Mechanical properties and water vapour corrosion behaviour of AlxCoCrFeNi high-entropy alloys
AlxCoCrFeNi (x = 0.1, 0.5 and 1) high-entropy alloys (HEAs) were prepared using a spark plasma sintering (SPS) technique combined with aerosol powder. Their microstructure and phase constituents were characterized using an X-ray diffractometer and SEM, and their tensile properties, hardness and comp...
Gespeichert in:
Veröffentlicht in: | RSC advances 2024-08, Vol.14 (34), p.24741-24748 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24748 |
---|---|
container_issue | 34 |
container_start_page | 24741 |
container_title | RSC advances |
container_volume | 14 |
creator | Zhang, Jingyu Huang, Lin Xiong, Ke Wang, Xiaofeng Wang, Zhengyun Guo, Dashan Li, Ziqi Feng, Wei |
description | AlxCoCrFeNi (x = 0.1, 0.5 and 1) high-entropy alloys (HEAs) were prepared using a spark plasma sintering (SPS) technique combined with aerosol powder. Their microstructure and phase constituents were characterized using an X-ray diffractometer and SEM, and their tensile properties, hardness and compactness were tested. The results show that the crystal structure of the AlxCoCrFeNi HEAs changed significantly with the Al content, from the original single face-centered cubic FCC phase (Al0.1CoCrFeNi) to an FCC + BCC structure (Al0.5CoCrFeNi), and then to FCC + BCC + sigma (σ) phase structures (AlCoCrFeNi). Chemical composition analysis showed that the crystal structure transformation was related to the segregation caused by the increased Al content. The hardness of the AlxCoCrFeNi HEAs increases with increasing Al content, and the hardness of AlCoCrFeNi reaches a maximum of 507.3 HV. The tensile properties of the alloy show a trend of first increasing and then decreasing with increasing Al content, and the yield strength, ultimate tensile strength and elongation of the Al0.5CoCrFeNi alloy reach maximum values of 527.4 MP, 943.3 MPa and 28.2%, respectively. The fracture mechanism of the Al0.1CoCrFeNi and Al0.5CoCrFeNi alloys is typical ductile fracture, while that of the AlCoCrFeNi alloy is cleavage fracture. The compactness of the alloy increases with the Al content. The samples were also subjected to high-temperature water vapour corrosion, and corrosion products such as Al3Fe5O12, CoCr2O4 and NiCr2O4 were found in the Al0.1 and Al0.5 alloys, whereas no oxide peaks were detected using XRD for the Al1 alloy. It was also presumed that a very thin alumina film was generated on the surface of the Al1 alloy, preventing the oxidation of the sample, in combination with the analysis of SEM, EDS and XPS behaviour. |
doi_str_mv | 10.1039/d4ra03892d |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11304063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093508375</sourcerecordid><originalsourceid>FETCH-LOGICAL-p205t-95c69d6ccf71a1338e545c25641785565967bb7c73ea28b380d9e9b274cabeac3</originalsourceid><addsrcrecordid>eNpVj89LwzAcxYMgOOYu_gUBz9X8aNLmJKM4FaZe9CjhmzRbM7qmJt10__063MV3efAefHgPoRtK7ijh6r7OIxBeKlZfoAkjucwYkeoKzVLakFFSUCbpBH29OttA5y20uI-hd3HwLmHoavwDg4t4D33YRWxDjCH50GHjGtj7UxZWeN7-VqGKC_fmcePXTea6YaQcMLRtOKRrdLmCNrnZ2afoc_H4UT1ny_enl2q-zHpGxJApYaWqpbWrggLlvHQiF5YJmdOiFEIKJQtjCltwB6w0vCS1csqwIrdgHFg-RQ9_3H5ntq62pxXQ6j76LcSDDuD1_6bzjV6HvaaUk5xIPhJuz4QYvncuDXozXuzG0ZoTxQUpeSH4ER8ubAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093508375</pqid></control><display><type>article</type><title>Mechanical properties and water vapour corrosion behaviour of AlxCoCrFeNi high-entropy alloys</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Zhang, Jingyu ; Huang, Lin ; Xiong, Ke ; Wang, Xiaofeng ; Wang, Zhengyun ; Guo, Dashan ; Li, Ziqi ; Feng, Wei</creator><creatorcontrib>Zhang, Jingyu ; Huang, Lin ; Xiong, Ke ; Wang, Xiaofeng ; Wang, Zhengyun ; Guo, Dashan ; Li, Ziqi ; Feng, Wei</creatorcontrib><description>AlxCoCrFeNi (x = 0.1, 0.5 and 1) high-entropy alloys (HEAs) were prepared using a spark plasma sintering (SPS) technique combined with aerosol powder. Their microstructure and phase