A dynamic sequence of visual processing initiated by gaze shifts
Animals move their head and eyes as they explore the visual scene. Neural correlates of these movements have been found in rodent primary visual cortex (V1), but their sources and computational roles are unclear. We addressed this by combining head and eye movement measurements with neural recording...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2023-12, Vol.26 (12), p.2192-2202 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2202 |
---|---|
container_issue | 12 |
container_start_page | 2192 |
container_title | Nature neuroscience |
container_volume | 26 |
creator | Parker, Philip R. L. Martins, Dylan M. Leonard, Emmalyn S. P. Casey, Nathan M. Sharp, Shelby L. Abe, Elliott T. T. Smear, Matthew C. Yates, Jacob L. Mitchell, Jude F. Niell, Cristopher M. |
description | Animals move their head and eyes as they explore the visual scene. Neural correlates of these movements have been found in rodent primary visual cortex (V1), but their sources and computational roles are unclear. We addressed this by combining head and eye movement measurements with neural recordings in freely moving mice. V1 neurons responded primarily to gaze shifts, where head movements are accompanied by saccadic eye movements, rather than to head movements where compensatory eye movements stabilize gaze. A variety of activity patterns followed gaze shifts and together these formed a temporal sequence that was absent in darkness. Gaze-shift responses resembled those evoked by sequentially flashed stimuli, suggesting a large component corresponds to onset of new visual input. Notably, neurons responded in a sequence that matches their spatial frequency bias, consistent with coarse-to-fine processing. Recordings in freely gazing marmosets revealed a similar sequence following saccades, also aligned to spatial frequency preference. Our results demonstrate that active vision in both mice and marmosets consists of a dynamic temporal sequence of neural activity associated with visual sampling.
Parker et al. recorded neural activity in V1 of freely moving mice and freely gazing marmosets. In both species, neurons respond to gaze shifts in a temporal sequence, such that new visual input is processed in a ‘coarse’ to ‘fine’ manner. |
doi_str_mv | 10.1038/s41593-023-01481-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11270614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895587682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-c1a8d18acf3eb62863b6d46b4e6585ea5a2812848ee98ce3d10707c52fc4b8cf3</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVoyav5A10EQTfduNVb16s2hL4g0E27FrJ8PVHwyFPJHpj8-iidJE276EJIcL9zrg6HkNecveNMwvuiuG5lw0Q9XAFv7AE55lqZhlthXtQ3a21jhDZH5KSUG8aY1dAekiNp29ZooY7Jxwva75Jfx0AL_lowBaTTQLexLH6kmzwFLCWmFY0pztHP2NNuR1f-Fmm5jsNcXpGXgx8Lnj3cp-Tn508_Lr82V9-_fLu8uGqCsnpuAvfQc_BhkNgZAUZ2plemU2g0aPTaC-ACFCC2EFD2nFlmgxZDUB1U1Sn5sPfdLN0a-4Bpzn50mxzXPu_c5KP7e5LitVtNW8e5sMxwVR3ePjjkqSYts1vHEnAcfcJpKU5AK0EqbqGib_5Bb6Ylp5rvntIarAFRKbGnQp5KyTg8_YYzd9-Q2zfkakPud0POVtH58xxPksdKKiD3QKmjtML8Z_d_bO8A-i6ccA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895587682</pqid></control><display><type>article</type><title>A dynamic sequence of visual processing initiated by gaze shifts</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Parker, Philip R. L. ; Martins, Dylan M. ; Leonard, Emmalyn S. P. ; Casey, Nathan M. ; Sharp, Shelby L. ; Abe, Elliott T. T. ; Smear, Matthew C. ; Yates, Jacob L. ; Mitchell, Jude F. ; Niell, Cristopher M.</creator><creatorcontrib>Parker, Philip R. L. ; Martins, Dylan M. ; Leonard, Emmalyn S. P. ; Casey, Nathan M. ; Sharp, Shelby L. ; Abe, Elliott T. T. ; Smear, Matthew C. ; Yates, Jacob L. ; Mitchell, Jude F. ; Niell, Cristopher M.</creatorcontrib><description>Animals move their head and eyes as they explore the visual scene. Neural correlates of these movements have been found in rodent primary visual cortex (V1), but their sources and computational roles are unclear. We addressed this by combining head and eye movement measurements with neural recordings in freely moving mice. V1 neurons responded primarily to gaze shifts, where head movements are accompanied by saccadic eye movements, rather than to head movements where compensatory eye movements stabilize gaze. A variety of activity patterns followed gaze shifts and together these formed a temporal sequence that was absent in darkness. Gaze-shift responses resembled those evoked by sequentially flashed stimuli, suggesting a large component corresponds to onset of new visual input. Notably, neurons responded in a sequence that matches their spatial frequency bias, consistent with coarse-to-fine processing. Recordings in freely gazing marmosets revealed a similar sequence following saccades, also aligned to spatial frequency preference. Our results demonstrate that active vision in both mice and marmosets consists of a dynamic temporal sequence of neural activity associated with visual sampling.
