Association of Retinal Biomarkers With the Subtypes of Ischemic Stroke and an Automated Classification Model

Retinal microvascular changes are associated with ischemic stroke, and optical coherence tomography angiography (OCTA) is a potential tool to reveal the retinal microvasculature. We investigated the feasibility of using the OCTA image to automatically identify ischemic stroke and its subtypes (i.e....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Investigative ophthalmology & visual science 2024-07, Vol.65 (8), p.50
Hauptverfasser: Xiong, Zhouwei, Kwapong, William R, Liu, Shouyue, Chen, Tao, Xu, Keyi, Mao, Haiting, Hao, Jinkui, Cao, Le, Liu, Jiang, Zheng, Yalin, Wang, Hang, Yan, Yuying, Ye, Chen, Wu, Bo, Qi, Hong, Zhao, Yitian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 50
container_title Investigative ophthalmology & visual science
container_volume 65
creator Xiong, Zhouwei
Kwapong, William R
Liu, Shouyue
Chen, Tao
Xu, Keyi
Mao, Haiting
Hao, Jinkui
Cao, Le
Liu, Jiang
Zheng, Yalin
Wang, Hang
Yan, Yuying
Ye, Chen
Wu, Bo
Qi, Hong
Zhao, Yitian
description Retinal microvascular changes are associated with ischemic stroke, and optical coherence tomography angiography (OCTA) is a potential tool to reveal the retinal microvasculature. We investigated the feasibility of using the OCTA image to automatically identify ischemic stroke and its subtypes (i.e. lacunar and non-lacunar stroke), and exploited the association of retinal biomarkers with the subtypes of ischemic stroke. Two cohorts were included in this study and a total of 1730 eyes from 865 participants were studied. A deep learning model was developed to discriminate the subjects with ischemic stroke from healthy controls and to distinguish the subtypes of ischemic stroke. We also extracted geometric parameters of the retinal microvasculature at different retinal layers to investigate the correlations. Superficial vascular plexus (SVP) yielded the highest areas under the receiver operating characteristic curve (AUCs) of 0.922 and 0.871 for the ischemic stroke detection and stroke subtypes classification, respectively. For external data validation, our model achieved an AUC of 0.822 and 0.766 for the ischemic stroke detection and stroke subtypes classification, respectively. When parameterizing the OCTA images, we showed individuals with ischemic strokes had increased SVP tortuosity (B = 0.085, 95% confidence interval [CI] = 0.005-0.166, P = 0.038) and reduced FAZ circularity (B = -0.212, 95% CI = -0.42 to -0.005, P = 0.045); non-lacunar stroke had reduced SVP FAZ circularity (P = 0.027) compared to lacunar stroke. Our study demonstrates the applicability of artificial intelligence (AI)-enhanced OCTA image analysis for ischemic stroke detection and its subtypes classification. Biomarkers from retinal OCTA images can provide useful information for clinical decision-making and diagnosis of ischemic stroke and its subtypes.
