On the Arrival Time Distribution of Reacting Systems in Ion Mobility Spectrometry

Ion mobility spectrometry (IMS) is a widely used gas-phase separation technique, particularly when coupled with mass spectrometry (MS). Modern IMS instruments often apply elevated reduced field strengths for improved ion separation and ion focusing. These alter the collision dynamics and further dri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2024-07, Vol.96 (30), p.12433-12443
Hauptverfasser: Haack, Alexander, Schaefer, Christoph, Zimmermann, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12443
container_issue 30
container_start_page 12433
container_title Analytical chemistry (Washington)
container_volume 96
creator Haack, Alexander
Schaefer, Christoph
Zimmermann, Stefan
description Ion mobility spectrometry (IMS) is a widely used gas-phase separation technique, particularly when coupled with mass spectrometry (MS). Modern IMS instruments often apply elevated reduced field strengths for improved ion separation and ion focusing. These alter the collision dynamics and further drive ion reaction processes that can change the analyte’s structure. As a result, the measured arrival time distribution (ATD) can change with the applied reduced field strengths. In this work, we systematically study how the ion collision dynamics and the ion reaction dynamics, as a function of the reduced field strength, can alter the ATD. To this end, we investigate 2,6-di-tert-butylpyridine, methanol, and ethyl acetate using a home-built drift tube IMS coupled to a home-built MS and extensive first-principles Monte Carlo modeling. We show how elevated reduced field strengths can actually lower resolving power through increased ion diffusion and how the field dependency of the ion mobility can introduce uncertainties to collision cross sections (CCS) calculated from the measured mobilities. On top of the collision dynamics, we show how chemical transformation processes that alter the analyte’s CCS, e.g., dynamic clustering or fragmentation, can lead to broadened, shifted, or non-Gaussian ATDs and how sensitive these processes are to the applied field strengths. We highlight how first-principles ion dynamics simulations can help to understand and even harness the mentioned effects.
doi_str_mv 10.1021/acs.analchem.4c02010
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11295131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153706672</sourcerecordid><originalsourceid>FETCH-LOGICAL-a344t-e22f5d67cd63a273b142d6378fbad6997909379699dafb4cf4e83c9b114d56673</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhHyBkiQuXbGfsJI5PqCpflYqq0nK2HMfpukrixXYq7b_Hy25XlAM9eaR55p2xHkLeIiwRGJ5oE5d60oNZ2XFZGmCA8IwssGJQ1E3DnpMFAPCCCYAj8irGOwBEwPolOeISQFbAF-TqcqJpZelpCO5eD_TGjZZ-cjEF187J-Yn6nv6w2iQ33dLrTUx2jNRN9Dy3vvvWDS5t6PXamhT8aFPYvCYvej1E-2b_HpOfXz7fnH0rLi6_np-dXhSal2UqLGN91dXCdDXXTPAWS5ZL0fSt7mophQTJhcxVp_u2NH1pG25ki1h2VV0Lfkw-7nLXczvaztgpBT2odXCjDhvltVOPO5NbqVt_rxCZrJBjTviwTwj-12xjUqOLxg6Dnqyfo-JYcQF5F3sahSanghTb1Pf_oHd-DlnUH6qpRYNVnalyR5ngYwy2PxyOoLZ-VfarHvyqvd889u7vTx-GHoRmAHbAdvyw-L-ZvwEzjrQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3088678156</pqid></control><display><type>article</type><title>On the Arrival Time Distribution of Reacting Systems in Ion Mobility Spectrometry</title><source>American Chemical Society Publications</source><creator>Haack, Alexander ; Schaefer, Christoph ; Zimmermann, Stefan</creator><creatorcontrib>Haack, Alexander ; Schaefer, Christoph ; Zimmermann, Stefan</creatorcontrib><description>Ion mobility spectrometry (IMS) is a widely used gas-phase separation technique, particularly when coupled with mass spectrometry (MS). Modern IMS instruments often apply elevated reduced field strengths for improved ion separation and ion focusing. These alter the collision dynamics and further drive ion reaction processes that can change the analyte’s structure. As a result, the measured arrival time distribution (ATD) can change with the applied reduced field strengths. In this work, we systematically study how the ion collision dynamics and the ion reaction dynamics, as a function of the reduced field strength, can alter the ATD. To this end, we investigate 2,6-di-tert-butylpyridine, methanol, and ethyl acetate using a home-built drift tube IMS coupled to a home-built MS and extensive first-principles Monte Carlo modeling. We show how elevated reduced field strengths can actually lower resolving power through increased ion diffusion and how the field dependency of the ion mobility can introduce uncertainties to collision cross sections (CCS) calculated from the measured mobilities. On top of the collision dynamics, we show how chemical transformation processes that alter the analyte’s CCS, e.g., dynamic clustering or fragmentation, can lead to broadened, shifted, or non-Gaussian ATDs and how sensitive these processes are to the applied field strengths. We highlight how first-principles ion dynamics simulations can help to understand and even harness the mentioned effects.