Spatio-temporal changes of small protist and free-living bacterial communities in a temperate dimictic lake: insights from metabarcoding and machine learning
Microbial communities, which include prokaryotes and protists, play an important role in aquatic ecosystems and influence ecological processes. To understand these communities, metabarcoding provides a powerful tool to assess their taxonomic composition and track spatio-temporal dynamics in both mar...
Gespeichert in:
Veröffentlicht in: | FEMS microbiology ecology 2024-07, Vol.100 (8) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | FEMS microbiology ecology |
container_volume | 100 |
creator | Karlicki, Michał Bednarska, Anna Hałakuc, Paweł Maciszewski, Kacper Karnkowska, Anna |
description | Microbial communities, which include prokaryotes and protists, play an important role in aquatic ecosystems and influence ecological processes. To understand these communities, metabarcoding provides a powerful tool to assess their taxonomic composition and track spatio-temporal dynamics in both marine and freshwater environments. While marine ecosystems have been extensively studied, there is a notable research gap in understanding eukaryotic microbial communities in temperate lakes. Our study addresses this gap by investigating the free-living bacteria and small protist communities in Lake Roś (Poland), a dimictic temperate lake. Metabarcoding analysis revealed that both the bacterial and protist communities exhibit distinct seasonal patterns that are not necessarily shaped by dominant taxa. Furthermore, machine learning and statistical methods identified crucial amplicon sequence variants (ASVs) specific to each season. In addition, we identified a distinct community in the anoxic hypolimnion. We have also shown that the key factors shaping the composition of analysed community are temperature, oxygen, and silicon concentration. Understanding these community structures and the underlying factors is important in the context of climate change potentially impacting mixing patterns and leading to prolonged stratification. |
doi_str_mv | 10.1093/femsec/fiae104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11302952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083671868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-cd23bc1499ba788f26ece016e7a23df8dd1a0fed6ba8af635941a9469ba865ff3</originalsourceid><addsrcrecordid>eNpVkUtv1DAUhS0Eog_YskResklrx4knYYNQRVukSiwoa-vGuZ4x-BFsTyV-DP-1jmaoimTJlu8537XvIeQdZxecjeLSoM-oL40F5Kx7QU55v-kaOXb85bPzCTnL-SdjvBcde01OxMjq4vKU_P2-QLGxKeiXmMBRvYOwxUyjodmDc3RJsdhcKISZmoTYOPtgw5ZOoAsmu1qi9_tgi602GyjQFYYJCtLZequL1dTBL_xYq9ludyVXUPTUY4EJko7zylv5HvTOBqQOIYV6-Ya8MuAyvj3u5-TH9Zf7q9vm7tvN16vPd41uhSyNnlsxad6N4wSbYTCtRI31e7iBVsxmmGcOzOAsJxjASNHXkcDYySofZG-MOCefDtxlP3mcNYZSZ6GWZD2kPyqCVf9Xgt2pbXxQnAvWjn1bCR-OhBR_7zEX5W3W6BwEjPusBBuE3PBBDlV6cZDqFHNOaJ76cKbWUNUhVHUMtRreP3_dk_xfiuIRBkCmCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083671868</pqid></control><display><type>article</type><title>Spatio-temporal changes of small protist and free-living bacterial communities in a temperate dimictic lake: insights from metabarcoding and machine learning</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Karlicki, Michał ; Bednarska, Anna ; Hałakuc, Paweł ; Maciszewski, Kacper ; Karnkowska, Anna</creator><creatorcontrib>Karlicki, Michał ; Bednarska, Anna ; Hałakuc, Paweł ; Maciszewski, Kacper ; Karnkowska, Anna</creatorcontrib><description>Microbial communities, which include prokaryotes and protists, play an important role in aquatic ecosystems and influence ecological processes. To understand these communities, metabarcoding provides a powerful tool to assess their taxonomic composition and track spatio-temporal dynamics in both marine and freshwater environments. While marine ecosystems have been extensively studied, there is a notable research gap in understanding eukaryotic microbial communities in temperate lakes. Our study addresses this gap by investigating the free-living bacteria and small protist communities in Lake Roś (Poland), a dimictic temperate lake. Metabarcoding analysis revealed that both the bacterial and protist communities exhibit distinct seasonal patterns that are not necessarily shaped by dominant taxa. Furthermore, machine learning and statistical methods identified crucial amplicon sequence variants (ASVs) specific to each season. In addition, we identified a distinct community in the anoxic hypolimnion. We have also shown that the key factors shaping the composition of analysed community are temperature, oxygen, and silicon concentration. Understanding these community structures and the underlying factors is important in the context of climate change potentially impacting mixing patterns and leading to prolonged stratification.