The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts
Chimeric oligonucleotides (chimeras), consisting of RNA and DNA bases folded by complementarity into a double hairpin conformation, have been shown to alter or repair single bases in plant and animal genomes. An uninterrupted stretch of DNA bases within the chimera is known to be active in the seque...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2000-11, Vol.28 (21), p.4332-4339 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4339 |
---|---|
container_issue | 21 |
container_start_page | 4332 |
container_title | Nucleic acids research |
container_volume | 28 |
creator | Gamper, H B Parekh, H Rice, M C Bruner, M Youkey, H Kmiec, E B |
description | Chimeric oligonucleotides (chimeras), consisting of RNA and DNA bases folded by complementarity into a double hairpin conformation, have been shown to alter or repair single bases in plant and animal genomes. An uninterrupted stretch of DNA bases within the chimera is known to be active in the sequence alteration while RNA residues aid in complex stability. In this study, the two strands were separated in the hope of defining the role each plays in conversion. Using a series of single-stranded oligonucleotides, comprised of all RNA or DNA residues and various mixtures, several new structures have emerged as viable molecules in nucleotide conversion. When extracts from mammalian and plant cells and a genetic readout assay in bacteria are used, single-stranded oligonucleotides, containing a defined number of thioate backbone modifications, were found to be more active than the original chimera structure in the process of gene repair. Single-stranded oligonucleotides containing fully modified backbones were found to have low repair activity and in fact induce mutation. Molecules containing various lengths of modified RNA bases (2'-O-methyl) were also found to possess low activity. Taken together, these results confirm the directionality of nucleotide conversion by the DNA strand of the chimera and further present a novel, modified single-stranded DNA molecule that directs conversion in plant and animal cell-free extracts. |
doi_str_mv | 10.1093/nar/28.21.4332 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_113138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17860355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-9f2366f37581618b65556263c638db68b9c26703dcb1b0b6a47bf4e154d8617a3</originalsourceid><addsrcrecordid>eNqFUk1v1DAUtBAVLYUrR2Rx4JZdPztxnAOHVfmUqiKhcrYc52XXVWIvdrKi_4CfjaOuoO2lJ1t6M543niHkDbAVsEasvYlrrlYcVqUQ_Bk5AyF5UTaSP793PyUvU7phDEqoyhfkFIBVCoQ4I3-ud0g_Xm1omqLxHQ09tTs3YnSW_rjarJdRGNw2-NkOGCbXYaLWeNq5iHaiW_RII-6Ni2sb_AFjcsFTYyd3cNMtdZ6OZhzN4DJnEdgPxk_U4jAUfUSk-DsL2ym9Iie9GRK-Pp7n5OfnT9cXX4vL71--XWwuC1uxZiqangspe1Hn_SWoVlZVJbkUVgrVtVK1jeWyZqKzLbSslaas277EbLtTEmojzsmHu3f3cztiZ9Fn_UHvoxtNvNXBOP1w4t1Ob8NBAwgQKvPfH_kx_JoxTXp0abFjPIY56ZoLVSpongRCrSQTVZWB7x4Bb8Icff4EzVnOKQcrMmh1B7IxpBSx_7cxML00QecmaK40B700IRPe3vf5H36MXvwFPQywQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200584333</pqid></control><display><type>article</type><title>The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gamper, H B ; Parekh, H ; Rice, M C ; Bruner, M ; Youkey, H ; Kmiec, E B</creator><creatorcontrib>Gamper, H B ; Parekh, H ; Rice, M C ; Bruner, M ; Youkey, H ; Kmiec, E B</creatorcontrib><description>Chimeric oligonucleotides (chimeras), consisting of RNA and DNA bases folded by complementarity into a double hairpin conformation, have been shown to alter or repair single bases in plant and animal genomes. An uninterrupted stretch of DNA bases within the chimera is known to be active in the sequence alteration while RNA residues aid in complex stability. In this study, the two strands were separated in the hope of defining the role each plays in conversion. Using a series of single-stranded oligonucleotides, comprised of all RNA or DNA residues and various