Sources of gene expression variation in a globally diverse human cohort

Genetic variation that influences gene expression and splicing is a key source of phenotypic diversity 1 – 5 . Although invaluable, studies investigating these links in humans have been strongly biased towards participants of European ancestries, which constrains generalizability and hinders evoluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-08, Vol.632 (8023), p.122-130
Hauptverfasser: Taylor, Dylan J., Chhetri, Surya B., Tassia, Michael G., Biddanda, Arjun, Yan, Stephanie M., Wojcik, Genevieve L., Battle, Alexis, McCoy, Rajiv C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130
container_issue 8023
container_start_page 122
container_title Nature (London)
container_volume 632
creator Taylor, Dylan J.
Chhetri, Surya B.
Tassia, Michael G.
Biddanda, Arjun
Yan, Stephanie M.
Wojcik, Genevieve L.
Battle, Alexis
McCoy, Rajiv C.
description Genetic variation that influences gene expression and splicing is a key source of phenotypic diversity 1 – 5 . Although invaluable, studies investigating these links in humans have been strongly biased towards participants of European ancestries, which constrains generalizability and hinders evolutionary research. Here to address these limitations, we developed MAGE, an open-access RNA sequencing dataset of lymphoblastoid cell lines from 731 individuals from the 1000 Genomes Project 6 , spread across 5 continental groups and 26 populations. Most variation in gene expression (92%) and splicing (95%) was distributed within versus between populations, which mirrored the variation in DNA sequence. We mapped associations between genetic variants and expression and splicing of nearby genes ( cis -expression quantitative trait loci (eQTLs) and cis -splicing QTLs (sQTLs), respectively). We identified more than 15,000 putatively causal eQTLs and more than 16,000 putatively causal sQTLs that are enriched for relevant epigenomic signatures. These include 1,310 eQTLs and 1,657 sQTLs that are largely private to underrepresented populations. Our data further indicate that the magnitude and direction of causal eQTL effects are highly consistent across populations. Moreover, the apparent ‘population-specific’ effects observed in previous studies were largely driven by low resolution or additional independent eQTLs of the same genes that were not detected. Together, our study expands our understanding of human gene expression diversity and provides an inclusive resource for studying the evolution and function of human genomes. A new open-access RNA sequencing dataset, MAGE, of 731 individuals across geographically diverse human populations provides a valuable resource to study genetic diversity and evolution and expands the capacity to identify new genetic associations.
doi_str_mv 10.1038/s41586-024-07708-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11291278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3091182762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-1bd62fc37cebfc2d559e1d53962ea0f54e2788dc8f07158b64cc2d81607e2523</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxS1EBcufL9BDZYlLL2nHdmI7p6pCQCshcYC75TiT3ayy9mInK_j2eLuwLT1wsGxpfvNmnh8hnxl8YyD091SySssCeFmAUqALfkBmrFSyKKVWh2QGwHUBWshjcpLSEgAqpsojcixq4MBUPSM392GKDhMNHZ2jR4pP64gp9cHTjY29Hbev3lNL50No7DA807bfYExIF9PKeurCIsTxjHzq7JDw_PU-JQ_XVw-Xv4rbu5vflz9vCycYHwvWtJJ3TiiHTed4W1U1srYSteRooatK5Err1ukOVDbXyNJlSjMJCnnFxSn5sZNdT80KW4d-jHYw69ivbHw2wfbmfcX3CzMPG8MYr1nWzgpfXxVieJwwjWbVJ4fDYD2GKRkBmucjBGT04j90mT_LZ3uZqhnTXMntSnxHuRhSitjtt2FgtjmZXU4m52T-5GS2TV_-9bFveQsmA2IHpFzyc4x_Z38g-wJC8Z5p</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091182762</pqid></control><display><type>article</type><title>Sources of gene expression variation in a globally diverse human cohort</title><source>MEDLINE</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Taylor, Dylan J. ; Chhetri, Surya B. ; Tassia, Michael G. ; Biddanda, Arjun ; Yan, Stephanie M. ; Wojcik, Genevieve L. ; Battle, Alexis ; McCoy, Rajiv C.</creator><creatorcontrib>Taylor, Dylan J. ; Chhetri, Surya B. ; Tassia, Michael G. ; Biddanda, Arjun ; Yan, Stephanie M. ; Wojcik, Genevieve L. ; Battle, Alexis ; McCoy, Rajiv C.