</description><identifier>ISSN: 1574-6941</identifier><identifier>ISSN: 0168-6496</identifier><identifier>EISSN: 1574-6941</identifier><identifier>DOI: 10.1093/femsec/fiae104</identifier><identifier>PMID: 39039016</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bacteria - classification ; Bacteria - genetics ; Biodiversity ; DNA Barcoding, Taxonomic ; Ecosystem ; Eukaryota - classification ; Eukaryota - genetics ; Lakes - microbiology ; Machine Learning ; Microbiota ; Seasons ; Spatio-Temporal Analysis ; Temperature</subject><ispartof>FEMS microbiology ecology, 2024-07, Vol.100 (8)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of FEMS.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of FEMS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c236t-cd23bc1499ba788f26ece016e7a23df8dd1a0fed6ba8af635941a9469ba865ff3</cites><orcidid>0000-0003-3709-7873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302952/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302952/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39039016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karlicki, Michał</creatorcontrib><creatorcontrib>Bednarska, Anna</creatorcontrib><creatorcontrib>Hałakuc, Paweł</creatorcontrib><creatorcontrib>Maciszewski, Kacper</creatorcontrib><creatorcontrib>Karnkowska, Anna</creatorcontrib><title>Spatio-temporal changes of small protist and free-living bacterial communities in a temperate dimictic lake: insights from metabarcoding and machine learning</title><title>FEMS microbiology ecology</title><addtitle>FEMS Microbiol Ecol</addtitle><description>Microbial communities, which include prokaryotes and protists, play an important role in aquatic ecosystems and influence ecological processes. To understand these communities, metabarcoding provides a powerful tool to assess their taxonomic composition and track spatio-temporal dynamics in both marine and freshwater environments. While marine ecosystems have been extensively studied, there is a notable research gap in understanding eukaryotic microbial communities in temperate lakes. Our study addresses this gap by investigating the free-living bacteria and small protist communities in Lake Roś (Poland), a dimictic temperate lake. Metabarcoding analysis revealed that both the bacterial and protist communities exhibit distinct seasonal patterns that are not necessarily shaped by dominant taxa. Furthermore, machine learning and statistical methods identified crucial amplicon sequence variants (ASVs) specific to each season. In addition, we identified a distinct community in the anoxic hypolimnion. We have also shown that the key factors shaping the composition of analysed community are temperature, oxygen, and silicon concentration. Understanding these community structures and the underlying factors is important in the context of climate change potentially impacting mixing patterns and leading to prolonged stratification.</description><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Biodiversity</subject><subject>DNA Barcoding, Taxonomic</subject><subject>Ecosystem</subject><subject>Eukaryota - classification</subject><subject>Eukaryota - genetics</subject><subject>Lakes - microbiology</subject><subject>Machine Learning</subject><subject>Microbiota</subject><subject>Seasons</subject><subject>Spatio-Temporal Analysis</subject><subject>Temperature</subject><issn>1574-6941</issn><issn>0168-6496</issn><issn>1574-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtv1DAUhS0Eog_YskResklrx4knYYNQRVukSiwoa-vGuZ4x-BFsTyV-DP-1jmaoimTJlu8537XvIeQdZxecjeLSoM-oL40F5Kx7QU55v-kaOXb85bPzCTnL-SdjvBcde01OxMjq4vKU_P2-QLGxKeiXmMBRvYOwxUyjodmDc3RJsdhcKISZmoTYOPtgw5ZOoAsmu1qi9_tgi602GyjQFYYJCtLZequL1dTBL_xYq9ludyVXUPTUY4EJko7zylv5HvTOBqQOIYV6-Ya8MuAyvj3u5-TH9Zf7q9vm7tvN16vPd41uhSyNnlsxad6N4wSbYTCtRI31e7iBVsxmmGcOzOAsJxjASNHXkcDYySofZG-MOCefDtxlP3mcNYZSZ6GWZD2kPyqCVf9Xgt2pbXxQnAvWjn1bCR-OhBR_7zEX5W3W6BwEjPusBBuE3PBBDlV6cZDqFHNOaJ76cKbWUNUhVHUMtRreP3_dk_xfiuIRBkCmCg</recordid><startdate>20240712</startdate><enddate>20240712</enddate><creator>Karlicki, Michał</creator><creator>Bednarska, Anna</creator><creator>Hałakuc, Paweł</creator><creator>Maciszewski, Kacper</creator><creator>Karnkowska, Anna</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3709-7873</orcidid></search><sort><creationdate>20240712</creationdate><title>Spatio-temporal