constituents were characterized using an X-ray diffractometer and SEM, and their tensile properties, hardness and compactness were tested. The results show that the crystal structure of the AlxCoCrFeNi HEAs changed significantly with the Al content, from the original single face-centered cubic FCC phase (Al0.1CoCrFeNi) to an FCC + BCC structure (Al0.5CoCrFeNi), and then to FCC + BCC + sigma (σ) phase structures (AlCoCrFeNi). Chemical composition analysis showed that the crystal structure transformation was related to the segregation caused by the increased Al content. The hardness of the AlxCoCrFeNi HEAs increases with increasing Al content, and the hardness of AlCoCrFeNi reaches a maximum of 507.3 HV. The tensile properties of the alloy show a trend of first increasing and then decreasing with increasing Al content, and the yield strength, ultimate tensile strength and elongation of the Al0.5CoCrFeNi alloy reach maximum values of 527.4 MP, 943.3 MPa and 28.2%, respectively. The fracture mechanism of the Al0.1CoCrFeNi and Al0.5CoCrFeNi alloys is typical ductile fracture, while that of the AlCoCrFeNi alloy is cleavage fracture. The compactness of the alloy increases with the Al content. The samples were also subjected to high-temperature water vapour corrosion, and corrosion products such as Al3Fe5O12, CoCr2O4 and NiCr2O4 were found in the Al0.1 and Al0.5 alloys, whereas no oxide peaks were detected using XRD for the Al1 alloy. It was also presumed that a very thin alumina film was generated on the surface of the Al1 alloy, preventing the oxidation of the sample, in combination with the analysis of SEM, EDS and XPS behaviour.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra03892d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alloys ; Aluminum ; Body centered cubic lattice ; Chemical composition ; Chemistry ; Corrosion ; Corrosion mechanisms ; Corrosion products ; Crystal structure ; Ductile fracture ; Elongated structure ; Face centered cubic lattice ; Fracture mechanics ; Hardness ; Heat resistant alloys ; High entropy alloys ; High temperature ; Mechanical properties ; Oxidation ; Plasma sintering ; Sigma phase ; Sintering (powder metallurgy) ; Spark plasma sintering ; Tensile properties ; Ultimate tensile strength ; Water temperature ; Water vapor ; X ray photoelectron spectroscopy</subject><ispartof>RSC advances, 2024-08, Vol.14 (34), p.24741-24748</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304063/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304063/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Zhang, Jingyu</creatorcontrib><creatorcontrib>Huang, Lin</creatorcontrib><creatorcontrib>Xiong, Ke</creatorcontrib><creatorcontrib>Wang, Xiaofeng</creatorcontrib><creatorcontrib>Wang, Zhengyun</creatorcontrib><creatorcontrib>Guo, Dashan</creatorcontrib><creatorcontrib>Li, Ziqi</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><title>Mechanical properties and water vapour corrosion behaviour of AlxCoCrFeNi high-entropy alloys</title><title>RSC advances</title><description>AlxCoCrFeNi (x = 0.1, 0.5 and 1) high-entropy alloys (HEAs) were prepared using a spark plasma sintering (SPS) technique combined with aerosol powder. Their microstructure and phase constituents were characterized using an X-ray diffractometer and SEM, and their tensile properties, hardness and compactness were tested. The results show that the crystal structure of the AlxCoCrFeNi HEAs changed significantly with the Al content, from the original single face-centered cubic FCC phase (Al0.1CoCrFeNi) to an FCC + BCC structure (Al0.5CoCrFeNi), and then to FCC + BCC + sigma (σ) phase structures (AlCoCrFeNi). Chemical composition analysis showed that the crystal structure transformation was related to the segregation caused by the increased Al content. The hardness of the AlxCoCrFeNi HEAs increases with increasing Al content, and the hardness of AlCoCrFeNi reaches a maximum of 507.3 HV. The tensile properties of the alloy show a trend of first increasing and