</creatorcontrib><description>Genetic variation that influences gene expression and splicing is a key source of phenotypic diversity 1 – 5 . Although invaluable, studies investigating these links in humans have been strongly biased towards participants of European ancestries, which constrains generalizability and hinders evolutionary research. Here to address these limitations, we developed MAGE, an open-access RNA sequencing dataset of lymphoblastoid cell lines from 731 individuals from the 1000 Genomes Project 6 , spread across 5 continental groups and 26 populations. Most variation in gene expression (92%) and splicing (95%) was distributed within versus between populations, which mirrored the variation in DNA sequence. We mapped associations between genetic variants and expression and splicing of nearby genes ( cis -expression quantitative trait loci (eQTLs) and cis -splicing QTLs (sQTLs), respectively). We identified more than 15,000 putatively causal eQTLs and more than 16,000 putatively causal sQTLs that are enriched for relevant epigenomic signatures. These include 1,310 eQTLs and 1,657 sQTLs that are largely private to underrepresented populations. Our data further indicate that the magnitude and direction of causal eQTL effects are highly consistent across populations. Moreover, the apparent ‘population-specific’ effects observed in previous studies were largely driven by low resolution or additional independent eQTLs of the same genes that were not detected. Together, our study expands our understanding of human gene expression diversity and provides an inclusive resource for studying the evolution and function of human genomes. A new open-access RNA sequencing dataset, MAGE, of 731 individuals across geographically diverse human populations provides a valuable resource to study genetic diversity and evolution and expands the capacity to identify new genetic associations.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07708-2</identifier><identifier>PMID: 39020179</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/91 ; 45/43 ; 631/181/457/649 ; 631/208/199 ; 631/208/729/743 ; 631/337/1645/1792 ; Bias ; Cell Line ; Cohort Studies ; Datasets as Topic ; Epigenomics ; Evolution, Molecular ; Evolutionary genetics ; Female ; Gene expression ; Gene Expression Regulation - genetics ; Gene mapping ; Gene sequencing ; Genealogy ; Genes ; Genetic diversity ; Genetic variance ; Genetic Variation ; Genetics, Population ; Genome, Human - genetics ; Genomes ; Genomics ; Humanities and Social Sciences ; Humans ; Inclusion ; Internationality ; Lymphoblastoid cell lines ; Lymphocytes - cytology ; Lymphocytes - metabolism ; Male ; multidisciplinary ; Nucleotide sequence ; Phenotypic variations ; Population genetics ; Population studies ; Populations ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; Racial Groups - genetics ; RNA Splicing - genetics ; Science ; Science (multidisciplinary) ; Sequence Analysis, RNA ; Splicing ; X chromosomes</subject><ispartof>Nature (London), 2024-08, Vol.632 (8023), p.122-130</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Aug 1, 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-1bd62fc37cebfc2d559e1d53962ea0f54e2788dc8f07158b64cc2d81607e2523</cites><orcidid>0000-0002-5485-8155 ; 0000-0002-5287-627X ; 0000-0003-1861-1523 ; 0000-0001-5806-4494 ; 0000-0003-0615-146X ; 0000-0002-6880-465X ; 0000-0001-7206-8088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39020179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, Dylan J.</creatorcontrib><creatorcontrib>Chhetri, Surya B.</creatorcontrib><creatorcontrib>Tassia, Michael G.</creatorcontrib><creatorcontrib>Biddanda, Arjun</creatorcontrib><creatorcontrib>Yan, Stephanie M.</creatorcontrib><creatorcontrib>Wojcik, Genevieve L.</creatorcontrib><creatorcontrib>Battle, Alexis</creatorcontrib><creatorcontrib>McCoy, Rajiv C.</creatorcontrib><title>Sources of gene expression variation in a globally diverse human cohort</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Genetic variation that influences gene expression and splicing is a key source of phenotypic diversity 1 – 5 . Although invaluable, studies investigating these links in humans have been strongly biased towards participants of European ancestries, which constrains generalizability and hinders evolutionary research. Here to address these limitations, we developed MAGE, an open-access RNA sequencing dataset of lymphoblastoid cell lines from 731 individuals from the 1000 Genomes Project 6 , spread across 5 continental groups and 26 populations. Most variation in gene expression (92%) and splicing (95%) was distributed within versus between populations, which mirrored the variation in DNA sequence. We mapped associations between genetic variants and expression and splicing of nearby genes ( cis -expression quantitative trait loci (eQTLs) and cis -splicing QTLs (sQTLs), respectively). We identified more than 15,000 putatively causal eQTLs and more than 16,000 putatively causal sQTLs that are enriched for relevant epigenomic signatures. These include 1,310 eQTLs and 1,657 sQTLs that are largely private to underrepresented populations. Our data further indicate that the magnitude and direction of causal eQTL effects are highly consistent across populations. Moreover, the apparent ‘population-specific’ effects observed in previous studies were largely driven by low resolution or additional independent eQTLs of the same genes that were not detected. Together, our study expands our understanding of human gene expression diversity and provides an inclusive resource for studying the evolution and function of human genomes. A new open-access RNA sequencing dataset, MAGE, of 731 individuals across geographically diverse human populations provides a valuable resource to study genetic diversity and evolution and expands the capacity to identify new genetic associations.