Mechanical properties and water vapour corrosion behaviour of AlxCoCrFeNi high-entropy alloys

AlxCoCrFeNi (x = 0.1, 0.5 and 1) high-entropy alloys (HEAs) were prepared using a spark plasma sintering (SPS) technique combined with aerosol powder. Their microstructure and phase constituents were characterized using an X-ray diffractometer and SEM, and their tensile properties, hardness and comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2024-08, Vol.14 (34), p.24741-24748
Hauptverfasser: Zhang, Jingyu, Huang, Lin, Xiong, Ke, Wang, Xiaofeng, Wang, Zhengyun, Guo, Dashan, Li, Ziqi, Feng, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24748
container_issue 34
container_start_page 24741
container_title RSC advances
container_volume 14
creator Zhang, Jingyu
Huang, Lin
Xiong, Ke
Wang, Xiaofeng
Wang, Zhengyun
Guo, Dashan
Li, Ziqi
Feng, Wei
description AlxCoCrFeNi (x = 0.1, 0.5 and 1) high-entropy alloys (HEAs) were prepared using a spark plasma sintering (SPS) technique combined with aerosol powder. Their microstructure and phase constituents were characterized using an X-ray diffractometer and SEM, and their tensile properties, hardness and compactness were tested. The results show that the crystal structure of the AlxCoCrFeNi HEAs changed significantly with the Al content, from the original single face-centered cubic FCC phase (Al0.1CoCrFeNi) to an FCC + BCC structure (Al0.5CoCrFeNi), and then to FCC + BCC + sigma (σ) phase structures (AlCoCrFeNi). Chemical composition analysis showed that the crystal structure transformation was related to the segregation caused by the increased Al content. The hardness of the AlxCoCrFeNi HEAs increases with increasing Al content, and the hardness of AlCoCrFeNi reaches a maximum of 507.3 HV. The tensile properties of the alloy show a trend of first increasing and then decreasing with increasing Al content, and the yield strength, ultimate tensile strength and elongation of the Al0.5CoCrFeNi alloy reach maximum values of 527.4 MP, 943.3 MPa and 28.2%, respectively. The fracture mechanism of the Al0.1CoCrFeNi and Al0.5CoCrFeNi alloys is typical ductile fracture, while that of the AlCoCrFeNi alloy is cleavage fracture. The compactness of the alloy increases with the Al content. The samples were also subjected to high-temperature water vapour corrosion, and corrosion products such as Al3Fe5O12, CoCr2O4 and NiCr2O4 were found in the Al0.1 and Al0.5 alloys, whereas no oxide peaks were detected using XRD for the Al1 alloy. It was also presumed that a very thin alumina film was generated on the surface of the Al1 alloy, preventing the oxidation of the sample, in combination with the analysis of SEM, EDS and XPS behaviour.
doi_str_mv 10.1039/d4ra03892d
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11304063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093508375</sourcerecordid><originalsourceid>FETCH-LOGICAL-p205t-95c69d6ccf71a1338e545c25641785565967bb7c73ea28b380d9e9b274cabeac3</originalsourceid><addsrcrecordid>eNpVj89LwzAcxYMgOOYu_gUBz9X8aNLmJKM4FaZe9CjhmzRbM7qmJt10__063MV3efAefHgPoRtK7ijh6r7OIxBeKlZfoAkjucwYkeoKzVLakFFSUCbpBH29OttA5y20uI-hd3HwLmHoavwDg4t4D33YRWxDjCH50GHjGtj7UxZWeN7-VqGKC_fmcePXTea6YaQcMLRtOKRrdLmCNrnZ2afoc_H4UT1ny_enl2q-zHpGxJApYaWqpbWrggLlvHQiF5YJmdOiFEIKJQtjCltwB6w0vCS1csqwIrdgHFg-RQ9_3H5ntq62pxXQ6j76LcSDDuD1_6bzjV6HvaaUk5xIPhJuz4QYvncuDXozXuzG0ZoTxQUpeSH4ER8ubAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093508375</pqid></control><display><type>article</type><title>Mechanical properties and water vapour corrosion behaviour of AlxCoCrFeNi high-entropy alloys</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Zhang, Jingyu ; Huang, Lin ; Xiong, Ke ; Wang, Xiaofeng ; Wang, Zhengyun ; Guo, Dashan ; Li, Ziqi ; Feng, Wei</creator><creatorcontrib>Zhang, Jingyu ; Huang, Lin ; Xiong, Ke ; Wang, Xiaofeng ; Wang, Zhengyun ; Guo, Dashan ; Li, Ziqi ; Feng, Wei</creatorcontrib><description>AlxCoCrFeNi (x = 0.1, 0.5 and 1) high-entropy alloys (HEAs) were prepared using a spark plasma sintering (SPS) technique