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.4c02010</identifier><identifier>PMID: 39009503</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acetic acid ; analytical chemistry ; Atomic collisions ; Clustering ; Collision dynamics ; Drift tubes ; Dynamic structural analysis ; Ethyl acetate ; Field strength ; First principles ; Gaussian process ; Ion diffusion ; Ion dynamics ; Ionic mobility ; Mass spectrometry ; Mass spectroscopy ; methanol ; Mobility ; Phase separation ; Resolution ; Scientific imaging ; Time measurement</subject><ispartof>Analytical chemistry (Washington), 2024-07, Vol.96 (30), p.12433-12443</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Jul 30, 2024</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a344t-e22f5d67cd63a273b142d6378fbad6997909379699dafb4cf4e83c9b114d56673</cites><orcidid>0000-0003-0687-078X ; 0000-0002-3124-9293 ; 0000-0002-1725-6657</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.4c02010$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.4c02010$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39009503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haack, Alexander</creatorcontrib><creatorcontrib>Schaefer, Christoph</creatorcontrib><creatorcontrib>Zimmermann, Stefan</creatorcontrib><title>On the Arrival Time Distribution of Reacting Systems in Ion Mobility Spectrometry</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Ion mobility spectrometry (IMS) is a widely used gas-phase separation technique, particularly when coupled with mass spectrometry (MS). Modern IMS instruments often apply elevated reduced field strengths for improved ion separation and ion focusing. These alter the collision dynamics and further drive ion reaction processes that can change the analyte’s structure. As a result, the measured arrival time distribution (ATD) can change with the applied reduced field strengths. In this work, we systematically study how the ion collision dynamics and the ion reaction dynamics, as a function of the reduced field strength, can alter the ATD. To this end, we investigate 2,6-di-tert-butylpyridine, methanol, and ethyl acetate using a home-built drift tube IMS coupled to a home-built MS and extensive first-principles Monte Carlo modeling. We show how elevated reduced field strengths can actually lower resolving power through increased ion diffusion and how the field dependency of the ion mobility can introduce uncertainties to collision cross sections (CCS) calculated from the measured mobilities. On top of the collision dynamics, we show how chemical transformation processes that alter the analyte’s CCS, e.g., dynamic clustering or fragmentation, can lead to broadened, shifted, or non-Gaussian ATDs and how sensitive these processes are to the applied field strengths. We highlight how first-principles ion dynamics simulations can help to understand and even harness the mentioned effects.</description><subject>Acetic acid</subject><subject>analytical chemistry</subject><subject>Atomic collisions</subject><subject>Clustering</subject><subject>Collision dynamics</subject><subject>Drift tubes</subject><subject>Dynamic structural analysis</subject><subject>Ethyl acetate</subject><subject>Field strength</subject><subject>First principles</subject><subject>Gaussian process</subject><subject>Ion diffusion</subject><subject>Ion dynamics</subject><subject>Ionic mobility</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>methanol</subject><subject>Mobility</subject><subject>Phase separation</subject><subject>Resolution</subject><subject>Scientific imaging</subject><subject>Time measurement</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EokvhHyBkiQuXbGfsJI5PqCpflYqq0nK2HMfpukrixXYq7b_Hy25XlAM9eaR55p2xHkLeIiwRGJ5oE5d60oNZ2XFZGmCA8IwssGJQ1E3DnpMFAPCCCYAj8irGOwBEwPolOeISQFbAF-TqcqJpZelpCO5eD_TGjZZ-cjEF187J-Yn6nv6w2iQ33dLrTUx2jNRN9Dy3vvvWDS5t6PXamhT8aFPYvCYvej1E-2b_HpOfXz7fnH0rLi6_np-dXhSal2UqLGN91dXCdDXXTPAWS5ZL0fSt7mophQTJhcxVp_u2NH1pG25ki1h2VV0Lfkw-7nLXczvaztgpBT2odXCjDhvltVOPO5NbqVt_rxCZrJBjTviwTwj-12xjUqOLxg6Dnqyfo-JYcQF5F3sahSanghTb1Pf_oHd-DlnUH6qpRYNVnalyR5ngYwy2PxyOoLZ-VfarHvyqvd889u7vTx-GHoRmAHbAdvyw-L-ZvwEzjrQg</recordid><startdate>20240715</startdate><enddate>20240715</enddate><creator>Haack, Alexander</creator><creator>Schaefer, Christoph</creator><creator>Zimmermann, Stefan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0687-078X</orcidid><orcidid>https://orcid.org/0000-0002-3124-9293</orcidid><orcidid>https://orcid.org/0000-0002-1725-6657</orcidid></search><sort><creationdate>20240715</creationdate><title>On