</description><subject>38/91</subject><subject>45/43</subject><subject>631/181/457/649</subject><subject>631/208/199</subject><subject>631/208/729/743</subject><subject>631/337/1645/1792</subject><subject>Bias</subject><subject>Cell Line</subject><subject>Cohort Studies</subject><subject>Datasets as Topic</subject><subject>Epigenomics</subject><subject>Evolution, Molecular</subject><subject>Evolutionary genetics</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - genetics</subject><subject>Gene mapping</subject><subject>Gene sequencing</subject><subject>Genealogy</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genetic variance</subject><subject>Genetic Variation</subject><subject>Genetics, Population</subject><subject>Genome, Human - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inclusion</subject><subject>Internationality</subject><subject>Lymphoblastoid cell lines</subject><subject>Lymphocytes - cytology</subject><subject>Lymphocytes - metabolism</subject><subject>Male</subject><subject>multidisciplinary</subject><subject>Nucleotide sequence</subject><subject>Phenotypic variations</subject><subject>Population genetics</subject><subject>Population studies</subject><subject>Populations</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Racial Groups - genetics</subject><subject>RNA Splicing - genetics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sequence Analysis, RNA</subject><subject>Splicing</subject><subject>X chromosomes</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU9P3DAQxS1EBcufL9BDZYlLL2nHdmI7p6pCQCshcYC75TiT3ayy9mInK_j2eLuwLT1wsGxpfvNmnh8hnxl8YyD091SySssCeFmAUqALfkBmrFSyKKVWh2QGwHUBWshjcpLSEgAqpsojcixq4MBUPSM392GKDhMNHZ2jR4pP64gp9cHTjY29Hbev3lNL50No7DA807bfYExIF9PKeurCIsTxjHzq7JDw_PU-JQ_XVw-Xv4rbu5vflz9vCycYHwvWtJJ3TiiHTed4W1U1srYSteRooatK5Err1ukOVDbXyNJlSjMJCnnFxSn5sZNdT80KW4d-jHYw69ivbHw2wfbmfcX3CzMPG8MYr1nWzgpfXxVieJwwjWbVJ4fDYD2GKRkBmucjBGT04j90mT_LZ3uZqhnTXMntSnxHuRhSitjtt2FgtjmZXU4m52T-5GS2TV_-9bFveQsmA2IHpFzyc4x_Z38g-wJC8Z5p</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Taylor, Dylan J.</creator><creator>Chhetri, Surya B.</creator><creator>Tassia, Michael G.</creator><creator>Biddanda, Arjun</creator><creator>Yan, Stephanie M.</creator><creator>Wojcik, Genevieve L.</creator><creator>Battle, Alexis</creator><creator>McCoy, Rajiv C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5485-8155</orcidid><orcidid>https://orcid.org/0000-0002-5287-627X</orcidid><orcidid>https://orcid.org/0000-0003-1861-1523</orcidid><orcidid>https://orcid.org/0000-0001-5806-4494</orcidid><orcidid>https://orcid.org/0000-0003-0615-146X</orcidid><orcidid>https://orcid.org/0000-0002-6880-465X</orcidid><orcidid>https://orcid.org/0000-0001-7206-8088</orcidid></search><sort><creationdate>20240801</creationdate><title>Sources of gene expression variation in a globally diverse human cohort</title><author>Taylor, Dylan J. ; Chhetri, Surya B. ; Tassia, Michael G. ; Biddanda, Arjun ; Yan, Stephanie M. ; Wojcik, Genevieve L. ; Battle, Alexis ; McCoy, Rajiv C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-1bd62fc37cebfc2d559e1d53962ea0f54e2788dc8f07158b64cc2d81607e2523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>38/91</topic><topic>45/43</topic><topic>631/181/457/649</topic><topic>631/208/199</topic><topic>631/208/729/743</topic><topic>631/337/1645/1792</topic><topic>Bias</topic><topic>Cell Line</topic><topic>Cohort Studies</topic><topic>Datasets as Topic</topic><topic>Epigenomics</topic><topic>Evolution, Molecular</topic><topic>Evolutionary genetics</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - genetics</topic><topic>Gene mapping</topic><topic>Gene sequencing</topic><topic>Genealogy</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genetic variance</topic><topic>Genetic Variation</topic><topic>Genetics, Population</topic><topic>Genome, Human - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inclusion</topic><topic>Internationality</topic><topic>Lymphoblastoid cell lines</topic><topic>Lymphocytes - cytology</topic><topic>Lymphocytes - metabolism</topic><topic>Male</topic><topic>multidisciplinary</topic><topic>Nucleotide sequence</topic><topic>Phenotypic variations</topic><topic>Population genetics</topic><topic>Population studies</topic><topic>Populations</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Racial Groups - genetics</topic><topic>RNA Splicing - genetics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sequence Analysis, RNA</topic><topic>Splicing</topic><topic>X chromosomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Dylan J.