ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D

Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT) 1 – 10 . Here we report that GS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-06, Vol.630 (8016), p.437-446
Hauptverfasser: Du, Gang, Healy, Liam B., David, Liron, Walker, Caitlin, El-Baba, Tarick J., Lutomski, Corinne A., Goh, Byoungsook, Gu, Bowen, Pi, Xiong, Devant, Pascal, Fontana, Pietro, Dong, Ying, Ma, Xiyu, Miao, Rui, Balasubramanian, Arumugam, Puthenveetil, Robbins, Banerjee, Anirban, Luo, Hongbo R., Kagan, Jonathan C., Oh, Sungwhan F., Robinson, Carol V., Lieberman, Judy, Wu, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 446
container_issue 8016
container_start_page 437
container_title Nature (London)
container_volume 630
creator Du, Gang
Healy, Liam B.
David, Liron
Walker, Caitlin
El-Baba, Tarick J.
Lutomski, Corinne A.
Goh, Byoungsook
Gu, Bowen
Pi, Xiong
Devant, Pascal
Fontana, Pietro
Dong, Ying
Ma, Xiyu
Miao, Rui
Balasubramanian, Arumugam
Puthenveetil, Robbins
Banerjee, Anirban
Luo, Hongbo R.
Kagan, Jonathan C.
Oh, Sungwhan F.
Robinson, Carol V.
Lieberman, Judy
Wu, Hao
description Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT) 1 – 10 . Here we report that GSDMD Cys191 is S -palmitoylated and that palmitoylation is required for pore formation. S -palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS). Cleavage-deficient GSDMD (D275A) is also palmitoylated after inflammasome stimulation or treatment with ROS activators and causes pyroptosis, although less efficiently than palmitoylated GSDMD-NT. Palmitoylated, but not unpalmitoylated, full-length GSDMD induces liposome leakage and forms a pore similar in structure to GSDMD-NT pores shown by cryogenic electron microscopy. ZDHHC5 and ZDHHC9 are the major palmitoyltransferases that mediate GSDMD palmitoylation, and their expression is upregulated by inflammasome activation and ROS. The other human gasdermins are also palmitoylated at their N termini. These data challenge the concept that cleavage is the only trigger for GSDMD activation. They suggest that reversible palmitoylation is a checkpoint for pore formation by both GSDMD-NT and intact GSDMD that functions as a general switch for the activation of this pore-forming family. Gasdermin D Cys191 is S -palmitoylated, and palmitoylation is required for pore formation.
doi_str_mv 10.1038/s41586-024-07373-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11283288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037398724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-e81352b8d74953f5453a82093323aad8fdf767d179ff883364fdd2d7fc6e62e63</originalsourceid><addsrcrecordid>eNp9kT1vFDEQhi0EIpeDP0CBVqKhMdgef22FUAIJUqRIBGrLWY8PR7vew947Kf8ehwvho6ByMc88npmXkBecveEM7NsqubKaMiEpM2CAqkdkxaXRVGprHpMVY8JSZkEfkeNabxhjihv5lByBVX0voF-Rs8-XVzTgFnPAvHRXdOvHKS3z7eiXNOfOD0va-wVrN4zo9xg6n0OX8tIK3cbXgGVKuTt9Rp5EP1Z8fv-uydePH76cnNOLy7NPJ-8v6CCBLxQtByWubTCyVxCVVOCtYD2AAO-DjSEabQI3fYzWAmgZQxDBxEGjFqhhTd4dvNvd9YRhaEMXP7ptSZMvt272yf1dyemb28x7x7mwIJpzTV7fG8r8fYd1cVOqA46jzzjvqgPWTtlbI2RDX_2D3sy7ktt-jTKMNR-7E4oDNZS51oLxYRrO3F1Q7hCUa0G5n0E51Zpe_rnHQ8uvZBoAB6C2Ut5g-f33f7Q_ANVinis</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070032808</pqid></control><display><type>article</type><title>ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Du, Gang ; Healy, Liam B. ; David, Liron ; Walker, Caitlin ; El-Baba, Tarick J. ; Lutomski, Corinne A. ; Goh, Byoungsook ; Gu, Bowen ; Pi, Xiong ; Devant, Pascal ; Fontana, Pietro ; Dong, Ying ; Ma, Xiyu ; Miao, Rui ; Balasubramanian, Arumugam ; Puthenveetil, Robbins ; Banerjee, Anirban ; Luo, Hongbo R. ; Kagan, Jonathan C. ; Oh, Sungwhan F. ; Robinson, Carol V. ; Lieberman, Judy ; Wu, Hao</creator><creatorcontrib>Du, Gang ; Healy, Liam B. ; David, Liron ; Walker, Caitlin ; El-Baba, Tarick J. ; Lutomski, Corinne A. ; Goh, Byoungsook ; Gu, Bowen ; Pi, Xiong ; Devant, Pascal ; Fontana, Pietro ; Dong, Ying ; Ma, Xiyu ; Miao, Rui ; Balasubramanian, Arumugam ; Puthenveetil, Robbins ; Banerjee, Anirban ; Luo, Hongbo R. ; Kagan, Jonathan C. ; Oh, Sungwhan F. ; Robinson, Carol V. ; Lieberman, Judy ; Wu, Hao</creatorcontrib><description>Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT) 1 – 10 . Here we report that GSDMD Cys191 is S -palmitoylated and that palmitoylation is required for pore formation. S -palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS). Cleavage-deficient GSDMD (D275A) is also palmitoylated after inflammasome stimulation or treatment with ROS activators and causes pyroptosis, although less efficiently than palmitoylated GSDMD-NT. Palmitoylated, but not unpalmitoylated, full-length GSDMD induces liposome leakage and forms a pore similar in structure to GSDMD-NT pores shown by cryogenic electron microscopy. ZDHHC5 and ZDHHC9 are the major palmitoyltransferases that mediate GSDMD palmitoylation, and their expression is upregulated by inflammasome activation and ROS. The other human gasdermins are also palmitoylated at their N termini. These data challenge the concept that cleavage is the only trigger for GSDMD activation. They suggest that reversible palmitoylation is a checkpoint for pore formation by both GSDMD-NT and intact GSDMD that functions as a general switch for the activation of this pore-forming family. Gasdermin D Cys191 is S -palmitoylated, and palmitoylation is required for pore formation.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07373-5</identifier><identifier>PMID: 38599239</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 101/58 ; 13/109 ; 14/1 ; 14/19 ; 14/28 ; 631/250/262 ; 631/80/458 ; 82/80 ; 82/83 ; Acyltransferases - metabolism ; Animals ; Cell death ; Cleavage ; Cryoelectron Microscopy ; Cysteine - metabolism ; Electron microscopy ; Female ; Gasdermins - chemistry ; Gasdermins - metabolism ; Humanities and Social Sciences ; Humans ; Inflammasomes ; Inflammasomes - metabolism ; Inflammation ; Liposomes - chemistry ; Liposomes - metabolism ; Lipoylation ; Localization ; Male ; Mice ; Microscopy ; Mitochondria - metabolism ; multidisciplinary ; Palmitoylation ; Phosphate-Binding Proteins - chemistry ; Phosphate-Binding Proteins - metabolism ; Polyethylene glycol ; Pore formation ; Pores ; Pyroptosis ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Science ; Science (multidisciplinary) ; THP-1 Cells</subject><ispartof>Nature (London), 2024-06, Vol.630 (8016), p.437-446</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Jun 13, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-e81352b8d74953f5453a82093323aad8fdf767d179ff883364fdd2d7fc6e62e63</citedby><cites>FETCH-LOGICAL-c431t-e81352b8d74953f5453a82093323aad8fdf767d179ff883364fdd2d7fc6e62e63</cites><orcidid>0000-0003-0977-8276 ; 0000-0002-7281-8579 ; 0000-0001-7509-103X ; 0000-0002-8545-0451 ; 0000-0001-8835-6914 ; 0000-0001-9743-6764 ; 0000-0002-6200-4715 ; 0000-0003-3215-3784 ; 0000-0002-7894-7259 ; 0000-0002-2640-1596 ; 0000-0003-2364-2746 ; 0000-0003-4497-9938 ; 0000-0003-2629-9963 ; 0000-0003-1494-6801 ; 0000-0002-7333-8542 ; 0000-0002-0280-7903 ; 0000-0001-7829-5505 ; 0000-0003-0805-4778 ; 0000-0002-9750-543X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07373-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07373-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38599239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Gang</creatorcontrib><creatorcontrib>Healy, Liam B.