A dynamic sequence of visual processing initiated by gaze shifts

Animals move their head and eyes as they explore the visual scene. Neural correlates of these movements have been found in rodent primary visual cortex (V1), but their sources and computational roles are unclear. We addressed this by combining head and eye movement measurements with neural recording...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2023-12, Vol.26 (12), p.2192-2202
Hauptverfasser: Parker, Philip R. L., Martins, Dylan M., Leonard, Emmalyn S. P., Casey, Nathan M., Sharp, Shelby L., Abe, Elliott T. T., Smear, Matthew C., Yates, Jacob L., Mitchell, Jude F., Niell, Cristopher M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2202
container_issue 12
container_start_page 2192
container_title Nature neuroscience
container_volume 26
creator Parker, Philip R. L.
Martins, Dylan M.
Leonard, Emmalyn S. P.
Casey, Nathan M.
Sharp, Shelby L.
Abe, Elliott T. T.
Smear, Matthew C.
Yates, Jacob L.
Mitchell, Jude F.
Niell, Cristopher M.
description Animals move their head and eyes as they explore the visual scene. Neural correlates of these movements have been found in rodent primary visual cortex (V1), but their sources and computational roles are unclear. We addressed this by combining head and eye movement measurements with neural recordings in freely moving mice. V1 neurons responded primarily to gaze shifts, where head movements are accompanied by saccadic eye movements, rather than to head movements where compensatory eye movements stabilize gaze. A variety of activity patterns followed gaze shifts and together these formed a temporal sequence that was absent in darkness. Gaze-shift responses resembled those evoked by sequentially flashed stimuli, suggesting a large component corresponds to onset of new visual input. Notably, neurons responded in a sequence that matches their spatial frequency bias, consistent with coarse-to-fine processing. Recordings in freely gazing marmosets revealed a similar sequence following saccades, also aligned to spatial frequency preference. Our results demonstrate that active vision in both mice and marmosets consists of a dynamic temporal sequence of neural activity associated with visual sampling. Parker et al. recorded neural activity in V1 of freely moving mice and freely gazing marmosets. In both species, neurons respond to gaze shifts in a temporal sequence, such that new visual input is processed in a ‘coarse’ to ‘fine’ manner.
doi_str_mv 10.1038/s41593-023-01481-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11270614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895587682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-c1a8d18acf3eb62863b6d46b4e6585ea5a2812848ee98ce3d10707c52fc4b8cf3</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVoyav5A10EQTfduNVb16s2hL4g0E27FrJ8PVHwyFPJHpj8-iidJE276EJIcL9zrg6HkNecveNMwvuiuG5lw0Q9XAFv7AE55lqZhlthXtQ3a21jhDZH5KSUG8aY1dAekiNp29ZooY7Jxwva75Jfx0AL_lowBaTTQLexLH6kmzwFLCWmFY0pztHP2NNuR1f-Fmm5jsNcXpGXgx8Lnj3cp-Tn508_Lr82V9-_fLu8uGqCsnpuAvfQc_BhkNgZAUZ2plemU2g0aPTaC-ACFCC2EFD2nFlmgxZDUB1U1Sn5sPfdLN0a-4Bpzn50mxzXPu_c5KP7e5LitVtNW8e5sMxwVR3ePjjkqSYts1vHEnAcfcJpKU5AK0EqbqGib_5Bb6Ylp5rvntIarAFRKbGnQp5KyTg8_YYzd9-Q2zfkakPud0POVtH58xxPksdKKiD3QKmjtML8Z_d_bO8A-i6ccA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895587682</pqid></control><display><type>article</type><title>A dynamic sequence of visual processing initiated by gaze shifts</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Parker, Philip R. L. ; Martins, Dylan M. ; Leonard, Emmalyn S. P. ; Casey, Nathan M. ; Sharp, Shelby L. ; Abe, Elliott T. T. ; Smear, Matthew C. ; Yates, Jacob L. ; Mitchell, Jude F. ; Niell, Cristopher M.</creator><creatorcontrib>Parker, Philip R. L. ; Martins, Dylan M. ; Leonard, Emmalyn S. P. ; Casey, Nathan M. ; Sharp, Shelby L. ; Abe, Elliott T. T. ; Smear, Matthew C. ; Yates, Jacob L. ; Mitchell, Jude F. ; Niell, Cristopher M.