ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D
Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT) 1 – 10 . Here we report that GS...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-06, Vol.630 (8016), p.437-446 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 446 |
---|---|
container_issue | 8016 |
container_start_page | 437 |
container_title | Nature (London) |
container_volume | 630 |
creator | Du, Gang Healy, Liam B. David, Liron Walker, Caitlin El-Baba, Tarick J. Lutomski, Corinne A. Goh, Byoungsook Gu, Bowen Pi, Xiong Devant, Pascal Fontana, Pietro Dong, Ying Ma, Xiyu Miao, Rui Balasubramanian, Arumugam Puthenveetil, Robbins Banerjee, Anirban Luo, Hongbo R. Kagan, Jonathan C. Oh, Sungwhan F. Robinson, Carol V. Lieberman, Judy Wu, Hao |
description | Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT)
1
–
10
. Here we report that GSDMD Cys191 is
S
-palmitoylated and that palmitoylation is required for pore formation.
S
-palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS). Cleavage-deficient GSDMD (D275A) is also palmitoylated after inflammasome stimulation or treatment with ROS activators and causes pyroptosis, although less efficiently than palmitoylated GSDMD-NT. Palmitoylated, but not unpalmitoylated, full-length GSDMD induces liposome leakage and forms a pore similar in structure to GSDMD-NT pores shown by cryogenic electron microscopy. ZDHHC5 and ZDHHC9 are the major palmitoyltransferases that mediate GSDMD palmitoylation, and their expression is upregulated by inflammasome activation and ROS. The other human gasdermins are also palmitoylated at their N termini. These data challenge the concept that cleavage is the only trigger for GSDMD activation. They suggest that reversible palmitoylation is a checkpoint for pore formation by both GSDMD-NT and intact GSDMD that functions as a general switch for the activation of this pore-forming family.
Gasdermin D Cys191 is
S
-palmitoylated, and palmitoylation is required for pore formation. |
doi_str_mv | 10.1038/s41586-024-07373-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11283288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037398724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-e81352b8d74953f5453a82093323aad8fdf767d179ff883364fdd2d7fc6e62e63</originalsourceid><addsrcrecordid>eNp9kT1vFDEQhi0EIpeDP0CBVqKhMdgef22FUAIJUqRIBGrLWY8PR7vew947Kf8ehwvho6ByMc88npmXkBecveEM7NsqubKaMiEpM2CAqkdkxaXRVGprHpMVY8JSZkEfkeNabxhjihv5lByBVX0voF-Rs8-XVzTgFnPAvHRXdOvHKS3z7eiXNOfOD0va-wVrN4zo9xg6n0OX8tIK3cbXgGVKuTt9Rp5EP1Z8fv-uydePH76cnNOLy7NPJ-8v6CCBLxQtByWubTCyVxCVVOCtYD2AAO-DjSEabQI3fYzWAmgZQxDBxEGjFqhhTd4dvNvd9YRhaEMXP7ptSZMvt272yf1dyemb28x7x7mwIJpzTV7fG8r8fYd1cVOqA46jzzjvqgPWTtlbI2RDX_2D3sy7ktt-jTKMNR-7E4oDNZS51oLxYRrO3F1Q7hCUa0G5n0E51Zpe_rnHQ8uvZBoAB6C2Ut5g-f33f7Q_ANVinis</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070032808</pqid></control><display><type>article</type><title>ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Du, Gang ; Healy, Liam B. ; David, Liron ; Walker, Caitlin ; El-Baba, Tarick J. ; Lutomski, Corinne A. ; Goh, Byoungsook ; Gu, Bowen ; Pi, Xiong ; Devant, Pascal ; Fontana, Pietro ; Dong, Ying ; Ma, Xiyu ; Miao, Rui ; Balasubramanian, Arumugam ; Puthenveetil, Robbins ; Banerjee, Anirban ; Luo, Hongbo R. ; Kagan, Jonathan C. ; Oh, Sungwhan F. ; Robinson, Carol V. ; Lieberman, Judy ; Wu, Hao</creator><creatorcontrib>Du, Gang ; Healy, Liam B. ; David, Liron ; Walker, Caitlin ; El-Baba, Tarick J. ; Lutomski, Corinne A. ; Goh, Byoungsook ; Gu, Bowen ; Pi, Xiong ; Devant, Pascal ; Fontana, Pietro ; Dong, Ying ; Ma, Xiyu ; Miao, Rui ; Balasubramanian, Arumugam ; Puthenveetil, Robbins ; Banerjee, Anirban ; Luo, Hongbo R. ; Kagan, Jonathan C. ; Oh, Sungwhan F. ; Robinson, Carol V. ; Lieberman, Judy ; Wu, Hao</creatorcontrib><description>Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT)
1
–
10
. Here we report that GSDMD Cys191 is
S
-palmitoylated and that palmitoylation is required for pore formation.