combined with aerosol powder. Their microstructure and phase constituents were characterized using an X-ray diffractometer and SEM, and their tensile properties, hardness and compactness were tested. The results show that the crystal structure of the AlxCoCrFeNi HEAs changed significantly with the Al content, from the original single face-centered cubic FCC phase (Al0.1CoCrFeNi) to an FCC + BCC structure (Al0.5CoCrFeNi), and then to FCC + BCC + sigma (σ) phase structures (AlCoCrFeNi). Chemical composition analysis showed that the crystal structure transformation was related to the segregation caused by the increased Al content. The hardness of the AlxCoCrFeNi HEAs increases with increasing Al content, and the hardness of AlCoCrFeNi reaches a maximum of 507.3 HV. The tensile properties of the alloy show a trend of first increasing and then decreasing with increasing Al content, and the yield strength, ultimate tensile strength and elongation of the Al0.5CoCrFeNi alloy reach maximum values of 527.4 MP, 943.3 MPa and 28.2%, respectively. The fracture mechanism of the Al0.1CoCrFeNi and Al0.5CoCrFeNi alloys is typical ductile fracture, while that of the AlCoCrFeNi alloy is cleavage fracture. The compactness of the alloy increases with the Al content. The samples were also subjected to high-temperature water vapour corrosion, and corrosion products such as Al3Fe5O12, CoCr2O4 and NiCr2O4 were found in the Al0.1 and Al0.5 alloys, whereas no oxide peaks were detected using XRD for the Al1 alloy. It was also presumed that a very thin alumina film was generated on the surface of the Al1 alloy, preventing the oxidation of the sample, in combination with the analysis of SEM, EDS and XPS behaviour.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra03892d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alloys ; Aluminum ; Body centered cubic lattice ; Chemical composition ; Chemistry ; Corrosion ; Corrosion mechanisms ; Corrosion products ; Crystal structure ; Ductile fracture ; Elongated structure ; Face centered cubic lattice ; Fracture mechanics ; Hardness ; Heat resistant alloys ; High entropy alloys ; High temperature ; Mechanical properties ; Oxidation ; Plasma sintering ; Sigma phase ; Sintering (powder metallurgy) ; Spark plasma sintering ; Tensile properties ; Ultimate tensile strength ; Water temperature ; Water vapor ; X ray photoelectron spectroscopy</subject><ispartof>RSC advances, 2024-08, Vol.14 (34), p.24741-24748</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304063/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304063/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Zhang, Jingyu</creatorcontrib><creatorcontrib>Huang, Lin</creatorcontrib><creatorcontrib>Xiong, Ke</creatorcontrib><creatorcontrib>Wang, Xiaofeng</creatorcontrib><creatorcontrib>Wang, Zhengyun</creatorcontrib><creatorcontrib>Guo, Dashan</creatorcontrib><creatorcontrib>Li, Ziqi</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><title>Mechanical properties and water vapour corrosion behaviour of AlxCoCrFeNi high-entropy alloys</title><title>RSC advances</title><description>AlxCoCrFeNi (x = 0.1, 0.5 and 1) high-entropy alloys (HEAs) were prepared using a spark plasma sintering (SPS) technique combined with aerosol powder. Their microstructure and phase constituents were characterized using an X-ray diffractometer and SEM, and their tensile properties, hardness and compactness were tested. The results show that the crystal structure of the AlxCoCrFeNi HEAs changed significantly with the Al content, from the original single face-centered cubic FCC phase (Al0.1CoCrFeNi) to an FCC + BCC structure (Al0.5CoCrFeNi), and then to FCC + BCC + sigma (σ) phase structures (AlCoCrFeNi). Chemical composition analysis showed that the crystal structure transformation was related to the segregation caused by the increased Al content. The hardness of the AlxCoCrFeNi HEAs increases with increasing Al content, and the hardness of AlCoCrFeNi reaches a maximum of 507.3 HV. The tensile properties