doi_str_mv 10.1167/iovs.65.8.50
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11290563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086387240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-93fbf6dafc053cabc19fdcdc07e6177c9c30020913318ad8ed8fcb62e3cbadc93</originalsourceid><addsrcrecordid>eNpVkctLAzEQxoMo1tfNs-TowdZkY3azJ6nFFyiCDzyG7GRio9tN3WSF_vduqRY9DBnIL9_Ml4-QQ85GnOfFqQ9fcZTLkRpJtkF2uJTZUBZKbP7pB2Q3xnfGMs4ztk0GomRKCM52SD2OMYA3yYeGBkcfMfnG1PTCh5lpP7CN9NWnKU1TpE9dlRZzjEvuNsIUZx7oU2rDB1LT2L7ouEv9u4SWTmoTo3ceVtL3wWK9T7acqSMe_Jx75OXq8nlyM7x7uL6djO-GkBVZGpbCVS63xgGTAkwFvHQWLLACc14UUILorbCS9xaUsQqtclDlGQqojIVS7JHzle68q2ZoAZvUmlrPW997WuhgvP5_0_ipfgtfuv-ekslc9ArHPwpt-OwwJj3zEbCuTYOhi1owlQtVZGesR09WKLQhxhbdeg5nepmQXiakc6mVlkv86O9ua_g3EvENesaQjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086387240</pqid></control><display><type>article</type><title>Association of Retinal Biomarkers With the Subtypes of Ischemic Stroke and an Automated Classification Model</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Xiong, Zhouwei ; Kwapong, William R ; Liu, Shouyue ; Chen, Tao ; Xu, Keyi ; Mao, Haiting ; Hao, Jinkui ; Cao, Le ; Liu, Jiang ; Zheng, Yalin ; Wang, Hang ; Yan, Yuying ; Ye, Chen ; Wu, Bo ; Qi, Hong ; Zhao, Yitian</creator><creatorcontrib>Xiong, Zhouwei ; Kwapong, William R ; Liu, Shouyue ; Chen, Tao ; Xu, Keyi ; Mao, Haiting ; Hao, Jinkui ; Cao, Le ; Liu, Jiang ; Zheng, Yalin ; Wang, Hang ; Yan, Yuying ; Ye, Chen ; Wu, Bo ; Qi, Hong ; Zhao, Yitian</creatorcontrib><description>Retinal microvascular changes are associated with ischemic stroke, and optical coherence tomography angiography (OCTA) is a potential tool to reveal the retinal microvasculature. We investigated the feasibility of using the OCTA image to automatically identify ischemic stroke and its subtypes (i.e. lacunar and non-lacunar stroke), and exploited the association of retinal biomarkers with the subtypes of ischemic stroke. Two cohorts were included in this study and a total of 1730 eyes from 865 participants were studied. A deep learning model was developed to discriminate the subjects with ischemic stroke from healthy controls and to distinguish the subtypes of ischemic stroke. We also extracted geometric parameters of the retinal microvasculature at different retinal layers to investigate the correlations. Superficial vascular plexus (SVP) yielded the highest areas under the receiver operating characteristic curve (AUCs) of 0.922 and 0.871 for the ischemic stroke detection and stroke subtypes classification, respectively. For external data validation, our model achieved an AUC of 0.822 and 0.766 for the ischemic stroke detection and stroke subtypes classification, respectively. When parameterizing the OCTA images, we showed individuals with ischemic strokes had increased SVP tortuosity (B = 0.085, 95% confidence interval [CI] = 0.005-0.166, P = 0.038) and reduced FAZ circularity (B = -0.212, 95% CI = -0.42 to -0.005, P = 0.045); non-lacunar stroke had reduced SVP FAZ circularity (P = 0.027) compared to lacunar stroke. Our study demonstrates the applicability of artificial intelligence (AI)-enhanced OCTA image analysis for ischemic stroke detection and its subtypes classification. Biomarkers from retinal OCTA images can provide useful information for clinical decision-making and diagnosis of ischemic stroke and its subtypes.