S
-palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS). Cleavage-deficient GSDMD (D275A) is also palmitoylated after inflammasome stimulation or treatment with ROS activators and causes pyroptosis, although less efficiently than palmitoylated GSDMD-NT. Palmitoylated, but not unpalmitoylated, full-length GSDMD induces liposome leakage and forms a pore similar in structure to GSDMD-NT pores shown by cryogenic electron microscopy. ZDHHC5 and ZDHHC9 are the major palmitoyltransferases that mediate GSDMD palmitoylation, and their expression is upregulated by inflammasome activation and ROS. The other human gasdermins are also palmitoylated at their N termini. These data challenge the concept that cleavage is the only trigger for GSDMD activation. They suggest that reversible palmitoylation is a checkpoint for pore formation by both GSDMD-NT and intact GSDMD that functions as a general switch for the activation of this pore-forming family.
Gasdermin D Cys191 is
S
-palmitoylated, and palmitoylation is required for pore formation.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07373-5</identifier><identifier>PMID: 38599239</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 101/58 ; 13/109 ; 14/1 ; 14/19 ; 14/28 ; 631/250/262 ; 631/80/458 ; 82/80 ; 82/83 ; Acyltransferases - metabolism ; Animals ; Cell death ; Cleavage ; Cryoelectron Microscopy ; Cysteine - metabolism ; Electron microscopy ; Female ; Gasdermins - chemistry ; Gasdermins - metabolism ; Humanities and Social Sciences ; Humans ; Inflammasomes ; Inflammasomes - metabolism ; Inflammation ; Liposomes - chemistry ; Liposomes - metabolism ; Lipoylation ; Localization ; Male ; Mice ; Microscopy ; Mitochondria - metabolism ; multidisciplinary ; Palmitoylation ; Phosphate-Binding Proteins - chemistry ; Phosphate-Binding Proteins - metabolism ; Polyethylene glycol ; Pore formation ; Pores ; Pyroptosis ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Science ; Science (multidisciplinary) ; THP-1 Cells</subject><ispartof>Nature (London), 2024-06, Vol.630 (8016), p.437-446</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Jun 13, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-e81352b8d74953f5453a82093323aad8fdf767d179ff883364fdd2d7fc6e62e63</citedby><cites>FETCH-LOGICAL-c431t-e81352b8d74953f5453a82093323aad8fdf767d179ff883364fdd2d7fc6e62e63</cites><orcidid>0000-0003-0977-8276 ; 0000-0002-7281-8579 ; 0000-0001-7509-103X ; 0000-0002-8545-0451 ; 0000-0001-8835-6914 ; 0000-0001-9743-6764 ; 0000-0002-6200-4715 ; 0000-0003-3215-3784 ; 0000-0002-7894-7259 ; 0000-0002-2640-1596 ; 0000-0003-2364-2746 ; 0000-0003-4497-9938 ; 0000-0003-2629-9963 ; 0000-0003-1494-6801 ; 0000-0002-7333-8542 ; 0000-0002-0280-7903 ; 0000-0001-7829-5505 ; 0000-0003-0805-4778 ; 0000-0002-9750-543X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07373-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07373-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38599239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Gang</creatorcontrib><creatorcontrib>Healy, Liam B.</creatorcontrib><creatorcontrib>David, Liron</creatorcontrib><creatorcontrib>Walker, Caitlin</creatorcontrib><creatorcontrib>El-Baba, Tarick J.</creatorcontrib><creatorcontrib>Lutomski, Corinne A.