of the alloy show a trend of first increasing and then decreasing with increasing Al content, and the yield strength, ultimate tensile strength and elongation of the Al0.5CoCrFeNi alloy reach maximum values of 527.4 MP, 943.3 MPa and 28.2%, respectively. The fracture mechanism of the Al0.1CoCrFeNi and Al0.5CoCrFeNi alloys is typical ductile fracture, while that of the AlCoCrFeNi alloy is cleavage fracture. The compactness of the alloy increases with the Al content. The samples were also subjected to high-temperature water vapour corrosion, and corrosion products such as Al3Fe5O12, CoCr2O4 and NiCr2O4 were found in the Al0.1 and Al0.5 alloys, whereas no oxide peaks were detected using XRD for the Al1 alloy. It was also presumed that a very thin alumina film was generated on the surface of the Al1 alloy, preventing the oxidation of the sample, in combination with the analysis of SEM, EDS and XPS behaviour.</description><subject>Alloys</subject><subject>Aluminum</subject><subject>Body centered cubic lattice</subject><subject>Chemical composition</subject><subject>Chemistry</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Corrosion products</subject><subject>Crystal structure</subject><subject>Ductile fracture</subject><subject>Elongated structure</subject><subject>Face centered cubic lattice</subject><subject>Fracture mechanics</subject><subject>Hardness</subject><subject>Heat resistant alloys</subject><subject>High entropy alloys</subject><subject>High temperature</subject><subject>Mechanical properties</subject><subject>Oxidation</subject><subject>Plasma sintering</subject><subject>Sigma phase</subject><subject>Sintering (powder metallurgy)</subject><subject>Spark plasma sintering</subject><subject>Tensile properties</subject><subject>Ultimate tensile strength</subject><subject>Water temperature</subject><subject>Water vapor</subject><subject>X ray photoelectron spectroscopy</subject><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVj89LwzAcxYMgOOYu_gUBz9X8aNLmJKM4FaZe9CjhmzRbM7qmJt10__063MV3efAefHgPoRtK7ijh6r7OIxBeKlZfoAkjucwYkeoKzVLakFFSUCbpBH29OttA5y20uI-hd3HwLmHoavwDg4t4D33YRWxDjCH50GHjGtj7UxZWeN7-VqGKC_fmcePXTea6YaQcMLRtOKRrdLmCNrnZ2afoc_H4UT1ny_enl2q-zHpGxJApYaWqpbWrggLlvHQiF5YJmdOiFEIKJQtjCltwB6w0vCS1csqwIrdgHFg-RQ9_3H5ntq62pxXQ6j76LcSDDuD1_6bzjV6HvaaUk5xIPhJuz4QYvncuDXozXuzG0ZoTxQUpeSH4ER8ubAw</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Zhang, Jingyu</creator><creator>Huang, Lin</creator><creator>Xiong, Ke</creator><creator>Wang, Xiaofeng</creator><creator>Wang, Zhengyun</creator><creator>Guo, Dashan</creator><creator>Li, Ziqi</creator><creator>Feng, Wei</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>5PM</scope></search><sort><creationdate>20240807</creationdate><title>Mechanical properties and water vapour corrosion behaviour of AlxCoCrFeNi high-entropy alloys</title><author>Zhang, Jingyu ; Huang, Lin ; Xiong, Ke ; Wang, Xiaofeng ; Wang, Zhengyun ; Guo, Dashan ; Li, Ziqi ; Feng, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p205t-95c69d6ccf71a1338e545c25641785565967bb7c73ea28b380d9e9b274cabeac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloys</topic><topic>Aluminum</topic><topic>Body centered cubic lattice</topic><topic>Chemical composition</topic><topic>Chemistry</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Corrosion products</topic><topic>Crystal structure</topic><topic>Ductile fracture</topic><topic>Elongated structure</topic><topic>Face centered cubic lattice</topic><topic>Fracture mechanics</topic><topic>Hardness</topic><topic>Heat resistant alloys</topic><topic>High entropy alloys</topic><topic>High temperature</topic><topic>Mechanical properties</topic><topic>Oxidation</topic><topic>Plasma sintering</topic><topic>Sigma phase</topic><topic>Sintering (powder metallurgy)</topic><topic>Spark plasma sintering</topic><topic>Tensile properties</topic><topic>Ultimate tensile strength</topic><topic>Water temperature</topic><topic>Water