</creatorcontrib><creatorcontrib>David, Liron</creatorcontrib><creatorcontrib>Walker, Caitlin</creatorcontrib><creatorcontrib>El-Baba, Tarick J.</creatorcontrib><creatorcontrib>Lutomski, Corinne A.</creatorcontrib><creatorcontrib>Goh, Byoungsook</creatorcontrib><creatorcontrib>Gu, Bowen</creatorcontrib><creatorcontrib>Pi, Xiong</creatorcontrib><creatorcontrib>Devant, Pascal</creatorcontrib><creatorcontrib>Fontana, Pietro</creatorcontrib><creatorcontrib>Dong, Ying</creatorcontrib><creatorcontrib>Ma, Xiyu</creatorcontrib><creatorcontrib>Miao, Rui</creatorcontrib><creatorcontrib>Balasubramanian, Arumugam</creatorcontrib><creatorcontrib>Puthenveetil, Robbins</creatorcontrib><creatorcontrib>Banerjee, Anirban</creatorcontrib><creatorcontrib>Luo, Hongbo R.</creatorcontrib><creatorcontrib>Kagan, Jonathan C.</creatorcontrib><creatorcontrib>Oh, Sungwhan F.</creatorcontrib><creatorcontrib>Robinson, Carol V.</creatorcontrib><creatorcontrib>Lieberman, Judy</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><title>ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT) 1 – 10 . Here we report that GSDMD Cys191 is S -palmitoylated and that palmitoylation is required for pore formation. S -palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS). Cleavage-deficient GSDMD (D275A) is also palmitoylated after inflammasome stimulation or treatment with ROS activators and causes pyroptosis, although less efficiently than palmitoylated GSDMD-NT. Palmitoylated, but not unpalmitoylated, full-length GSDMD induces liposome leakage and forms a pore similar in structure to GSDMD-NT pores shown by cryogenic electron microscopy. ZDHHC5 and ZDHHC9 are the major palmitoyltransferases that mediate GSDMD palmitoylation, and their expression is upregulated by inflammasome activation and ROS. The other human gasdermins are also palmitoylated at their N termini. These data challenge the concept that cleavage is the only trigger for GSDMD activation. They suggest that reversible palmitoylation is a checkpoint for pore formation by both GSDMD-NT and intact GSDMD that functions as a general switch for the activation of this pore-forming family. Gasdermin D Cys191 is S -palmitoylated, and palmitoylation is required for pore formation.</description><subject>101/28</subject><subject>101/58</subject><subject>13/109</subject><subject>14/1</subject><subject>14/19</subject><subject>14/28</subject><subject>631/250/262</subject><subject>631/80/458</subject><subject>82/80</subject><subject>82/83</subject><subject>Acyltransferases - metabolism</subject><subject>Animals</subject><subject>Cell death</subject><subject>Cleavage</subject><subject>Cryoelectron Microscopy</subject><subject>Cysteine - metabolism</subject><subject>Electron microscopy</subject><subject>Female</subject><subject>Gasdermins - chemistry</subject><subject>Gasdermins - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inflammasomes</subject><subject>Inflammasomes - metabolism</subject><subject>Inflammation</subject><subject>Liposomes - chemistry</subject><subject>Liposomes - metabolism</subject><subject>Lipoylation</subject><subject>Localization</subject><subject>Male</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Mitochondria - metabolism</subject><subject>multidisciplinary</subject><subject>Palmitoylation</subject><subject>Phosphate-Binding Proteins - chemistry</subject><subject>Phosphate-Binding Proteins - metabolism</subject><subject>Polyethylene glycol</subject><subject>Pore formation</subject><subject>Pores</subject><subject>Pyroptosis</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>THP-1 Cells</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kT1vFDEQhi0EIpeDP0CBVqKhMdgef22FUAIJUqRIBGrLWY8PR7vew947Kf8ehwvho6ByMc88npmXkBecveEM7NsqubKaMiEpM2CAqkdkxaXRVGprHpMVY8JSZkEfkeNabxhjihv5lByBVX0voF-Rs8-XVzTgFnPAvHRXdOvHKS3z7eiXNOfOD0va-wVrN4zo9xg6n0OX8tIK3cbXgGVKuTt9Rp5EP1Z8fv-uydePH76cnNOLy7NPJ-8v6CCBLxQtByWubTCyVxCVVOCtYD2AAO-DjSEabQI3fYzWAmgZQxDBxEGjFqhhTd4dvNvd9YRhaEMXP7ptSZMvt272yf1dyemb28x7x7mwIJpzTV7fG8r8fYd1cVOqA46jzzjvqgPWTtlbI2RDX_2D3sy7ktt-jTKMNR-7E4oDNZS51oLxYRrO3F1Q7hCUa0G5n0E51Zpe_rnHQ8uvZBoAB6C2Ut5g-f33f7Q_ANVinis</recordid><startdate>20240613</startdate><enddate>20240613</enddate><creator>Du, Gang</creator><creator>Healy, Liam B.</creator><creator>David, Liron</creator><creator>Walker, Caitlin</creator><creator>El-Baba, Tarick J.</creator><creator>Lutomski, Corinne A.</creator><creator>Goh, Byoungsook</creator><creator>Gu, Bowen</creator><creator>Pi, Xiong</creator><creator>Devant, Pascal</creator><creator>Fontana, Pietro</creator><creator>Dong, Ying</creator><creator>Ma, Xiyu</creator><creator>Miao, Rui</creator><creator>Balasubramanian, Arumugam</creator><creator>Puthenveetil, Robbins</creator><creator>Banerjee, Anirban</creator><creator>Luo, Hongbo R.</creator><creator>Kagan, Jonathan C.</creator><creator>Oh, Sungwhan F.</creator><creator>Robinson, Carol V.</creator><creator>Lieberman, Judy</creator><creator>Wu, Hao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0977-8276</orcidid><orcidid>https://orcid.org/0000-0002-7281-8579</orcidid><orcidid>https://orcid.org/0000-0001-7509-103X</orcidid><orcidid>https://orcid.org/0000-0002-8545-0451</orcidid><orcidid>https://orcid.org/0000-0001-8835-6914</orcidid><orcidid>https://orcid.org/0000-0001-9743-6764</orcidid><orcidid>https://orcid.org/0000-0002-6200-4715</orcidid><orcidid>https://orcid.org/0000-0003-3215-3784</orcidid><orcidid>https://orcid.org/0000-0002-7894-7259</orcidid><orcidid>https://orcid.org/0000-0002-2640-1596</orcidid><orcidid>https://orcid.org/0000-0003-2364-2746</orcidid><orcidid>https://orcid.org/0000-0003-4497-9938</orcidid><orcidid>https://orcid.org/0000-0003-2629-9963</orcidid><orcidid>https://orcid.org/0000-0003-1494-6801</orcidid><orcidid>https://orcid.org/0000-0002-7333-8542</orcidid><orcidid>https://orcid.org/0000-0002-0280-7903</orcidid><orcidid>https://orcid.org/0000-0001-7829-5505</orcidid><orcidid>https://orcid.org/0000-0003-0805-4778</orcidid><orcidid>https://orcid.org/0000-0002-9750-543X</orcidid></search><sort><creationdate>20240613</creationdate><title>ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D</title><author>Du, Gang ; Healy, Liam B. ; David, Liron ; Walker, Caitlin ; El-Baba, Tarick J. ; Lutomski, Corinne A. ; Goh, Byoungsook ; Gu, Bowen ; Pi, Xiong ; Devant, Pascal ; Fontana, Pietro ; Dong, Ying ; Ma, Xiyu ; Miao, Rui ; Balasubramanian, Arumugam ; Puthenveetil, Robbins ; Banerjee, Anirban ; Luo, Hongbo R. ; Kagan, Jonathan C. ; Oh, Sungwhan F. ; Robinson, Carol V. ; Lieberman, Judy ; Wu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-e81352b8d74953f5453a82093323aad8fdf767d179ff883364fdd2d7fc6e62e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>101/28</topic><topic>101/58</topic><topic>13/109</topic><topic>14/1</topic><topic>14/19</topic><topic>14/28</topic><topic>631/250/262</topic><topic>631/80/458</topic><topic>82/80</topic><topic>82/83</topic><topic>Acyltransferases - metabolism</topic><topic>Animals</topic><topic>Cell death</topic><topic>Cleavage</topic><topic>Cryoelectron Microscopy</topic><topic>Cysteine - metabolism</topic><topic>Electron microscopy</topic><topic>Female</topic><topic>Gasdermins - chemistry</topic><topic>Gasdermins - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inflammasomes</topic><topic>Inflammasomes - metabolism</topic><topic>Inflammation</topic><topic>Liposomes - chemistry</topic><topic>Liposomes - metabolism</topic><topic>Lipoylation</topic><topic>Localization</topic><topic>Male</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Mitochondria - metabolism</topic><topic>multidisciplinary</topic><topic>Palmitoylation</topic><topic>Phosphate-Binding Proteins - chemistry</topic><topic>Phosphate-Binding Proteins - metabolism</topic><topic>Polyethylene glycol</topic><topic>Pore formation</topic><topic>Pores</topic><topic>Pyroptosis</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>THP-1 Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Gang</creatorcontrib><creatorcontrib>Healy, Liam B.</creatorcontrib><creatorcontrib>David, Liron</creatorcontrib><creatorcontrib>Walker, Caitlin</creatorcontrib><creatorcontrib>El-Baba, Tarick J.</creatorcontrib><creatorcontrib>Lutomski, Corinne A.</creatorcontrib><creatorcontrib>Goh, Byoungsook</creatorcontrib><creatorcontrib>Gu, Bowen</creatorcontrib><creatorcontrib>Pi, Xiong</creatorcontrib><creatorcontrib>Devant, Pascal</creatorcontrib><creatorcontrib>Fontana, Pietro</creatorcontrib><creatorcontrib>Dong, Ying</creatorcontrib><creatorcontrib>Ma, Xiyu</creatorcontrib><creatorcontrib>Miao, Rui</creatorcontrib><creatorcontrib>Balasubramanian, Arumugam</creatorcontrib><creatorcontrib>Puthenveetil, Robbins</creatorcontrib><creatorcontrib>Banerjee, Anirban</creatorcontrib><creatorcontrib>Luo, Hongbo R.</creatorcontrib><creatorcontrib>Kagan, Jonathan C.</creatorcontrib><creatorcontrib>Oh, Sungwhan F.</creatorcontrib><creatorcontrib>Robinson, Carol V.</creatorcontrib><creatorcontrib>Lieberman, Judy</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Gang</au><au>Healy, Liam B.</au><au>David, Liron</au><au>Walker, Caitlin</au><au>El-Baba, Tarick J.</au><au>Lutomski, Corinne A.</au><au>Goh, Byoungsook</au><au>Gu, Bowen</au><au>Pi, Xiong</au><au>Devant, Pascal</au><au>Fontana, Pietro</au><au>Dong, Ying</au><au>Ma, Xiyu</au><au>Miao, Rui</au><au>Balasubramanian, Arumugam</au><au>Puthenveetil, Robbins</au><au>Banerjee, Anirban</au><au>Luo, Hongbo R.</au><au>Kagan, Jonathan C.</au><au>Oh, Sungwhan F.</au><au>Robinson, Carol V.</au><au>Lieberman, Judy</au><au>Wu, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-06-13</date><risdate>2024</risdate><volume>630</volume><issue>8016</issue><spage>437</spage><epage>446</epage><pages>437-446</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT) 1 – 10 . Here we report that GSDMD Cys191 is S -palmitoylated and that palmitoylation is required for pore formation. S -palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS). Cleavage-deficient GSDMD (D275A) is also palmitoylated after inflammasome