Parker et al. recorded neural activity in V1 of freely moving mice and freely gazing marmosets. In both species, neurons respond to gaze shifts in a temporal sequence, such that new visual input is processed in a ‘coarse’ to ‘fine’ manner.</description><identifier>ISSN: 1097-6256</identifier><identifier>ISSN: 1546-1726</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-023-01481-7</identifier><identifier>PMID: 37996524</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/2613/1875 ; 631/378/2617/1795 ; 631/378/3917 ; 64/60 ; 9/10 ; Activity patterns ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Callithrix ; Darkness ; Eye Movements ; Fixation, Ocular ; Frequency dependence ; Head movement ; Head Movements - physiology ; Information processing ; Mice ; Neurobiology ; Neurons ; Neurosciences ; Saccades ; Saccadic eye movements ; Temporal lobe ; Visual cortex ; Visual Perception ; Visual stimuli</subject><ispartof>Nature neuroscience, 2023-12, Vol.26 (12), p.2192-2202</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-c1a8d18acf3eb62863b6d46b4e6585ea5a2812848ee98ce3d10707c52fc4b8cf3</citedby><cites>FETCH-LOGICAL-c475t-c1a8d18acf3eb62863b6d46b4e6585ea5a2812848ee98ce3d10707c52fc4b8cf3</cites><orcidid>0000-0003-0197-7545 ; 0000-0001-8322-5982 ; 0000-0001-9458-2694 ; 0000-0003-4689-388X ; 0000-0003-1637-4317 ; 0000-0001-6283-3540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41593-023-01481-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41593-023-01481-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37996524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parker, Philip R. L.</creatorcontrib><creatorcontrib>Martins, Dylan M.</creatorcontrib><creatorcontrib>Leonard, Emmalyn S. P.</creatorcontrib><creatorcontrib>Casey, Nathan M.</creatorcontrib><creatorcontrib>Sharp, Shelby L.</creatorcontrib><creatorcontrib>Abe, Elliott T. T.</creatorcontrib><creatorcontrib>Smear, Matthew C.</creatorcontrib><creatorcontrib>Yates, Jacob L.</creatorcontrib><creatorcontrib>Mitchell, Jude F.</creatorcontrib><creatorcontrib>Niell, Cristopher M.</creatorcontrib><title>A dynamic sequence of visual processing initiated by gaze shifts</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Animals move their head and eyes as they explore the visual scene. Neural correlates of these movements have been found in rodent primary visual cortex (V1), but their sources and computational roles are unclear. We addressed this by combining head and eye movement measurements with neural recordings in freely moving mice. V1 neurons responded primarily to gaze shifts, where head movements are accompanied by saccadic eye movements, rather than to head movements where compensatory eye movements stabilize gaze. A variety of activity patterns followed gaze shifts and together these formed a temporal sequence that was absent in darkness. Gaze-shift responses resembled those evoked by sequentially flashed stimuli, suggesting a large component corresponds to onset of new visual input. Notably, neurons responded in a sequence that matches their spatial frequency bias, consistent with coarse-to-fine processing. Recordings in freely gazing marmosets revealed a similar sequence following saccades, also aligned to spatial frequency preference. Our results demonstrate that active vision in both mice and marmosets consists of a dynamic temporal sequence of neural activity associated with visual sampling.
