Heteroduplexes - metabolism</topic><topic>Oligonucleotides - genetics</topic><topic>Oligonucleotides - metabolism</topic><topic>Plant Cells</topic><topic>Plants - genetics</topic><topic>Plasmids - genetics</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - physiology</topic><topic>RNA - genetics</topic><topic>RNA - metabolism</topic><topic>Tetracycline Resistance - genetics</topic><topic>Transformation, Bacterial</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gamper, H B</creatorcontrib><creatorcontrib>Parekh, H</creatorcontrib><creatorcontrib>Rice, M C</creatorcontrib><creatorcontrib>Bruner, M</creatorcontrib><creatorcontrib>Youkey, H</creatorcontrib><creatorcontrib>Kmiec, E B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gamper, H B</au><au>Parekh, H</au><au>Rice, M C</au><au>Bruner, M</au><au>Youkey, H</au><au>Kmiec, E B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2000-11-01</date><risdate>2000</risdate><volume>28</volume><issue>21</issue><spage>4332</spage><epage>4339</epage><pages>4332-4339</pages><issn>1362-4962</issn><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Chimeric oligonucleotides (chimeras), consisting of RNA and DNA bases folded by complementarity into a double hairpin conformation, have been shown to alter or repair single bases in plant and animal genomes. An uninterrupted stretch of DNA bases within the chimera is known to be active in the sequence alteration while RNA residues aid in complex stability. In this study, the two strands were separated in the hope of defining the role each plays in conversion. Using a series of single-stranded oligonucleotides, comprised of all RNA or DNA residues and various mixtures, several new structures have emerged as viable molecules in nucleotide conversion. When extracts from mammalian and plant cells and a genetic readout assay in bacteria are used, single-stranded oligonucleotides, containing a defined number of thioate backbone modifications, were found to be more active than the original chimera structure in the process of gene repair. Single-stranded oligonucleotides containing fully modified backbones were found to have low repair activity and in fact induce mutation. Molecules containing various lengths of modified RNA bases (2'-O-methyl) were also found to possess low activity. Taken together, these results confirm the directionality of nucleotide conversion by the DNA strand of the chimera and further present a novel, modified single-stranded DNA molecule that directs conversion in plant and animal cell-free extracts.</abstract><cop>England</cop><pub>Oxford Publishing Limited (England)</pub><pmid>11058133</pmid><doi>10.1093/nar/28.21.4332</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1362-4962
ispartof Nucleic acids research, 2000-11, Vol.28 (21), p.4332-4339
issn 1362-4962
0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_113138
source MEDLINE; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Base Sequence
Cell Extracts
Cell Line
Cell-Free System
DNA Repair - genetics
DNA, Recombinant - genetics
DNA, Recombinant - metabolism
DNA, Single-Stranded - genetics
DNA, Single-Stranded - metabolism
DNA-Binding Proteins - genetics
DNA-Binding Proteins - physiology
Electroporation
Gene Conversion - genetics
Kanamycin Resistance - genetics
Mice
Multidrug Resistance-Associated Proteins
Mutation - genetics
MutS Homolog 2 Protein
MutS Homolog 3 Protein
Nucleic Acid Heteroduplexes - genetics
Nucleic Acid Heteroduplexes - metabolism
Oligonucleotides - genetics
Oligonucleotides - metabolism
Plant Cells
Plants - genetics
Plasmids - genetics
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - physiology
RNA - genetics
RNA - metabolism
Tetracycline Resistance - genetics
Transformation, Bacterial
title The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20DNA%20strand%20of%20chimeric%20RNA/DNA%20oligonucleotides%20can%20direct%20gene%20repair/conversion%20activity%20in%20mammalian%20and%20plant%20cell-free%20extracts&rft.jtitle=Nucleic%20acids%20research&rft.au=Gamper,%20H%20B&rft.date=2000-11-01&rft.volume=28&rft.issue=21&rft.spage=4332&rft.epage=4339&rft.pages=4332-4339&rft.issn=1362-4962&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/28.21.4332&rft_dat=%3Cproquest_pubme%3E17860355%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200584333&rft_id=info:pmid/11058133&rfr_iscdi=true