</description><identifier>ISSN: 1552-5783</identifier><identifier>ISSN: 0146-0404</identifier><identifier>EISSN: 1552-5783</identifier><identifier>DOI: 10.1167/iovs.65.8.50</identifier><identifier>PMID: 39083310</identifier><language>eng</language><publisher>United States: The Association for Research in Vision and Ophthalmology</publisher><subject>Aged ; Biomarkers - metabolism ; Deep Learning ; Eye Movements, Strabismus, Amblyopia and Neuro-Ophthalmology ; Female ; Fluorescein Angiography - methods ; Fundus Oculi ; Humans ; Ischemic Stroke - classification ; Ischemic Stroke - diagnosis ; Ischemic Stroke - diagnostic imaging ; Male ; Middle Aged ; Retinal Vessels - diagnostic imaging ; Retinal Vessels - pathology ; ROC Curve ; Tomography, Optical Coherence - methods</subject><ispartof>Investigative ophthalmology &amp; visual science, 2024-07, Vol.65 (8), p.50</ispartof><rights>Copyright 2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c272t-93fbf6dafc053cabc19fdcdc07e6177c9c30020913318ad8ed8fcb62e3cbadc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290563/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290563/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39083310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiong, Zhouwei</creatorcontrib><creatorcontrib>Kwapong, William R</creatorcontrib><creatorcontrib>Liu, Shouyue</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Xu, Keyi</creatorcontrib><creatorcontrib>Mao, Haiting</creatorcontrib><creatorcontrib>Hao, Jinkui</creatorcontrib><creatorcontrib>Cao, Le</creatorcontrib><creatorcontrib>Liu, Jiang</creatorcontrib><creatorcontrib>Zheng, Yalin</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Yan, Yuying</creatorcontrib><creatorcontrib>Ye, Chen</creatorcontrib><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Qi, Hong</creatorcontrib><creatorcontrib>Zhao, Yitian</creatorcontrib><title>Association of Retinal Biomarkers With the Subtypes of Ischemic Stroke and an Automated Classification Model</title><title>Investigative ophthalmology &amp; visual science</title><addtitle>Invest Ophthalmol Vis Sci</addtitle><description>Retinal microvascular changes are associated with ischemic stroke, and optical coherence tomography angiography (OCTA) is a potential tool to reveal the retinal microvasculature. We investigated the feasibility of using the OCTA image to automatically identify ischemic stroke and its subtypes (i.e. lacunar and non-lacunar stroke), and exploited the association of retinal biomarkers with the subtypes of ischemic stroke. Two cohorts were included in this study and a total of 1730 eyes from 865 participants were studied. A deep learning model was developed to discriminate the subjects with ischemic stroke from healthy controls and to distinguish the subtypes of ischemic stroke. We also extracted geometric parameters of the retinal microvasculature at different retinal layers to investigate the correlations. Superficial vascular plexus (SVP) yielded the highest areas under the receiver operating characteristic curve (AUCs) of 0.922 and 0.871 for the ischemic stroke detection and stroke subtypes classification, respectively. For external data validation, our model achieved an AUC of 0.822 and 0.766 for the ischemic stroke detection and stroke subtypes classification, respectively. When parameterizing the OCTA images, we showed individuals with ischemic strokes had increased SVP tortuosity (B = 0.085, 95% confidence interval [CI] = 0.005-0.166, P = 0.038) and reduced FAZ circularity (B = -0.212, 95% CI = -0.42 to -0.005, P = 0.045); non-lacunar stroke had reduced SVP FAZ circularity (P = 0.027) compared to lacunar stroke. Our study demonstrates the applicability of artificial intelligence (AI)-enhanced OCTA image analysis for ischemic stroke detection and its subtypes classification. Biomarkers from retinal OCTA images can provide useful information for clinical decision-making and diagnosis of ischemic stroke and its subtypes.