then decreasing with increasing Al content, and the yield strength, ultimate tensile strength and elongation of the Al0.5CoCrFeNi alloy reach maximum values of 527.4 MP, 943.3 MPa and 28.2%, respectively. The fracture mechanism of the Al0.1CoCrFeNi and Al0.5CoCrFeNi alloys is typical ductile fracture, while that of the AlCoCrFeNi alloy is cleavage fracture. The compactness of the alloy increases with the Al content. The samples were also subjected to high-temperature water vapour corrosion, and corrosion products such as Al3Fe5O12, CoCr2O4 and NiCr2O4 were found in the Al0.1 and Al0.5 alloys, whereas no oxide peaks were detected using XRD for the Al1 alloy. It was also presumed that a very thin alumina film was generated on the surface of the Al1 alloy, preventing the oxidation of the sample, in combination with the analysis of SEM, EDS and XPS behaviour.</description><subject>Alloys</subject><subject>Aluminum</subject><subject>Body centered cubic lattice</subject><subject>Chemical composition</subject><subject>Chemistry</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Corrosion products</subject><subject>Crystal structure</subject><subject>Ductile fracture</subject><subject>Elongated structure</subject><subject>Face centered cubic lattice</subject><subject>Fracture mechanics</subject><subject>Hardness</subject><subject>Heat resistant alloys</subject><subject>High entropy alloys</subject><subject>High temperature</subject><subject>Mechanical properties</subject><subject>Oxidation</subject><subject>Plasma sintering</subject><subject>Sigma phase</subject><subject>Sintering (powder metallurgy)</subject><subject>Spark plasma sintering</subject><subject>Tensile properties</subject><subject>Ultimate tensile strength</subject><subject>Water temperature</subject><subject>Water vapor</subject><subject>X ray photoelectron spectroscopy</subject><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVj89LwzAcxYMgOOYu_gUBz9X8aNLmJKM4FaZe9CjhmzRbM7qmJt10__063MV3efAefHgPoRtK7ijh6r7OIxBeKlZfoAkjucwYkeoKzVLakFFSUCbpBH29OttA5y20uI-hd3HwLmHoavwDg4t4D33YRWxDjCH50GHjGtj7UxZWeN7-VqGKC_fmcePXTea6YaQcMLRtOKRrdLmCNrnZ2afoc_H4UT1ny_enl2q-zHpGxJApYaWqpbWrggLlvHQiF5YJmdOiFEIKJQtjCltwB6w0vCS1csqwIrdgHFg-RQ9_3H5ntq62pxXQ6j76LcSDDuD1_6bzjV6HvaaUk5xIPhJuz4QYvncuDXozXuzG0ZoTxQUpeSH4ER8ubAw</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Zhang, Jingyu</creator><creator>Huang, Lin</creator><creator>Xiong, Ke</creator><creator>Wang, Xiaofeng</creator><creator>Wang, Zhengyun</creator><creator>Guo, Dashan</creator><creator>Li, Ziqi</creator><creator>Feng, Wei</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>5PM</scope></search><sort><creationdate>20240807</creationdate><title>Mechanical properties and water vapour corrosion behaviour of AlxCoCrFeNi high-entropy alloys</title><author>Zhang, Jingyu ; Huang, Lin ; Xiong, Ke ; Wang, Xiaofeng ; Wang, Zhengyun ; Guo, Dashan ; Li, Ziqi ; Feng, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p205t-95c69d6ccf71a1338e545c25641785565967bb7c73ea28b380d9e9b274cabeac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloys</topic><topic>Aluminum</topic><topic>Body centered cubic lattice</topic><topic>Chemical composition</topic><topic>Chemistry</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Corrosion products</topic><topic>Crystal structure</topic><topic>Ductile fracture</topic><topic>Elongated structure</topic><topic>Face centered cubic lattice</topic><topic>Fracture mechanics</topic><topic>Hardness</topic><topic>Heat resistant alloys</topic><topic>High entropy alloys</topic><topic>High temperature</topic><topic>Mechanical properties</topic><topic>Oxidation</topic><topic>Plasma sintering</topic><topic>Sigma phase</topic><topic>Sintering (powder metallurgy)</topic><topic>Spark plasma sintering</topic><topic>Tensile properties</topic><topic>Ultimate tensile strength</topic><topic>Water temperature</topic><topic>Water