Association of Retinal Biomarkers With the Subtypes of Ischemic Stroke and an Automated Classification Model
Retinal microvascular changes are associated with ischemic stroke, and optical coherence tomography angiography (OCTA) is a potential tool to reveal the retinal microvasculature. We investigated the feasibility of using the OCTA image to automatically identify ischemic stroke and its subtypes (i.e....
Gespeichert in:
Veröffentlicht in: | Investigative ophthalmology & visual science 2024-07, Vol.65 (8), p.50 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 50 |
container_title | Investigative ophthalmology & visual science |
container_volume | 65 |
creator | Xiong, Zhouwei Kwapong, William R Liu, Shouyue Chen, Tao Xu, Keyi Mao, Haiting Hao, Jinkui Cao, Le Liu, Jiang Zheng, Yalin Wang, Hang Yan, Yuying Ye, Chen Wu, Bo Qi, Hong Zhao, Yitian |
description | Retinal microvascular changes are associated with ischemic stroke, and optical coherence tomography angiography (OCTA) is a potential tool to reveal the retinal microvasculature. We investigated the feasibility of using the OCTA image to automatically identify ischemic stroke and its subtypes (i.e. lacunar and non-lacunar stroke), and exploited the association of retinal biomarkers with the subtypes of ischemic stroke.
Two cohorts were included in this study and a total of 1730 eyes from 865 participants were studied. A deep learning model was developed to discriminate the subjects with ischemic stroke from healthy controls and to distinguish the subtypes of ischemic stroke. We also extracted geometric parameters of the retinal microvasculature at different retinal layers to investigate the correlations.
Superficial vascular plexus (SVP) yielded the highest areas under the receiver operating characteristic curve (AUCs) of 0.922 and 0.871 for the ischemic stroke detection and stroke subtypes classification, respectively. For external data validation, our model achieved an AUC of 0.822 and 0.766 for the ischemic stroke detection and stroke subtypes classification, respectively. When parameterizing the OCTA images, we showed individuals with ischemic strokes had increased SVP tortuosity (B = 0.085, 95% confidence interval [CI] = 0.005-0.166, P = 0.038) and reduced FAZ circularity (B = -0.212, 95% CI = -0.42 to -0.005, P = 0.045); non-lacunar stroke had reduced SVP FAZ circularity (P = 0.027) compared to lacunar stroke.
Our study demonstrates the applicability of artificial intelligence (AI)-enhanced OCTA image analysis for ischemic stroke detection and its subtypes classification. Biomarkers from retinal OCTA images can provide useful information for clinical decision-making and diagnosis of ischemic stroke and its subtypes. |
doi_str_mv | 10.1167/iovs.65.8.50 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11290563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086387240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-93fbf6dafc053cabc19fdcdc07e6177c9c30020913318ad8ed8fcb62e3cbadc93</originalsourceid><addsrcrecordid>eNpVkctLAzEQxoMo1tfNs-TowdZkY3azJ6nFFyiCDzyG7GRio9tN3WSF_vduqRY9DBnIL9_Ml4-QQ85GnOfFqQ9fcZTLkRpJtkF2uJTZUBZKbP7pB2Q3xnfGMs4ztk0GomRKCM52SD2OMYA3yYeGBkcfMfnG1PTCh5lpP7CN9NWnKU1TpE9dlRZzjEvuNsIUZx7oU2rDB1LT2L7ouEv9u4SWTmoTo3ceVtL3wWK9T7acqSMe_Jx75OXq8nlyM7x7uL6djO-GkBVZGpbCVS63xgGTAkwFvHQWLLACc14UUILorbCS9xaUsQqtclDlGQqojIVS7JHzle68q2ZoAZvUmlrPW997WuhgvP5_0_ipfgtfuv-ekslc9ArHPwpt-OwwJj3zEbCuTYOhi1owlQtVZGesR09WKLQhxhbdeg5nepmQXiakc6mVlkv86O9ua_g3EvENesaQjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086387240</pqid></control><display><type>article</type><title>Association of Retinal Biomarkers With the Subtypes of Ischemic Stroke and an Automated Classification Model</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Xiong, Zhouwei ; Kwapong, William R ; Liu, Shouyue ; Chen, Tao ; Xu, Keyi ; Mao, Haiting ; Hao, Jinkui ; Cao, Le ; Liu, Jiang ; Zheng, Yalin ; Wang, Hang ; Yan, Yuying ; Ye, Chen ; Wu, Bo ; Qi, Hong ; Zhao, Yitian</creator><creatorcontrib>Xiong, Zhouwei ; Kwapong, William R ; Liu, Shouyue ; Chen, Tao ; Xu, Keyi ; Mao, Haiting ; Hao, Jinkui ; Cao, Le ; Liu, Jiang ; Zheng, Yalin ; Wang, Hang ; Yan, Yuying ; Ye, Chen ; Wu, Bo ; Qi, Hong ; Zhao, Yitian</creatorcontrib><description>Retinal microvascular changes are associated with ischemic stroke, and optical coherence tomography angiography (OCTA) is a potential tool to reveal the retinal microvasculature. We investigated the feasibility of using the OCTA image to automatically identify ischemic stroke and its subtypes (i.e. lacunar and non-lacunar stroke), and exploited the association of retinal biomarkers with the subtypes of ischemic stroke.
Two cohorts were included in this study and a total of 1730 eyes from 865 participants were studied. A deep learning model was developed to discriminate the subjects with ischemic stroke from healthy controls and to distinguish the subtypes of ischemic stroke. We also extracted geometric parameters of the retinal microvasculature at different retinal layers to investigate the correlations.
Superficial vascular plexus (SVP) yielded the highest areas under the receiver operating characteristic curve (AUCs) of 0.922 and 0.871 for the ischemic stroke detection and stroke subtypes classification, respectively. For external data validation, our model achieved an AUC of 0.822 and 0.766 for the ischemic stroke detection and stroke subtypes classification, respectively. When parameterizing the OCTA images, we showed individuals with ischemic strokes had increased SVP tortuosity (B = 0.085, 95% confidence interval [CI] = 0.005-0.166, P = 0.038) and reduced FAZ circularity (B = -0.212, 95% CI = -0.42 to -0.005, P = 0.045); non-lacunar stroke had reduced SVP FAZ circularity (P = 0.027) compared to lacunar stroke.
Our study demonstrates the applicability of artificial intelligence (AI)-enhanced OCTA image analysis for ischemic stroke detection and its subtypes classification. Biomarkers from retinal OCTA images can provide useful information for clinical decision-making and diagnosis of ischemic stroke and its subtypes.</description><identifier>ISSN: 1552-5783</identifier><identifier>ISSN: 0146-0404</identifier><identifier>EISSN: 1552-5783</identifier><identifier>DOI: 10.1167/iovs.65.8.50</identifier><identifier>PMID: 39083310</identifier><language>eng</language><publisher>United States: The Association for Research in Vision and Ophthalmology</publisher><subject>Aged ; Biomarkers - metabolism ; Deep Learning ; Eye Movements, Strabismus, Amblyopia and Neuro-Ophthalmology ; Female ; Fluorescein Angiography - methods ; Fundus Oculi ; Humans ; Ischemic Stroke - classification ; Ischemic Stroke - diagnosis ; Ischemic Stroke - diagnostic imaging ; Male ; Middle Aged ; Retinal Vessels - diagnostic imaging ; Retinal Vessels - pathology ; ROC Curve ; Tomography, Optical Coherence - methods</subject><ispartof>Investigative ophthalmology & visual science, 2024-07, Vol.65 (8), p.50</ispartof><rights>Copyright 2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c272t-93fbf6dafc053cabc19fdcdc07e6177c9c30020913318ad8ed8fcb62e3cbadc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290563/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290563/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39083310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiong, Zhouwei</creatorcontrib><creatorcontrib>Kwapong, William