</description><subject>Aged</subject><subject>Biomarkers - metabolism</subject><subject>Deep Learning</subject><subject>Eye Movements, Strabismus, Amblyopia and Neuro-Ophthalmology</subject><subject>Female</subject><subject>Fluorescein Angiography - methods</subject><subject>Fundus Oculi</subject><subject>Humans</subject><subject>Ischemic Stroke - classification</subject><subject>Ischemic Stroke - diagnosis</subject><subject>Ischemic Stroke - diagnostic imaging</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Retinal Vessels - diagnostic imaging</subject><subject>Retinal Vessels - pathology</subject><subject>ROC Curve</subject><subject>Tomography, Optical Coherence - methods</subject><issn>1552-5783</issn><issn>0146-0404</issn><issn>1552-5783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctLAzEQxoMo1tfNs-TowdZkY3azJ6nFFyiCDzyG7GRio9tN3WSF_vduqRY9DBnIL9_Ml4-QQ85GnOfFqQ9fcZTLkRpJtkF2uJTZUBZKbP7pB2Q3xnfGMs4ztk0GomRKCM52SD2OMYA3yYeGBkcfMfnG1PTCh5lpP7CN9NWnKU1TpE9dlRZzjEvuNsIUZx7oU2rDB1LT2L7ouEv9u4SWTmoTo3ceVtL3wWK9T7acqSMe_Jx75OXq8nlyM7x7uL6djO-GkBVZGpbCVS63xgGTAkwFvHQWLLACc14UUILorbCS9xaUsQqtclDlGQqojIVS7JHzle68q2ZoAZvUmlrPW997WuhgvP5_0_ipfgtfuv-ekslc9ArHPwpt-OwwJj3zEbCuTYOhi1owlQtVZGesR09WKLQhxhbdeg5nepmQXiakc6mVlkv86O9ua_g3EvENesaQjg</recordid><startdate>20240731</startdate><enddate>20240731</enddate><creator>Xiong, Zhouwei</creator><creator>Kwapong, William R</creator><creator>Liu, Shouyue</creator><creator>Chen, Tao</creator><creator>Xu, Keyi</creator><creator>Mao, Haiting</creator><creator>Hao, Jinkui</creator><creator>Cao, Le</creator><creator>Liu, Jiang</creator><creator>Zheng, Yalin</creator><creator>Wang, Hang</creator><creator>Yan, Yuying</creator><creator>Ye, Chen</creator><creator>Wu, Bo</creator><creator>Qi, Hong</creator><creator>Zhao, Yitian</creator><general>The Association for Research in Vision and Ophthalmology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240731</creationdate><title>Association of Retinal Biomarkers With the Subtypes of Ischemic Stroke and an Automated Classification Model</title><author>Xiong, Zhouwei ; Kwapong, William R ; Liu, Shouyue ; Chen, Tao ; Xu, Keyi ; Mao, Haiting ; Hao, Jinkui ; Cao, Le ; Liu, Jiang ; Zheng, Yalin ; Wang, Hang ; Yan, Yuying ; Ye, Chen ; Wu, Bo ; Qi, Hong ; Zhao, Yitian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-93fbf6dafc053cabc19fdcdc07e6177c9c30020913318ad8ed8fcb62e3cbadc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Biomarkers - metabolism</topic><topic>Deep Learning</topic><topic>Eye Movements, Strabismus, Amblyopia and Neuro-Ophthalmology</topic><topic>Female</topic><topic>Fluorescein Angiography - methods</topic><topic>Fundus Oculi</topic><topic>Humans</topic><topic>Ischemic Stroke - classification</topic><topic>Ischemic Stroke - diagnosis</topic><topic>Ischemic Stroke - diagnostic imaging</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Retinal Vessels - diagnostic imaging</topic><topic>Retinal Vessels - pathology</topic><topic>ROC Curve</topic><topic>Tomography, Optical Coherence - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Zhouwei</creatorcontrib><creatorcontrib>Kwapong, William R</creatorcontrib><creatorcontrib>Liu, Shouyue</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Xu, Keyi</creatorcontrib><creatorcontrib>Mao, Haiting</creatorcontrib><creatorcontrib>Hao, Jinkui</creatorcontrib><creatorcontrib>Cao, Le</creatorcontrib><creatorcontrib>Liu, Jiang</creatorcontrib><creatorcontrib>Zheng, Yalin</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Yan, Yuying</creatorcontrib><creatorcontrib>Ye, Chen</creatorcontrib><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Qi, Hong</creatorcontrib><creatorcontrib>Zhao, Yitian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Investigative ophthalmology &amp; visual science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Zhouwei</au><au>Kwapong, William R</au><au>Liu, Shouyue</au><au>Chen, Tao</au><au>Xu, Keyi</au><au>Mao, Haiting</au><au>Hao, Jinkui</au><au>Cao, Le</au><au>Liu, Jiang</au><au>Zheng, Yalin</au><au>Wang, Hang</au><au>Yan, Yuying</au><au>Ye, Chen</au><au>Wu, Bo</au><au>Qi, Hong</au><au>Zhao, Yitian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Association