vapor</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jingyu</creatorcontrib><creatorcontrib>Huang, Lin</creatorcontrib><creatorcontrib>Xiong, Ke</creatorcontrib><creatorcontrib>Wang, Xiaofeng</creatorcontrib><creatorcontrib>Wang, Zhengyun</creatorcontrib><creatorcontrib>Guo, Dashan</creatorcontrib><creatorcontrib>Li, Ziqi</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jingyu</au><au>Huang, Lin</au><au>Xiong, Ke</au><au>Wang, Xiaofeng</au><au>Wang, Zhengyun</au><au>Guo, Dashan</au><au>Li, Ziqi</au><au>Feng, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties and water vapour corrosion behaviour of AlxCoCrFeNi high-entropy alloys</atitle><jtitle>RSC advances</jtitle><date>2024-08-07</date><risdate>2024</risdate><volume>14</volume><issue>34</issue><spage>24741</spage><epage>24748</epage><pages>24741-24748</pages><eissn>2046-2069</eissn><abstract>AlxCoCrFeNi (x = 0.1, 0.5 and 1) high-entropy alloys (HEAs) were prepared using a spark plasma sintering (SPS) technique combined with aerosol powder. Their microstructure and phase constituents were characterized using an X-ray diffractometer and SEM, and their tensile properties, hardness and compactness were tested. The results show that the crystal structure of the AlxCoCrFeNi HEAs changed significantly with the Al content, from the original single face-centered cubic FCC phase (Al0.1CoCrFeNi) to an FCC + BCC structure (Al0.5CoCrFeNi), and then to FCC + BCC + sigma (σ) phase structures (AlCoCrFeNi). Chemical composition analysis showed that the crystal structure transformation was related to the segregation caused by the increased Al content. The hardness of the AlxCoCrFeNi HEAs increases with increasing Al content, and the hardness of AlCoCrFeNi reaches a maximum of 507.3 HV. The tensile properties of the alloy show a trend of first increasing and then decreasing with increasing Al content, and the yield strength, ultimate tensile strength and elongation of the Al0.5CoCrFeNi alloy reach maximum values of 527.4 MP, 943.3 MPa and 28.2%, respectively. The fracture mechanism of the Al0.1CoCrFeNi and Al0.5CoCrFeNi alloys is typical ductile fracture, while that of the AlCoCrFeNi alloy is cleavage fracture. The compactness of the alloy increases with the Al content. The samples were also subjected to high-temperature water vapour corrosion, and corrosion products such as Al3Fe5O12, CoCr2O4 and NiCr2O4 were found in the Al0.1 and Al0.5 alloys, whereas no oxide peaks were detected using XRD for the Al1 alloy. It was also presumed that a very thin alumina film was generated on the surface of the Al1 alloy, preventing the oxidation of the sample, in combination with the analysis of SEM, EDS and XPS behaviour.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ra03892d</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2046-2069 |
ispartof | RSC advances, 2024-08, Vol.14 (34), p.24741-24748 |
issn | 2046-2069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11304063 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
subjects | Alloys Aluminum Body centered cubic lattice Chemical composition Chemistry Corrosion Corrosion mechanisms Corrosion products Crystal structure Ductile fracture Elongated structure Face centered cubic lattice Fracture mechanics Hardness Heat resistant alloys High entropy alloys High temperature Mechanical properties Oxidation Plasma sintering Sigma phase Sintering (powder metallurgy) Spark plasma sintering Tensile properties Ultimate tensile strength Water temperature Water vapor X ray photoelectron spectroscopy |
title | Mechanical properties and water vapour corrosion behaviour of AlxCoCrFeNi high-entropy alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20and%20water%20vapour%20corrosion%20behaviour%20of%20AlxCoCrFeNi%20high-entropy%20alloys&rft.jtitle=RSC%20advances&rft.au=Zhang,%20Jingyu&rft.date=2024-08-07&rft.volume=14&rft.issue=34&rft.spage=24741&rft.epage=24748&rft.pages=24741-24748&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra03892d&rft_dat=%3Cproquest_pubme%3E3093508375%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093508375&rft_id=info:pmid/&rfr_iscdi=true |