changes of small protist and free-living bacterial communities in a temperate dimictic lake: insights from metabarcoding and machine learning</title><author>Karlicki, Michał ; Bednarska, Anna ; Hałakuc, Paweł ; Maciszewski, Kacper ; Karnkowska, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-cd23bc1499ba788f26ece016e7a23df8dd1a0fed6ba8af635941a9469ba865ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Biodiversity</topic><topic>DNA Barcoding, Taxonomic</topic><topic>Ecosystem</topic><topic>Eukaryota - classification</topic><topic>Eukaryota - genetics</topic><topic>Lakes - microbiology</topic><topic>Machine Learning</topic><topic>Microbiota</topic><topic>Seasons</topic><topic>Spatio-Temporal Analysis</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karlicki, Michał</creatorcontrib><creatorcontrib>Bednarska, Anna</creatorcontrib><creatorcontrib>Hałakuc, Paweł</creatorcontrib><creatorcontrib>Maciszewski, Kacper</creatorcontrib><creatorcontrib>Karnkowska, Anna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>FEMS microbiology ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karlicki, Michał</au><au>Bednarska, Anna</au><au>Hałakuc, Paweł</au><au>Maciszewski, Kacper</au><au>Karnkowska, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatio-temporal changes of small protist and free-living bacterial communities in a temperate dimictic lake: insights from metabarcoding and machine learning</atitle><jtitle>FEMS microbiology ecology</jtitle><addtitle>FEMS Microbiol Ecol</addtitle><date>2024-07-12</date><risdate>2024</risdate><volume>100</volume><issue>8</issue><issn>1574-6941</issn><issn>0168-6496</issn><eissn>1574-6941</eissn><abstract>Microbial communities, which include prokaryotes and protists, play an important role in aquatic ecosystems and influence ecological processes. To understand these communities, metabarcoding provides a powerful tool to assess their taxonomic composition and track spatio-temporal dynamics in both marine and freshwater environments. While marine ecosystems have been extensively studied, there is a notable research gap in understanding eukaryotic microbial communities in temperate lakes. Our study addresses this gap by investigating the free-living bacteria and small protist communities in Lake Roś (Poland), a dimictic temperate lake. Metabarcoding analysis revealed that both the bacterial and protist communities exhibit distinct seasonal patterns that are not necessarily shaped by dominant taxa. Furthermore, machine learning and statistical methods identified crucial amplicon sequence variants (ASVs) specific to each season. In addition, we identified a distinct community in the anoxic hypolimnion. We have also shown that the key factors shaping the composition of analysed community are temperature, oxygen, and silicon concentration. Understanding these community structures and the underlying factors is important in the context of climate change potentially impacting mixing patterns and leading to prolonged stratification.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39039016</pmid><doi>10.1093/femsec/fiae104</doi><orcidid>https://orcid.org/0000-0003-3709-7873</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-6941 |
ispartof | FEMS microbiology ecology, 2024-07, Vol.100 (8) |
issn | 1574-6941 0168-6496 1574-6941 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11302952 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Bacteria - classification Bacteria - genetics Biodiversity DNA Barcoding, Taxonomic Ecosystem Eukaryota - classification Eukaryota - genetics Lakes - microbiology Machine Learning Microbiota Seasons Spatio-Temporal Analysis Temperature |
title | Spatio-temporal changes of small protist and free-living bacterial communities in a temperate dimictic lake: insights from metabarcoding and machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A47%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatio-temporal%20changes%20of%20small%20protist%20and%20free-living%20bacterial%20communities%20in%20a%20temperate%20dimictic%20lake:%20insights%20from%20metabarcoding%20and%20machine%20learning&rft.jtitle=FEMS%20microbiology%20ecology&rft.au=Karlicki,%20Micha%C5%82&rft.date=2024-07-12&rft.volume=100&rft.issue=8&rft.issn=1574-6941&rft.eissn=1574-6941&rft_id=info:doi/10.1093/femsec/fiae104&rft_dat=%3Cproquest_pubme%3E3083671868%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083671868&rft_id=info:pmid/39039016&rfr_iscdi=true |