of Retinal Biomarkers With the Subtypes of Ischemic Stroke and an Automated Classification Model</atitle><jtitle>Investigative ophthalmology &amp; visual science</jtitle><addtitle>Invest Ophthalmol Vis Sci</addtitle><date>2024-07-31</date><risdate>2024</risdate><volume>65</volume><issue>8</issue><spage>50</spage><pages>50-</pages><issn>1552-5783</issn><issn>0146-0404</issn><eissn>1552-5783</eissn><abstract>Retinal microvascular changes are associated with ischemic stroke, and optical coherence tomography angiography (OCTA) is a potential tool to reveal the retinal microvasculature. We investigated the feasibility of using the OCTA image to automatically identify ischemic stroke and its subtypes (i.e. lacunar and non-lacunar stroke), and exploited the association of retinal biomarkers with the subtypes of ischemic stroke. Two cohorts were included in this study and a total of 1730 eyes from 865 participants were studied. A deep learning model was developed to discriminate the subjects with ischemic stroke from healthy controls and to distinguish the subtypes of ischemic stroke. We also extracted geometric parameters of the retinal microvasculature at different retinal layers to investigate the correlations. Superficial vascular plexus (SVP) yielded the highest areas under the receiver operating characteristic curve (AUCs) of 0.922 and 0.871 for the ischemic stroke detection and stroke subtypes classification, respectively. For external data validation, our model achieved an AUC of 0.822 and 0.766 for the ischemic stroke detection and stroke subtypes classification, respectively. When parameterizing the OCTA images, we showed individuals with ischemic strokes had increased SVP tortuosity (B = 0.085, 95% confidence interval [CI] = 0.005-0.166, P = 0.038) and reduced FAZ circularity (B = -0.212, 95% CI = -0.42 to -0.005, P = 0.045); non-lacunar stroke had reduced SVP FAZ circularity (P = 0.027) compared to lacunar stroke. Our study demonstrates the applicability of artificial intelligence (AI)-enhanced OCTA image analysis for ischemic stroke detection and its subtypes classification. Biomarkers from retinal OCTA images can provide useful information for clinical decision-making and diagnosis of ischemic stroke and its subtypes.</abstract><cop>United States</cop><pub>The Association for Research in Vision and Ophthalmology</pub><pmid>39083310</pmid><doi>10.1167/iovs.65.8.50</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-5783
ispartof Investigative ophthalmology & visual science, 2024-07, Vol.65 (8), p.50
issn 1552-5783
0146-0404
1552-5783
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11290563
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Aged
Biomarkers - metabolism
Deep Learning
Eye Movements, Strabismus, Amblyopia and Neuro-Ophthalmology
Female
Fluorescein Angiography - methods
Fundus Oculi
Humans
Ischemic Stroke - classification
Ischemic Stroke - diagnosis
Ischemic Stroke - diagnostic imaging
Male
Middle Aged
Retinal Vessels - diagnostic imaging
Retinal Vessels - pathology
ROC Curve
Tomography, Optical Coherence - methods
title Association of Retinal Biomarkers With the Subtypes of Ischemic Stroke and an Automated Classification Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Association%20of%20Retinal%20Biomarkers%20With%20the%20Subtypes%20of%20Ischemic%20Stroke%20and%20an%20Automated%20Classification%20Model&rft.jtitle=Investigative%20ophthalmology%20&%20visual%20science&rft.au=Xiong,%20Zhouwei&rft.date=2024-07-31&rft.volume=65&rft.issue=8&rft.spage=50&rft.pages=50-&rft.issn=1552-5783&rft.eissn=1552-5783&rft_id=info:doi/10.1167/iovs.65.8.50&rft_dat=%3Cproquest_pubme%3E3086387240%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086387240&rft_id=info:pmid/39083310&rfr_iscdi=true