R</creatorcontrib><creatorcontrib>Liu, Shouyue</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Xu, Keyi</creatorcontrib><creatorcontrib>Mao, Haiting</creatorcontrib><creatorcontrib>Hao, Jinkui</creatorcontrib><creatorcontrib>Cao, Le</creatorcontrib><creatorcontrib>Liu, Jiang</creatorcontrib><creatorcontrib>Zheng, Yalin</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Yan, Yuying</creatorcontrib><creatorcontrib>Ye, Chen</creatorcontrib><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Qi, Hong</creatorcontrib><creatorcontrib>Zhao, Yitian</creatorcontrib><title>Association of Retinal Biomarkers With the Subtypes of Ischemic Stroke and an Automated Classification Model</title><title>Investigative ophthalmology & visual science</title><addtitle>Invest Ophthalmol Vis Sci</addtitle><description>Retinal microvascular changes are associated with ischemic stroke, and optical coherence tomography angiography (OCTA) is a potential tool to reveal the retinal microvasculature. We investigated the feasibility of using the OCTA image to automatically identify ischemic stroke and its subtypes (i.e. lacunar and non-lacunar stroke), and exploited the association of retinal biomarkers with the subtypes of ischemic stroke.
Two cohorts were included in this study and a total of 1730 eyes from 865 participants were studied. A deep learning model was developed to discriminate the subjects with ischemic stroke from healthy controls and to distinguish the subtypes of ischemic stroke. We also extracted geometric parameters of the retinal microvasculature at different retinal layers to investigate the correlations.
Superficial vascular plexus (SVP) yielded the highest areas under the receiver operating characteristic curve (AUCs) of 0.922 and 0.871 for the ischemic stroke detection and stroke subtypes classification, respectively. For external data validation, our model achieved an AUC of 0.822 and 0.766 for the ischemic stroke detection and stroke subtypes classification, respectively. When parameterizing the OCTA images, we showed individuals with ischemic strokes had increased SVP tortuosity (B = 0.085, 95% confidence interval [CI] = 0.005-0.166, P = 0.038) and reduced FAZ circularity (B = -0.212, 95% CI = -0.42 to -0.005, P = 0.045); non-lacunar stroke had reduced SVP FAZ circularity (P = 0.027) compared to lacunar stroke.
Our study demonstrates the applicability of artificial intelligence (AI)-enhanced OCTA image analysis for ischemic stroke detection and its subtypes classification. Biomarkers from retinal OCTA images can provide useful information for clinical decision-making and diagnosis of ischemic stroke and its subtypes.</description><subject>Aged</subject><subject>Biomarkers - metabolism</subject><subject>Deep Learning</subject><subject>Eye Movements, Strabismus, Amblyopia and Neuro-Ophthalmology</subject><subject>Female</subject><subject>Fluorescein Angiography - methods</subject><subject>Fundus Oculi</subject><subject>Humans</subject><subject>Ischemic Stroke - classification</subject><subject>Ischemic Stroke - diagnosis</subject><subject>Ischemic Stroke - diagnostic imaging</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Retinal Vessels - diagnostic imaging</subject><subject>Retinal Vessels - pathology</subject><subject>ROC Curve</subject><subject>Tomography, Optical Coherence - methods</subject><issn>1552-5783</issn><issn>0146-0404</issn><issn>1552-5783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctLAzEQxoMo1tfNs-TowdZkY3azJ6nFFyiCDzyG7GRio9tN3WSF_vduqRY9DBnIL9_Ml4-QQ85GnOfFqQ9fcZTLkRpJtkF2uJTZUBZKbP7pB2Q3xnfGMs4ztk0GomRKCM52SD2OMYA3yYeGBkcfMfnG1PTCh5lpP7CN9NWnKU1TpE9dlRZzjEvuNsIUZx7oU2rDB1LT2L7ouEv9u4SWTmoTo3ceVtL3wWK9T7acqSMe_Jx75OXq8nlyM7x7uL6djO-GkBVZGpbCVS63xgGTAkwFvHQWLLACc14UUILorbCS9xaUsQqtclDlGQqojIVS7JHzle68q2ZoAZvUmlrPW997WuhgvP5_0_ipfgtfuv-ekslc9ArHPwpt-OwwJj3zEbCuTYOhi1owlQtVZGesR09WKLQhxhbdeg5nepmQXiakc6mVlkv86O9ua_g3EvENesaQjg</recordid><startdate>20240731</startdate><enddate>20240731</enddate><creator>Xiong, Zhouwei</creator><creator>Kwapong, William