</creatorcontrib><creatorcontrib>Chhetri, Surya B.</creatorcontrib><creatorcontrib>Tassia, Michael G.</creatorcontrib><creatorcontrib>Biddanda, Arjun</creatorcontrib><creatorcontrib>Yan, Stephanie M.</creatorcontrib><creatorcontrib>Wojcik, Genevieve L.</creatorcontrib><creatorcontrib>Battle, Alexis</creatorcontrib><creatorcontrib>McCoy, Rajiv C.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Dylan J.</au><au>Chhetri, Surya B.</au><au>Tassia, Michael G.</au><au>Biddanda, Arjun</au><au>Yan, Stephanie M.</au><au>Wojcik, Genevieve L.</au><au>Battle, Alexis</au><au>McCoy, Rajiv C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sources of gene expression variation in a globally diverse human cohort</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>632</volume><issue>8023</issue><spage>122</spage><epage>130</epage><pages>122-130</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Genetic variation that influences gene expression and splicing is a key source of phenotypic diversity 1 – 5 . Although invaluable, studies investigating these links in humans have been strongly biased towards participants of European ancestries, which constrains generalizability and hinders evolutionary research. Here to address these limitations, we developed MAGE, an open-access RNA sequencing dataset of lymphoblastoid cell lines from 731 individuals from the 1000 Genomes Project 6 , spread across 5 continental groups and 26 populations. Most variation in gene expression (92%) and splicing (95%) was distributed within versus between populations, which mirrored the variation in DNA sequence. We mapped associations between genetic variants and expression and splicing of nearby genes ( cis -expression quantitative trait loci (eQTLs) and cis -splicing QTLs (sQTLs), respectively). We identified more than 15,000 putatively causal eQTLs and more than 16,000 putatively causal sQTLs that are enriched for relevant epigenomic signatures. These include 1,310 eQTLs and 1,657 sQTLs that are largely private to underrepresented populations. Our data further indicate that the magnitude and direction of causal eQTL effects are highly consistent across populations. Moreover, the apparent ‘population-specific’ effects observed in previous studies were largely driven by low resolution or additional independent eQTLs of the same genes that were not detected. Together, our study expands our understanding of human gene expression diversity and provides an inclusive resource for studying the evolution and function of human genomes. A new open-access RNA sequencing dataset, MAGE, of 731 individuals across geographically diverse human populations provides a valuable resource to study genetic diversity and evolution and expands the capacity to identify new genetic associations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39020179</pmid><doi>10.1038/s41586-024-07708-2</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5485-8155</orcidid><orcidid>https://orcid.org/0000-0002-5287-627X</orcidid><orcidid>https://orcid.org/0000-0003-1861-1523</orcidid><orcidid>https://orcid.org/0000-0001-5806-4494</orcidid><orcidid>https://orcid.org/0000-0003-0615-146X</orcidid><orcidid>https://orcid.org/0000-0002-6880-465X</orcidid><orcidid>https://orcid.org/0000-0001-7206-8088</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-08, Vol.632 (8023), p.122-130
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11291278
source MEDLINE; Nature Journals Online; Alma/SFX Local Collection
subjects 38/91
45/43
631/181/457/649
631/208/199
631/208/729/743
631/337/1645/1792
Bias
Cell Line
Cohort Studies
Datasets as Topic
Epigenomics
Evolution, Molecular
Evolutionary genetics
Female
Gene expression
Gene Expression Regulation - genetics
Gene mapping
Gene sequencing
Genealogy
Genes
Genetic diversity
Genetic variance
Genetic Variation
Genetics, Population
Genome, Human - genetics
Genomes
Genomics
Humanities and Social Sciences
Humans
Inclusion
Internationality
Lymphoblastoid cell lines
Lymphocytes - cytology
Lymphocytes - metabolism
Male
multidisciplinary
Nucleotide sequence
Phenotypic variations
Population genetics
Population studies
Populations
Quantitative trait loci
Quantitative Trait Loci - genetics
Racial Groups - genetics
RNA Splicing - genetics
Science
Science (multidisciplinary)
Sequence Analysis, RNA
Splicing
X chromosomes
title Sources of gene expression variation in a globally diverse human cohort
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sources%20of%20gene%20expression%20variation%20in%20a%20globally%20diverse%20human%20cohort&rft.jtitle=Nature%20(London)&rft.au=Taylor,%20Dylan%20J.&rft.date=2024-08-01&rft.volume=632&rft.issue=8023&rft.spage=122&rft.epage=130&rft.pages=122-130&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07708-2&rft_dat=%3Cproquest_pubme%3E3091182762%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091182762&rft_id=info:pmid/39020179&rfr_iscdi=true