the Arrival Time Distribution of Reacting Systems in Ion Mobility Spectrometry</title><author>Haack, Alexander ; Schaefer, Christoph ; Zimmermann, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a344t-e22f5d67cd63a273b142d6378fbad6997909379699dafb4cf4e83c9b114d56673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetic acid</topic><topic>analytical chemistry</topic><topic>Atomic collisions</topic><topic>Clustering</topic><topic>Collision dynamics</topic><topic>Drift tubes</topic><topic>Dynamic structural analysis</topic><topic>Ethyl acetate</topic><topic>Field strength</topic><topic>First principles</topic><topic>Gaussian process</topic><topic>Ion diffusion</topic><topic>Ion dynamics</topic><topic>Ionic mobility</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>methanol</topic><topic>Mobility</topic><topic>Phase separation</topic><topic>Resolution</topic><topic>Scientific imaging</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haack, Alexander</creatorcontrib><creatorcontrib>Schaefer, Christoph</creatorcontrib><creatorcontrib>Zimmermann, Stefan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haack, Alexander</au><au>Schaefer, Christoph</au><au>Zimmermann, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Arrival Time Distribution of Reacting Systems in Ion Mobility Spectrometry</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2024-07-15</date><risdate>2024</risdate><volume>96</volume><issue>30</issue><spage>12433</spage><epage>12443</epage><pages>12433-12443</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><abstract>Ion mobility spectrometry (IMS) is a widely used gas-phase separation technique, particularly when coupled with mass spectrometry (MS). Modern IMS instruments often apply elevated reduced field strengths for improved ion separation and ion focusing. These alter the collision dynamics and further drive ion reaction processes that can change the analyte’s structure. As a result, the measured arrival time distribution (ATD) can change with the applied reduced field strengths. In this work, we systematically study how the ion collision dynamics and the ion reaction dynamics, as a function of the reduced field strength, can alter the ATD. To this end, we investigate 2,6-di-tert-butylpyridine, methanol, and ethyl acetate using a home-built drift tube IMS coupled to a home-built MS and extensive first-principles Monte Carlo modeling. We show how elevated reduced field strengths can actually lower resolving power through increased ion diffusion and how the field dependency of the ion mobility can introduce uncertainties to collision cross sections (CCS) calculated from the measured mobilities. On top of the collision dynamics, we show how chemical transformation processes that alter the analyte’s CCS, e.g., dynamic clustering or fragmentation, can lead to broadened, shifted, or non-Gaussian ATDs and how sensitive these processes are to the applied field strengths. We highlight how first-principles ion dynamics simulations can help to understand and even harness the mentioned effects.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39009503</pmid><doi>10.1021/acs.analchem.4c02010</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0687-078X</orcidid><orcidid>https://orcid.org/0000-0002-3124-9293</orcidid><orcidid>https://orcid.org/0000-0002-1725-6657</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2024-07, Vol.96 (30), p.12433-12443
issn 0003-2700
1520-6882
1520-6882
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11295131
source American Chemical Society Publications
subjects Acetic acid
analytical chemistry
Atomic collisions
Clustering
Collision dynamics
Drift tubes
Dynamic structural analysis
Ethyl acetate
Field strength
First principles
Gaussian process
Ion diffusion
Ion dynamics
Ionic mobility
Mass spectrometry
Mass spectroscopy
methanol
Mobility
Phase separation
Resolution
Scientific imaging
Time measurement
title On the Arrival Time Distribution of Reacting Systems in Ion Mobility Spectrometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Arrival%20Time%20Distribution%20of%20Reacting%20Systems%20in%20Ion%20Mobility%20Spectrometry&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Haack,%20Alexander&rft.date=2024-07-15&rft.volume=96&rft.issue=30&rft.spage=12433&rft.epage=12443&rft.pages=12433-12443&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.4c02010&rft_dat=%3Cproquest_pubme%3E3153706672%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3088678156&rft_id=info:pmid/39009503&rfr_iscdi=true