R</creator><creator>Liu, Shouyue</creator><creator>Chen, Tao</creator><creator>Xu, Keyi</creator><creator>Mao, Haiting</creator><creator>Hao, Jinkui</creator><creator>Cao, Le</creator><creator>Liu, Jiang</creator><creator>Zheng, Yalin</creator><creator>Wang, Hang</creator><creator>Yan, Yuying</creator><creator>Ye, Chen</creator><creator>Wu, Bo</creator><creator>Qi, Hong</creator><creator>Zhao, Yitian</creator><general>The Association for Research in Vision and Ophthalmology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240731</creationdate><title>Association of Retinal Biomarkers With the Subtypes of Ischemic Stroke and an Automated Classification Model</title><author>Xiong, Zhouwei ; Kwapong, William R ; Liu, Shouyue ; Chen, Tao ; Xu, Keyi ; Mao, Haiting ; Hao, Jinkui ; Cao, Le ; Liu, Jiang ; Zheng, Yalin ; Wang, Hang ; Yan, Yuying ; Ye, Chen ; Wu, Bo ; Qi, Hong ; Zhao, Yitian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-93fbf6dafc053cabc19fdcdc07e6177c9c30020913318ad8ed8fcb62e3cbadc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Biomarkers - metabolism</topic><topic>Deep Learning</topic><topic>Eye Movements, Strabismus, Amblyopia and Neuro-Ophthalmology</topic><topic>Female</topic><topic>Fluorescein Angiography - methods</topic><topic>Fundus Oculi</topic><topic>Humans</topic><topic>Ischemic Stroke - classification</topic><topic>Ischemic Stroke - diagnosis</topic><topic>Ischemic Stroke - diagnostic imaging</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Retinal Vessels - diagnostic imaging</topic><topic>Retinal Vessels - pathology</topic><topic>ROC Curve</topic><topic>Tomography, Optical Coherence - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Zhouwei</creatorcontrib><creatorcontrib>Kwapong, William R</creatorcontrib><creatorcontrib>Liu, Shouyue</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Xu, Keyi</creatorcontrib><creatorcontrib>Mao, Haiting</creatorcontrib><creatorcontrib>Hao, Jinkui</creatorcontrib><creatorcontrib>Cao, Le</creatorcontrib><creatorcontrib>Liu, Jiang</creatorcontrib><creatorcontrib>Zheng, Yalin</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Yan, Yuying</creatorcontrib><creatorcontrib>Ye, Chen</creatorcontrib><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Qi, Hong</creatorcontrib><creatorcontrib>Zhao, Yitian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Investigative ophthalmology & visual science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Zhouwei</au><au>Kwapong, William R</au><au>Liu, Shouyue</au><au>Chen, Tao</au><au>Xu, Keyi</au><au>Mao, Haiting</au><au>Hao, Jinkui</au><au>Cao, Le</au><au>Liu, Jiang</au><au>Zheng, Yalin</au><au>Wang, Hang</au><au>Yan, Yuying</au><au>Ye, Chen</au><au>Wu, Bo</au><au>Qi, Hong</au><au>Zhao, Yitian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Association of Retinal Biomarkers With the Subtypes of Ischemic Stroke and an Automated Classification Model</atitle><jtitle>Investigative ophthalmology & visual science</jtitle><addtitle>Invest Ophthalmol Vis Sci</addtitle><date>2024-07-31</date><risdate>2024</risdate><volume>65</volume><issue>8</issue><spage>50</spage><pages>50-</pages><issn>1552-5783</issn><issn>0146-0404</issn><eissn>1552-5783</eissn><abstract>Retinal microvascular changes are associated with ischemic stroke, and optical coherence tomography angiography (OCTA) is a potential tool to reveal the retinal microvasculature. We investigated the feasibility of using the OCTA image to automatically identify ischemic stroke and its subtypes (i.e. lacunar and non-lacunar stroke), and exploited the association of retinal biomarkers with the subtypes of ischemic stroke.