Parker et al. recorded neural activity in V1 of freely moving mice and freely gazing marmosets. In both species, neurons respond to gaze shifts in a temporal sequence, such that new visual input is processed in a ‘coarse’ to ‘fine’ manner.</description><subject>631/378/2613/1875</subject><subject>631/378/2617/1795</subject><subject>631/378/3917</subject><subject>64/60</subject><subject>9/10</subject><subject>Activity patterns</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Callithrix</subject><subject>Darkness</subject><subject>Eye Movements</subject><subject>Fixation, Ocular</subject><subject>Frequency dependence</subject><subject>Head movement</subject><subject>Head Movements - physiology</subject><subject>Information processing</subject><subject>Mice</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Saccades</subject><subject>Saccadic eye movements</subject><subject>Temporal lobe</subject><subject>Visual cortex</subject><subject>Visual Perception</subject><subject>Visual stimuli</subject><issn>1097-6256</issn><issn>1546-1726</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtr3DAUhUVoyav5A10EQTfduNVb16s2hL4g0E27FrJ8PVHwyFPJHpj8-iidJE276EJIcL9zrg6HkNecveNMwvuiuG5lw0Q9XAFv7AE55lqZhlthXtQ3a21jhDZH5KSUG8aY1dAekiNp29ZooY7Jxwva75Jfx0AL_lowBaTTQLexLH6kmzwFLCWmFY0pztHP2NNuR1f-Fmm5jsNcXpGXgx8Lnj3cp-Tn508_Lr82V9-_fLu8uGqCsnpuAvfQc_BhkNgZAUZ2plemU2g0aPTaC-ACFCC2EFD2nFlmgxZDUB1U1Sn5sPfdLN0a-4Bpzn50mxzXPu_c5KP7e5LitVtNW8e5sMxwVR3ePjjkqSYts1vHEnAcfcJpKU5AK0EqbqGib_5Bb6Ylp5rvntIarAFRKbGnQp5KyTg8_YYzd9-Q2zfkakPud0POVtH58xxPksdKKiD3QKmjtML8Z_d_bO8A-i6ccA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Parker, Philip R. L.</creator><creator>Martins, Dylan M.</creator><creator>Leonard, Emmalyn S. P.</creator><creator>Casey, Nathan M.</creator><creator>Sharp, Shelby L.</creator><creator>Abe, Elliott T. T.</creator><creator>Smear, Matthew C.</creator><creator>Yates, Jacob L.</creator><creator>Mitchell, Jude F.</creator><creator>Niell, Cristopher M.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0197-7545</orcidid><orcidid>https://orcid.org/0000-0001-8322-5982</orcidid><orcidid>https://orcid.org/0000-0001-9458-2694</orcidid><orcidid>https://orcid.org/0000-0003-4689-388X</orcidid><orcidid>https://orcid.org/0000-0003-1637-4317</orcidid><orcidid>https://orcid.org/0000-0001-6283-3540</orcidid></search><sort><creationdate>20231201</creationdate><title>A dynamic sequence of visual processing initiated by gaze shifts</title><author>Parker, Philip R. L. ; Martins, Dylan M. ; Leonard, Emmalyn S. P. ; Casey, Nathan M. ; Sharp, Shelby L. ; Abe, Elliott T. T. ; Smear, Matthew C. ; Yates, Jacob L. ; Mitchell, Jude F. ; Niell, Cristopher M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-c1a8d18acf3eb62863b6d46b4e6585ea5a2812848ee98ce3d10707c52fc4b8cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/378/2613/1875</topic><topic>631/378/2617/1795</topic><topic>631/378/3917</topic><topic>64/60</topic><topic>9/10</topic><topic>Activity patterns</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Callithrix</topic><topic>Darkness</topic><topic>Eye Movements</topic><topic>Fixation, Ocular</topic><topic>Frequency dependence</topic><topic>Head movement</topic><topic>Head Movements - physiology</topic><topic>Information processing</topic><topic>Mice</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Saccades</topic><topic>Saccadic eye movements</topic><topic>Temporal lobe</topic><topic>Visual cortex</topic><topic>Visual Perception</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parker, Philip R. L.</creatorcontrib><creatorcontrib>Martins, Dylan M.</creatorcontrib><creatorcontrib>Leonard, Emmalyn S. P.</creatorcontrib><creatorcontrib>Casey, Nathan M.</creatorcontrib><creatorcontrib>Sharp, Shelby L.</creatorcontrib><creatorcontrib>Abe, Elliott T. T.</creatorcontrib><creatorcontrib>Smear, Matthew C.</creatorcontrib><creatorcontrib>Yates, Jacob L.