mixtures, several new structures have emerged as viable molecules in nucleotide conversion. When extracts from mammalian and plant cells and a genetic readout assay in bacteria are used, single-stranded oligonucleotides, containing a defined number of thioate backbone modifications, were found to be more active than the original chimera structure in the process of gene repair. Single-stranded oligonucleotides containing fully modified backbones were found to have low repair activity and in fact induce mutation. Molecules containing various lengths of modified RNA bases (2'-O-methyl) were also found to possess low activity. Taken together, these results confirm the directionality of nucleotide conversion by the DNA strand of the chimera and further present a novel, modified single-stranded DNA molecule that directs conversion in plant and animal cell-free extracts.</description><identifier>ISSN: 1362-4962</identifier><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/28.21.4332</identifier><identifier>PMID: 11058133</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford Publishing Limited (England)</publisher><subject>Animals ; Base Sequence ; Cell Extracts ; Cell Line ; Cell-Free System ; DNA Repair - genetics ; DNA, Recombinant - genetics ; DNA, Recombinant - metabolism ; DNA, Single-Stranded - genetics ; DNA, Single-Stranded - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - physiology ; Electroporation ; Gene Conversion - genetics ; Kanamycin Resistance - genetics ; Mice ; Multidrug Resistance-Associated Proteins ; Mutation - genetics ; MutS Homolog 2 Protein ; MutS Homolog 3 Protein ; Nucleic Acid Heteroduplexes - genetics ; Nucleic Acid Heteroduplexes - metabolism ; Oligonucleotides - genetics ; Oligonucleotides - metabolism ; Plant Cells ; Plants - genetics ; Plasmids - genetics ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - physiology ; RNA - genetics ; RNA - metabolism ; Tetracycline Resistance - genetics ; Transformation, Bacterial</subject><ispartof>Nucleic acids research, 2000-11, Vol.28 (21), p.4332-4339</ispartof><rights>Copyright Oxford University Press(England) Nov 1, 2000</rights><rights>Copyright © 2000 Oxford University Press 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-9f2366f37581618b65556263c638db68b9c26703dcb1b0b6a47bf4e154d8617a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC113138/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC113138/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11058133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gamper, H B</creatorcontrib><creatorcontrib>Parekh, H</creatorcontrib><creatorcontrib>Rice, M C</creatorcontrib><creatorcontrib>Bruner, M</creatorcontrib><creatorcontrib>Youkey, H</creatorcontrib><creatorcontrib>Kmiec, E B</creatorcontrib><title>The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Chimeric oligonucleotides (chimeras), consisting of RNA and DNA bases folded by complementarity into a double hairpin conformation, have been shown to alter or repair single bases in plant and animal genomes. An uninterrupted stretch of DNA bases within the chimera is known to be active in the sequence alteration while RNA residues aid in complex stability. In this study, the two strands were separated in the hope of defining the role each plays in conversion. Using a series of single-stranded oligonucleotides, comprised of all RNA or DNA residues and various mixtures, several new structures have emerged as viable molecules in nucleotide conversion. When extracts from mammalian and plant cells and a genetic readout assay in bacteria are used, single-stranded oligonucleotides, containing a defined number of thioate backbone modifications, were found to be more active than the original chimera structure in the process of gene repair. Single-stranded oligonucleotides containing fully modified backbones were found to have low repair activity and in fact induce mutation. Molecules containing various lengths of modified RNA bases (2'-O-methyl) were also found to possess low activity. Taken together, these results confirm the directionality of nucleotide conversion by the DNA strand of the chimera and further present a novel, modified single-stranded DNA molecule that directs conversion in plant and animal cell-free extracts.