</creatorcontrib><creatorcontrib>Goh, Byoungsook</creatorcontrib><creatorcontrib>Gu, Bowen</creatorcontrib><creatorcontrib>Pi, Xiong</creatorcontrib><creatorcontrib>Devant, Pascal</creatorcontrib><creatorcontrib>Fontana, Pietro</creatorcontrib><creatorcontrib>Dong, Ying</creatorcontrib><creatorcontrib>Ma, Xiyu</creatorcontrib><creatorcontrib>Miao, Rui</creatorcontrib><creatorcontrib>Balasubramanian, Arumugam</creatorcontrib><creatorcontrib>Puthenveetil, Robbins</creatorcontrib><creatorcontrib>Banerjee, Anirban</creatorcontrib><creatorcontrib>Luo, Hongbo R.</creatorcontrib><creatorcontrib>Kagan, Jonathan C.</creatorcontrib><creatorcontrib>Oh, Sungwhan F.</creatorcontrib><creatorcontrib>Robinson, Carol V.</creatorcontrib><creatorcontrib>Lieberman, Judy</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><title>ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT)
1
–
10
. Here we report that GSDMD Cys191 is
S
-palmitoylated and that palmitoylation is required for pore formation.
S
-palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS). Cleavage-deficient GSDMD (D275A) is also palmitoylated after inflammasome stimulation or treatment with ROS activators and causes pyroptosis, although less efficiently than palmitoylated GSDMD-NT. Palmitoylated, but not unpalmitoylated, full-length GSDMD induces liposome leakage and forms a pore similar in structure to GSDMD-NT pores shown by cryogenic electron microscopy. ZDHHC5 and ZDHHC9 are the major palmitoyltransferases that mediate GSDMD palmitoylation, and their expression is upregulated by inflammasome activation and ROS. The other human gasdermins are also palmitoylated at their N termini. These data challenge the concept that cleavage is the only trigger for GSDMD activation. They suggest that reversible palmitoylation is a checkpoint for pore formation by both GSDMD-NT and intact GSDMD that functions as a general switch for the activation of this pore-forming family.
Gasdermin D Cys191 is
S
-palmitoylated, and palmitoylation is required for pore formation.</description><subject>101/28</subject><subject>101/58</subject><subject>13/109</subject><subject>14/1</subject><subject>14/19</subject><subject>14/28</subject><subject>631/250/262</subject><subject>631/80/458</subject><subject>82/80</subject><subject>82/83</subject><subject>Acyltransferases - metabolism</subject><subject>Animals</subject><subject>Cell death</subject><subject>Cleavage</subject><subject>Cryoelectron Microscopy</subject><subject>Cysteine - metabolism</subject><subject>Electron microscopy</subject><subject>Female</subject><subject>Gasdermins - chemistry</subject><subject>Gasdermins - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inflammasomes</subject><subject>Inflammasomes - metabolism</subject><subject>Inflammation</subject><subject>Liposomes - chemistry</subject><subject>Liposomes - metabolism</subject><subject>Lipoylation</subject><subject>Localization</subject><subject>Male</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Mitochondria - metabolism</subject><subject>multidisciplinary</subject><subject>Palmitoylation</subject><subject>Phosphate-Binding Proteins - chemistry</subject><subject>Phosphate-Binding Proteins - metabolism</subject><subject>Polyethylene