stimulation or treatment with ROS activators and causes pyroptosis, although less efficiently than palmitoylated GSDMD-NT. Palmitoylated, but not unpalmitoylated, full-length GSDMD induces liposome leakage and forms a pore similar in structure to GSDMD-NT pores shown by cryogenic electron microscopy. ZDHHC5 and ZDHHC9 are the major palmitoyltransferases that mediate GSDMD palmitoylation, and their expression is upregulated by inflammasome activation and ROS. The other human gasdermins are also palmitoylated at their N termini. These data challenge the concept that cleavage is the only trigger for GSDMD activation. They suggest that reversible palmitoylation is a checkpoint for pore formation by both GSDMD-NT and intact GSDMD that functions as a general switch for the activation of this pore-forming family. Gasdermin D Cys191 is S -palmitoylated, and palmitoylation is required for pore formation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38599239</pmid><doi>10.1038/s41586-024-07373-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0977-8276</orcidid><orcidid>https://orcid.org/0000-0002-7281-8579</orcidid><orcidid>https://orcid.org/0000-0001-7509-103X</orcidid><orcidid>https://orcid.org/0000-0002-8545-0451</orcidid><orcidid>https://orcid.org/0000-0001-8835-6914</orcidid><orcidid>https://orcid.org/0000-0001-9743-6764</orcidid><orcidid>https://orcid.org/0000-0002-6200-4715</orcidid><orcidid>https://orcid.org/0000-0003-3215-3784</orcidid><orcidid>https://orcid.org/0000-0002-7894-7259</orcidid><orcidid>https://orcid.org/0000-0002-2640-1596</orcidid><orcidid>https://orcid.org/0000-0003-2364-2746</orcidid><orcidid>https://orcid.org/0000-0003-4497-9938</orcidid><orcidid>https://orcid.org/0000-0003-2629-9963</orcidid><orcidid>https://orcid.org/0000-0003-1494-6801</orcidid><orcidid>https://orcid.org/0000-0002-7333-8542</orcidid><orcidid>https://orcid.org/0000-0002-0280-7903</orcidid><orcidid>https://orcid.org/0000-0001-7829-5505</orcidid><orcidid>https://orcid.org/0000-0003-0805-4778</orcidid><orcidid>https://orcid.org/0000-0002-9750-543X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-06, Vol.630 (8016), p.437-446
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11283288
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 101/28
101/58
13/109
14/1
14/19
14/28
631/250/262
631/80/458
82/80
82/83
Acyltransferases - metabolism
Animals
Cell death
Cleavage
Cryoelectron Microscopy
Cysteine - metabolism
Electron microscopy
Female
Gasdermins - chemistry
Gasdermins - metabolism
Humanities and Social Sciences
Humans
Inflammasomes
Inflammasomes - metabolism
Inflammation
Liposomes - chemistry
Liposomes - metabolism
Lipoylation
Localization
Male
Mice
Microscopy
Mitochondria - metabolism
multidisciplinary
Palmitoylation
Phosphate-Binding Proteins - chemistry
Phosphate-Binding Proteins - metabolism
Polyethylene glycol
Pore formation
Pores
Pyroptosis
Reactive oxygen species
Reactive Oxygen Species - metabolism
Science
Science (multidisciplinary)
THP-1 Cells
title ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ROS-dependent%20S-palmitoylation%20activates%20cleaved%20and%20intact%20gasdermin%20D&rft.jtitle=Nature%20(London)&rft.au=Du,%20Gang&rft.date=2024-06-13&rft.volume=630&rft.issue=8016&rft.spage=437&rft.epage=446&rft.pages=437-446&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07373-5&rft_dat=%3Cproquest_pubme%3E3037398724%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070032808&rft_id=info:pmid/38599239&rfr_iscdi=true