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Cell Extracts</subject><subject>Cell Line</subject><subject>Cell-Free System</subject><subject>DNA Repair - genetics</subject><subject>DNA, Recombinant - genetics</subject><subject>DNA, Recombinant - metabolism</subject><subject>DNA, Single-Stranded - genetics</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Electroporation</subject><subject>Gene Conversion - genetics</subject><subject>Kanamycin Resistance - genetics</subject><subject>Mice</subject><subject>Multidrug Resistance-Associated Proteins</subject><subject>Mutation - genetics</subject><subject>MutS Homolog 2 Protein</subject><subject>MutS Homolog 3 Protein</subject><subject>Nucleic Acid Heteroduplexes - genetics</subject><subject>Nucleic Acid Heteroduplexes - metabolism</subject><subject>Oligonucleotides - genetics</subject><subject>Oligonucleotides - metabolism</subject><subject>Plant Cells</subject><subject>Plants - genetics</subject><subject>Plasmids - genetics</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - physiology</subject><subject>RNA - genetics</subject><subject>RNA - metabolism</subject><subject>Tetracycline Resistance - genetics</subject><subject>Transformation, Bacterial</subject><issn>1362-4962</issn><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUk1v1DAUtBAVLYUrR2Rx4JZdPztxnAOHVfmUqiKhcrYc52XXVWIvdrKi_4CfjaOuoO2lJ1t6M543niHkDbAVsEasvYlrrlYcVqUQ_Bk5AyF5UTaSP793PyUvU7phDEqoyhfkFIBVCoQ4I3-ud0g_Xm1omqLxHQ09tTs3YnSW_rjarJdRGNw2-NkOGCbXYaLWeNq5iHaiW_RII-6Ni2sb_AFjcsFTYyd3cNMtdZ6OZhzN4DJnEdgPxk_U4jAUfUSk-DsL2ym9Iie9GRK-Pp7n5OfnT9cXX4vL71--XWwuC1uxZiqangspe1Hn_SWoVlZVJbkUVgrVtVK1jeWyZqKzLbSslaas277EbLtTEmojzsmHu3f3cztiZ9Fn_UHvoxtNvNXBOP1w4t1Ob8NBAwgQKvPfH_kx_JoxTXp0abFjPIY56ZoLVSpongRCrSQTVZWB7x4Bb8Icff4EzVnOKQcrMmh1B7IxpBSx_7cxML00QecmaK40B700IRPe3vf5H36MXvwFPQywQg</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Gamper, H B</creator><creator>Parekh, H</creator><creator>Rice, M C</creator><creator>Bruner, M</creator><creator>Youkey, H</creator><creator>Kmiec, E B</creator><general>Oxford Publishing Limited (England)</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20001101</creationdate><title>The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts</title><author>Gamper, H B ; Parekh, H ; Rice, M C ; Bruner, M ; Youkey, H ; Kmiec, E B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-9f2366f37581618b65556263c638db68b9c26703dcb1b0b6a47bf4e154d8617a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Cell Extracts</topic><topic>Cell Line</topic><topic>Cell-Free System</topic><topic>DNA Repair - genetics</topic><topic>DNA, Recombinant - genetics</topic><topic>DNA, Recombinant - metabolism</topic><topic>DNA, Single-Stranded - genetics</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Electroporation</topic><topic>Gene Conversion - genetics</topic><topic>Kanamycin Resistance - genetics</topic><topic>Mice</topic><topic>Multidrug Resistance-Associated Proteins</topic><topic>Mutation - genetics</topic><topic>MutS Homolog 2 Protein</topic><topic>MutS Homolog 3 Protein</topic><topic>Nucleic Acid Heteroduplexes - genetics</topic><topic>Nucleic Acid Heteroduplexes - metabolism</topic><topic>Oligonucleotides - genetics</topic><topic>Oligonucleotides - metabolism</topic><topic>Plant Cells</topic><topic>Plants - genetics</topic><topic>Plasmids - genetics</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - physiology</topic><topic>RNA - genetics</topic><topic>RNA - metabolism</topic><topic>Tetracycline Resistance - genetics</topic><topic>Transformation, Bacterial</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gamper, H