glycol</subject><subject>Pore formation</subject><subject>Pores</subject><subject>Pyroptosis</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>THP-1 Cells</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kT1vFDEQhi0EIpeDP0CBVqKhMdgef22FUAIJUqRIBGrLWY8PR7vew947Kf8ehwvho6ByMc88npmXkBecveEM7NsqubKaMiEpM2CAqkdkxaXRVGprHpMVY8JSZkEfkeNabxhjihv5lByBVX0voF-Rs8-XVzTgFnPAvHRXdOvHKS3z7eiXNOfOD0va-wVrN4zo9xg6n0OX8tIK3cbXgGVKuTt9Rp5EP1Z8fv-uydePH76cnNOLy7NPJ-8v6CCBLxQtByWubTCyVxCVVOCtYD2AAO-DjSEabQI3fYzWAmgZQxDBxEGjFqhhTd4dvNvd9YRhaEMXP7ptSZMvt272yf1dyemb28x7x7mwIJpzTV7fG8r8fYd1cVOqA46jzzjvqgPWTtlbI2RDX_2D3sy7ktt-jTKMNR-7E4oDNZS51oLxYRrO3F1Q7hCUa0G5n0E51Zpe_rnHQ8uvZBoAB6C2Ut5g-f33f7Q_ANVinis</recordid><startdate>20240613</startdate><enddate>20240613</enddate><creator>Du, Gang</creator><creator>Healy, Liam B.</creator><creator>David, Liron</creator><creator>Walker, Caitlin</creator><creator>El-Baba, Tarick J.</creator><creator>Lutomski, Corinne A.</creator><creator>Goh, Byoungsook</creator><creator>Gu, Bowen</creator><creator>Pi, Xiong</creator><creator>Devant, Pascal</creator><creator>Fontana, Pietro</creator><creator>Dong, Ying</creator><creator>Ma, Xiyu</creator><creator>Miao, Rui</creator><creator>Balasubramanian, Arumugam</creator><creator>Puthenveetil, Robbins</creator><creator>Banerjee, Anirban</creator><creator>Luo, Hongbo R.</creator><creator>Kagan, Jonathan C.</creator><creator>Oh, Sungwhan F.</creator><creator>Robinson, Carol V.</creator><creator>Lieberman, Judy</creator><creator>Wu, Hao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0977-8276</orcidid><orcidid>https://orcid.org/0000-0002-7281-8579</orcidid><orcidid>https://orcid.org/0000-0001-7509-103X</orcidid><orcidid>https://orcid.org/0000-0002-8545-0451</orcidid><orcidid>https://orcid.org/0000-0001-8835-6914</orcidid><orcidid>https://orcid.org/0000-0001-9743-6764</orcidid><orcidid>https://orcid.org/0000-0002-6200-4715</orcidid><orcidid>https://orcid.org/0000-0003-3215-3784</orcidid><orcidid>https://orcid.org/0000-0002-7894-7259</orcidid><orcidid>https://orcid.org/0000-0002-2640-1596</orcidid><orcidid>https://orcid.org/0000-0003-2364-2746</orcidid><orcidid>https://orcid.org/0000-0003-4497-9938</orcidid><orcidid>https://orcid.org/0000-0003-2629-9963</orcidid><orcidid>https://orcid.org/0000-0003-1494-6801</orcidid><orcidid>https://orcid.org/0000-0002-7333-8542</orcidid><orcidid>https://orcid.org/0000-0002-0280-7903</orcidid><orcidid>https://orcid.org/0000-0001-7829-5505</orcidid><orcidid>https://orcid.org/0000-0003-0805-4778</orcidid><orcidid>https://orcid.org/0000-0002-9750-543X</orcidid></search><sort><creationdate>20240613</creationdate><title>ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D</title><author>Du, Gang ; Healy, Liam B. ; David, Liron ; Walker, Caitlin ; El-Baba, Tarick J. ; Lutomski, Corinne A. ; Goh, Byoungsook ; Gu, Bowen ; Pi, Xiong ; Devant, Pascal ; Fontana, Pietro ; Dong, Ying ; Ma, Xiyu ; Miao, Rui ; Balasubramanian, Arumugam ; Puthenveetil, Robbins ; Banerjee, Anirban ; Luo, Hongbo R. ; Kagan, Jonathan C. ; Oh, Sungwhan F. ; Robinson, Carol V. ; Lieberman, Judy ; Wu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-e81352b8d74953f5453a82093323aad8fdf767d179ff883364fdd2d7fc6e62e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>101/28</topic><topic>101/58</topic><topic>13/109</topic><topic>14/1</topic><topic>14/19</topic><topic>14/28</topic><topic>631/250/262</topic><topic>631/80/458</topic><topic>82/80</topic><topic>82/83</topic><topic>Acyltransferases - metabolism</topic><topic>Animals</topic><topic>Cell death</topic><topic>Cleavage</topic><topic>Cryoelectron Microscopy</topic><topic>Cysteine - metabolism</topic><topic>Electron microscopy</topic><topic>Female</topic><topic>Gasdermins - chemistry</topic><topic>Gasdermins - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inflammasomes</topic><topic>Inflammasomes - metabolism</topic><topic>Inflammation</topic><topic>Liposomes - chemistry</topic><topic>Liposomes - metabolism</topic><topic>Lipoylation</topic><topic>Localization</topic><topic>Male</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Mitochondria - metabolism</topic><topic>multidisciplinary</topic><topic>Palmitoylation</topic><topic>Phosphate-Binding Proteins - chemistry</topic><topic>Phosphate-Binding Proteins - metabolism</topic><topic>Polyethylene glycol</topic><topic>Pore formation</topic><topic>Pores</topic><topic>Pyroptosis</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>THP-1 Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Gang</creatorcontrib><creatorcontrib>Healy, Liam B.</creatorcontrib><creatorcontrib>David, Liron</creatorcontrib><creatorcontrib>Walker, Caitlin</creatorcontrib><creatorcontrib>El-Baba, Tarick J.</creatorcontrib><creatorcontrib>Lutomski, Corinne A.</creatorcontrib><creatorcontrib>Goh, Byoungsook</creatorcontrib><creatorcontrib>Gu, Bowen</creatorcontrib><creatorcontrib>Pi, Xiong</creatorcontrib><creatorcontrib>Devant, Pascal</creatorcontrib><creatorcontrib>Fontana, Pietro</creatorcontrib><creatorcontrib>Dong, Ying</creatorcontrib><creatorcontrib>Ma, Xiyu</creatorcontrib><creatorcontrib>Miao, Rui</creatorcontrib><creatorcontrib>Balasubramanian, Arumugam</creatorcontrib><creatorcontrib>Puthenveetil, Robbins</creatorcontrib><creatorcontrib>Banerjee, Anirban</creatorcontrib><creatorcontrib>Luo, Hongbo R.</creatorcontrib><creatorcontrib>Kagan, Jonathan C.</creatorcontrib><creatorcontrib>Oh, Sungwhan F.</creatorcontrib><creatorcontrib>Robinson, Carol V.</creatorcontrib><creatorcontrib>Lieberman, Judy</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Gang</au><au>Healy, Liam B.</au><au>David, Liron</au><au>Walker, Caitlin</au><au>El-Baba, Tarick J.</au><au>Lutomski, Corinne A.</au><au>Goh, Byoungsook</au><au>Gu, Bowen</au><au>Pi, Xiong</au><au>Devant, Pascal</au><au>Fontana, Pietro</au><au>Dong, Ying</au><au>Ma, Xiyu</au><au>Miao, Rui</au><au>Balasubramanian, Arumugam</au><au>Puthenveetil, Robbins</au><au>Banerjee, Anirban</au><au>Luo, Hongbo R.</au><au>Kagan, Jonathan C.</au><au>Oh, Sungwhan F.</au><au>Robinson, Carol V.</au><au>Lieberman, Judy</au><au>Wu, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-06-13</date><risdate>2024</risdate><volume>630</volume><issue>8016</issue><spage>437</spage><epage>446</epage><pages>437-446</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT)
1
–
10
. Here we report that GSDMD Cys191 is
S
-palmitoylated and that palmitoylation is required for pore formation.