vapor</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jingyu</creatorcontrib><creatorcontrib>Huang, Lin</creatorcontrib><creatorcontrib>Xiong, Ke</creatorcontrib><creatorcontrib>Wang, Xiaofeng</creatorcontrib><creatorcontrib>Wang, Zhengyun</creatorcontrib><creatorcontrib>Guo, Dashan</creatorcontrib><creatorcontrib>Li, Ziqi</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jingyu</au><au>Huang, Lin</au><au>Xiong, Ke</au><au>Wang, Xiaofeng</au><au>Wang, Zhengyun</au><au>Guo, Dashan</au><au>Li, Ziqi</au><au>Feng, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties and water vapour corrosion behaviour of AlxCoCrFeNi high-entropy alloys</atitle><jtitle>RSC advances</jtitle><date>2024-08-07</date><risdate>2024</risdate><volume>14</volume><issue>34</issue><spage>24741</spage><epage>24748</epage><pages>24741-24748</pages><eissn>2046-2069</eissn><abstract>AlxCoCrFeNi (x = 0.1, 0.5 and 1) high-entropy alloys (HEAs) were prepared using a spark plasma sintering (SPS) technique combined with aerosol powder. Their microstructure and phase constituents were characterized using an X-ray diffractometer and SEM, and their tensile properties, hardness and compactness were tested. The results show that the crystal structure of the AlxCoCrFeNi HEAs changed significantly with the Al content, from the original single face-centered cubic FCC phase (Al0.1CoCrFeNi) to an FCC + BCC structure (Al0.5CoCrFeNi), and then to FCC + BCC + sigma (σ) phase structures (AlCoCrFeNi). Chemical composition analysis showed that the crystal structure transformation was related to the segregation caused by the increased Al content. The hardness of the AlxCoCrFeNi HEAs increases with increasing Al content, and the hardness of AlCoCrFeNi reaches a maximum of 507.3 HV. The tensile properties of the alloy show a trend of first increasing and then decreasing with increasing Al content, and the yield strength, ultimate tensile strength and elongation of the Al0.5CoCrFeNi alloy reach maximum values of 527.4 MP, 943.3 MPa and 28.2%, respectively. The fracture mechanism of the Al0.1CoCrFeNi and Al0.5CoCrFeNi alloys is typical ductile fracture, while that of the AlCoCrFeNi alloy is cleavage fracture. The compactness of the alloy increases with the Al content. The samples were also subjected to high-temperature water vapour corrosion, and corrosion products such as Al3Fe5O12, CoCr2O4 and NiCr2O4 were found in the Al0.1 and Al0.5 alloys, whereas no oxide peaks were detected using XRD for the Al1 alloy. It was also presumed that a very thin alumina film was generated on the surface of the Al1 alloy, preventing the oxidation of the sample, in combination with the analysis of SEM, EDS and XPS behaviour.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ra03892d</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2046-2069
ispartof RSC advances, 2024-08, Vol.14 (34), p.24741-24748
issn 2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11304063
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Alloys
Aluminum
Body centered cubic lattice
Chemical composition
Chemistry
Corrosion
Corrosion mechanisms
Corrosion products
Crystal structure
Ductile fracture
Elongated structure
Face centered cubic lattice
Fracture mechanics
Hardness
Heat resistant alloys
High entropy alloys
High temperature
Mechanical properties
Oxidation
Plasma sintering
Sigma phase
Sintering (powder metallurgy)
Spark plasma sintering
Tensile properties
Ultimate tensile strength
Water temperature
Water vapor
X ray photoelectron spectroscopy
title Mechanical properties and water vapour corrosion behaviour of AlxCoCrFeNi high-entropy alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20and%20water%20vapour%20corrosion%20behaviour%20of%20AlxCoCrFeNi%20high-entropy%20alloys&rft.jtitle=RSC%20advances&rft.au=Zhang,%20Jingyu&rft.date=2024-08-07&rft.volume=14&rft.issue=34&rft.spage=24741&rft.epage=24748&rft.pages=24741-24748&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra03892d&rft_dat=%3Cproquest_pubme%3E3093508375%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093508375&rft_id=info:pmid/&rfr_iscdi=true