B</creatorcontrib><creatorcontrib>Parekh, H</creatorcontrib><creatorcontrib>Rice, M C</creatorcontrib><creatorcontrib>Bruner, M</creatorcontrib><creatorcontrib>Youkey, H</creatorcontrib><creatorcontrib>Kmiec, E B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gamper, H B</au><au>Parekh, H</au><au>Rice, M C</au><au>Bruner, M</au><au>Youkey, H</au><au>Kmiec, E B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2000-11-01</date><risdate>2000</risdate><volume>28</volume><issue>21</issue><spage>4332</spage><epage>4339</epage><pages>4332-4339</pages><issn>1362-4962</issn><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Chimeric oligonucleotides (chimeras), consisting of RNA and DNA bases folded by complementarity into a double hairpin conformation, have been shown to alter or repair single bases in plant and animal genomes. An uninterrupted stretch of DNA bases within the chimera is known to be active in the sequence alteration while RNA residues aid in complex stability. In this study, the two strands were separated in the hope of defining the role each plays in conversion. Using a series of single-stranded oligonucleotides, comprised of all RNA or DNA residues and various mixtures, several new structures have emerged as viable molecules in nucleotide conversion. When extracts from mammalian and plant cells and a genetic readout assay in bacteria are used, single-stranded oligonucleotides, containing a defined number of thioate backbone modifications, were found to be more active than the original chimera structure in the process of gene repair. Single-stranded oligonucleotides containing fully modified backbones were found to have low repair activity and in fact induce mutation. Molecules containing various lengths of modified RNA bases (2'-O-methyl) were also found to possess low activity. Taken together, these results confirm the directionality of nucleotide conversion by the DNA strand of the chimera and further present a novel, modified single-stranded DNA molecule that directs conversion in plant and animal cell-free extracts.</abstract><cop>England</cop><pub>Oxford Publishing Limited (England)</pub><pmid>11058133</pmid><doi>10.1093/nar/28.21.4332</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1362-4962 |
ispartof | Nucleic acids research, 2000-11, Vol.28 (21), p.4332-4339 |
issn | 1362-4962 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_113138 |
source | MEDLINE; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Base Sequence Cell Extracts Cell Line Cell-Free System DNA Repair - genetics DNA, Recombinant - genetics DNA, Recombinant - metabolism DNA, Single-Stranded - genetics DNA, Single-Stranded - metabolism DNA-Binding Proteins - genetics DNA-Binding Proteins - physiology Electroporation Gene Conversion - genetics Kanamycin Resistance - genetics Mice Multidrug Resistance-Associated Proteins Mutation - genetics MutS Homolog 2 Protein MutS Homolog 3 Protein Nucleic Acid Heteroduplexes - genetics Nucleic Acid Heteroduplexes - metabolism Oligonucleotides - genetics Oligonucleotides - metabolism Plant Cells Plants - genetics Plasmids - genetics Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins - physiology RNA - genetics RNA - metabolism Tetracycline Resistance - genetics Transformation, Bacterial |
title | The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20DNA%20strand%20of%20chimeric%20RNA/DNA%20oligonucleotides%20can%20direct%20gene%20repair/conversion%20activity%20in%20mammalian%20and%20plant%20cell-free%20extracts&rft.jtitle=Nucleic%20acids%20research&rft.au=Gamper,%20H%20B&rft.date=2000-11-01&rft.volume=28&rft.issue=21&rft.spage=4332&rft.epage=4339&rft.pages=4332-4339&rft.issn=1362-4962&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/28.21.4332&rft_dat=%3Cproquest_pubme%3E17860355%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200584333&rft_id=info:pmid/11058133&rfr_iscdi=true |