</creatorcontrib><creatorcontrib>Mitchell, Jude F.</creatorcontrib><creatorcontrib>Niell, Cristopher M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parker, Philip R. L.</au><au>Martins, Dylan M.</au><au>Leonard, Emmalyn S. P.</au><au>Casey, Nathan M.</au><au>Sharp, Shelby L.</au><au>Abe, Elliott T. T.</au><au>Smear, Matthew C.</au><au>Yates, Jacob L.</au><au>Mitchell, Jude F.</au><au>Niell, Cristopher M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamic sequence of visual processing initiated by gaze shifts</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>26</volume><issue>12</issue><spage>2192</spage><epage>2202</epage><pages>2192-2202</pages><issn>1097-6256</issn><issn>1546-1726</issn><eissn>1546-1726</eissn><abstract>Animals move their head and eyes as they explore the visual scene. Neural correlates of these movements have been found in rodent primary visual cortex (V1), but their sources and computational roles are unclear. We addressed this by combining head and eye movement measurements with neural recordings in freely moving mice. V1 neurons responded primarily to gaze shifts, where head movements are accompanied by saccadic eye movements, rather than to head movements where compensatory eye movements stabilize gaze. A variety of activity patterns followed gaze shifts and together these formed a temporal sequence that was absent in darkness. Gaze-shift responses resembled those evoked by sequentially flashed stimuli, suggesting a large component corresponds to onset of new visual input. Notably, neurons responded in a sequence that matches their spatial frequency bias, consistent with coarse-to-fine processing. Recordings in freely gazing marmosets revealed a similar sequence following saccades, also aligned to spatial frequency preference. Our results demonstrate that active vision in both mice and marmosets consists of a dynamic temporal sequence of neural activity associated with visual sampling.
Parker et al. recorded neural activity in V1 of freely moving mice and freely gazing marmosets. In both species, neurons respond to gaze shifts in a temporal sequence, such that new visual input is processed in a ‘coarse’ to ‘fine’ manner.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>37996524</pmid><doi>10.1038/s41593-023-01481-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0197-7545</orcidid><orcidid>https://orcid.org/0000-0001-8322-5982</orcidid><orcidid>https://orcid.org/0000-0001-9458-2694</orcidid><orcidid>https://orcid.org/0000-0003-4689-388X</orcidid><orcidid>https://orcid.org/0000-0003-1637-4317</orcidid><orcidid>https://orcid.org/0000-0001-6283-3540</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2023-12, Vol.26 (12), p.2192-2202 |
issn | 1097-6256 1546-1726 1546-1726 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11270614 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/378/2613/1875 631/378/2617/1795 631/378/3917 64/60 9/10 Activity patterns Animal Genetics and Genomics Animals Behavioral Sciences Biological Techniques Biomedical and Life Sciences Biomedicine Callithrix Darkness Eye Movements Fixation, Ocular Frequency dependence Head movement Head Movements - physiology Information processing Mice Neurobiology Neurons Neurosciences Saccades Saccadic eye movements Temporal lobe Visual cortex Visual Perception Visual stimuli |
title | A dynamic sequence of visual processing initiated by gaze shifts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamic%20sequence%20of%20visual%20processing%20initiated%20by%20gaze%20shifts&rft.jtitle=Nature%20neuroscience&rft.au=Parker,%20Philip%20R.%20L.&rft.date=2023-12-01&rft.volume=26&rft.issue=12&rft.spage=2192&rft.epage=2202&rft.pages=2192-2202&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-023-01481-7&rft_dat=%3Cproquest_pubme%3E2895587682%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895587682&rft_id=info:pmid/37996524&rfr_iscdi=true |