S
-palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS). Cleavage-deficient GSDMD (D275A) is also palmitoylated after inflammasome stimulation or treatment with ROS activators and causes pyroptosis, although less efficiently than palmitoylated GSDMD-NT. Palmitoylated, but not unpalmitoylated, full-length GSDMD induces liposome leakage and forms a pore similar in structure to GSDMD-NT pores shown by cryogenic electron microscopy. ZDHHC5 and ZDHHC9 are the major palmitoyltransferases that mediate GSDMD palmitoylation, and their expression is upregulated by inflammasome activation and ROS. The other human gasdermins are also palmitoylated at their N termini. These data challenge the concept that cleavage is the only trigger for GSDMD activation. They suggest that reversible palmitoylation is a checkpoint for pore formation by both GSDMD-NT and intact GSDMD that functions as a general switch for the activation of this pore-forming family.
Gasdermin D Cys191 is
S
-palmitoylated, and palmitoylation is required for pore formation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38599239</pmid><doi>10.1038/s41586-024-07373-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0977-8276</orcidid><orcidid>https://orcid.org/0000-0002-7281-8579</orcidid><orcidid>https://orcid.org/0000-0001-7509-103X</orcidid><orcidid>https://orcid.org/0000-0002-8545-0451</orcidid><orcidid>https://orcid.org/0000-0001-8835-6914</orcidid><orcidid>https://orcid.org/0000-0001-9743-6764</orcidid><orcidid>https://orcid.org/0000-0002-6200-4715</orcidid><orcidid>https://orcid.org/0000-0003-3215-3784</orcidid><orcidid>https://orcid.org/0000-0002-7894-7259</orcidid><orcidid>https://orcid.org/0000-0002-2640-1596</orcidid><orcidid>https://orcid.org/0000-0003-2364-2746</orcidid><orcidid>https://orcid.org/0000-0003-4497-9938</orcidid><orcidid>https://orcid.org/0000-0003-2629-9963</orcidid><orcidid>https://orcid.org/0000-0003-1494-6801</orcidid><orcidid>https://orcid.org/0000-0002-7333-8542</orcidid><orcidid>https://orcid.org/0000-0002-0280-7903</orcidid><orcidid>https://orcid.org/0000-0001-7829-5505</orcidid><orcidid>https://orcid.org/0000-0003-0805-4778</orcidid><orcidid>https://orcid.org/0000-0002-9750-543X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-06, Vol.630 (8016), p.437-446 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11283288 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 101/28 101/58 13/109 14/1 14/19 14/28 631/250/262 631/80/458 82/80 82/83 Acyltransferases - metabolism Animals Cell death Cleavage Cryoelectron Microscopy Cysteine - metabolism Electron microscopy Female Gasdermins - chemistry Gasdermins - metabolism Humanities and Social Sciences Humans Inflammasomes Inflammasomes - metabolism Inflammation Liposomes - chemistry Liposomes - metabolism Lipoylation Localization Male Mice Microscopy Mitochondria - metabolism multidisciplinary Palmitoylation Phosphate-Binding Proteins - chemistry Phosphate-Binding Proteins - metabolism Polyethylene glycol Pore formation Pores Pyroptosis Reactive oxygen species Reactive Oxygen Species - metabolism Science Science (multidisciplinary) THP-1 Cells |
title | ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ROS-dependent%20S-palmitoylation%20activates%20cleaved%20and%20intact%20gasdermin%20D&rft.jtitle=Nature%20(London)&rft.au=Du,%20Gang&rft.date=2024-06-13&rft.volume=630&rft.issue=8016&rft.spage=437&rft.epage=446&rft.pages=437-446&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07373-5&rft_dat=%3Cproquest_pubme%3E3037398724%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070032808&rft_id=info:pmid/38599239&rfr_iscdi=true |