Two cohorts were included in this study and a total of 1730 eyes from 865 participants were studied. A deep learning model was developed to discriminate the subjects with ischemic stroke from healthy controls and to distinguish the subtypes of ischemic stroke. We also extracted geometric parameters of the retinal microvasculature at different retinal layers to investigate the correlations.
Superficial vascular plexus (SVP) yielded the highest areas under the receiver operating characteristic curve (AUCs) of 0.922 and 0.871 for the ischemic stroke detection and stroke subtypes classification, respectively. For external data validation, our model achieved an AUC of 0.822 and 0.766 for the ischemic stroke detection and stroke subtypes classification, respectively. When parameterizing the OCTA images, we showed individuals with ischemic strokes had increased SVP tortuosity (B = 0.085, 95% confidence interval [CI] = 0.005-0.166, P = 0.038) and reduced FAZ circularity (B = -0.212, 95% CI = -0.42 to -0.005, P = 0.045); non-lacunar stroke had reduced SVP FAZ circularity (P = 0.027) compared to lacunar stroke.
Our study demonstrates the applicability of artificial intelligence (AI)-enhanced OCTA image analysis for ischemic stroke detection and its subtypes classification. Biomarkers from retinal OCTA images can provide useful information for clinical decision-making and diagnosis of ischemic stroke and its subtypes.</abstract><cop>United States</cop><pub>The Association for Research in Vision and Ophthalmology</pub><pmid>39083310</pmid><doi>10.1167/iovs.65.8.50</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-5783 |
ispartof | Investigative ophthalmology & visual science, 2024-07, Vol.65 (8), p.50 |
issn | 1552-5783 0146-0404 1552-5783 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11290563 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Aged Biomarkers - metabolism Deep Learning Eye Movements, Strabismus, Amblyopia and Neuro-Ophthalmology Female Fluorescein Angiography - methods Fundus Oculi Humans Ischemic Stroke - classification Ischemic Stroke - diagnosis Ischemic Stroke - diagnostic imaging Male Middle Aged Retinal Vessels - diagnostic imaging Retinal Vessels - pathology ROC Curve Tomography, Optical Coherence - methods |
title | Association of Retinal Biomarkers With the Subtypes of Ischemic Stroke and an Automated Classification Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Association%20of%20Retinal%20Biomarkers%20With%20the%20Subtypes%20of%20Ischemic%20Stroke%20and%20an%20Automated%20Classification%20Model&rft.jtitle=Investigative%20ophthalmology%20&%20visual%20science&rft.au=Xiong,%20Zhouwei&rft.date=2024-07-31&rft.volume=65&rft.issue=8&rft.spage=50&rft.pages=50-&rft.issn=1552-5783&rft.eissn=1552-5783&rft_id=info:doi/10.1167/iovs.65.8.50&rft_dat=%3Cproquest_pubme%3E3086387240%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086387240&rft_id=info:pmid/39083310&rfr_iscdi=true |