</creatorcontrib><description>Animals move their head and eyes as they explore the visual scene. Neural correlates of these movements have been found in rodent primary visual cortex (V1), but their sources and computational roles are unclear. We addressed this by combining head and eye movement measurements with neural recordings in freely moving mice. V1 neurons responded primarily to gaze shifts, where head movements are accompanied by saccadic eye movements, rather than to head movements where compensatory eye movements stabilize gaze. A variety of activity patterns followed gaze shifts and together these formed a temporal sequence that was absent in darkness. Gaze-shift responses resembled those evoked by sequentially flashed stimuli, suggesting a large component corresponds to onset of new visual input. Notably, neurons responded in a sequence that matches their spatial frequency bias, consistent with coarse-to-fine processing. Recordings in freely gazing marmosets revealed a similar sequence following saccades, also aligned to spatial frequency preference. Our results demonstrate that active vision in both mice and marmosets consists of a dynamic temporal sequence of neural activity associated with visual sampling. Parker et al. recorded neural activity in V1 of freely moving mice and freely gazing marmosets. In both species, neurons respond to gaze shifts in a temporal sequence, such that new visual input is processed in a ‘coarse’ to ‘fine’ manner.</description><identifier>ISSN: 1097-6256</identifier><identifier>ISSN: 1546-1726</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-023-01481-7</identifier><identifier>PMID: 37996524</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/2613/1875 ; 631/378/2617/1795 ; 631/378/3917 ; 64/60 ; 9/10 ; Activity patterns ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Callithrix ; Darkness ; Eye Movements ; Fixation, Ocular ; Frequency dependence ; Head movement ; Head Movements - physiology ; Information processing ; Mice ; Neurobiology ; Neurons ; Neurosciences ; Saccades ; Saccadic eye movements ; Temporal lobe ; Visual cortex ; Visual Perception ; Visual stimuli</subject><ispartof>Nature neuroscience, 2023-12, Vol.26 (12), p.2192-2202</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-c1a8d18acf3eb62863b6d46b4e6585ea5a2812848ee98ce3d10707c52fc4b8cf3</citedby><cites>FETCH-LOGICAL-c475t-c1a8d18acf3eb62863b6d46b4e6585ea5a2812848ee98ce3d10707c52fc4b8cf3</cites><orcidid>0000-0003-0197-7545 ; 0000-0001-8322-5982 ; 0000-0001-9458-2694 ; 0000-0003-4689-388X ; 0000-0003-1637-4317 ; 0000-0001-6283-3540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41593-023-01481-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41593-023-01481-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37996524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parker, Philip R. L.</creatorcontrib><creatorcontrib>Martins, Dylan M.</creatorcontrib><creatorcontrib>Leonard, Emmalyn S. P.</creatorcontrib><creatorcontrib>Casey, Nathan M.</creatorcontrib><creatorcontrib>Sharp, Shelby L.</creatorcontrib><creatorcontrib>Abe, Elliott T. T.</creatorcontrib><creatorcontrib>Smear, Matthew C.</creatorcontrib><creatorcontrib>Yates, Jacob L.</creatorcontrib><creatorcontrib>Mitchell, Jude F.</creatorcontrib><creatorcontrib>Niell, Cristopher M.</creatorcontrib><title>A dynamic sequence of visual processing initiated by gaze shifts</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Animals move their head and eyes as they explore the visual scene. Neural correlates of these movements have been found in rodent primary visual cortex (V1), but their sources and computational roles are unclear. We addressed this by combining head and eye movement measurements with neural recordings in freely moving mice. V1 neurons responded primarily to gaze shifts, where head movements are accompanied by saccadic eye movements, rather than to head movements where compensatory eye movements stabilize gaze. A variety of activity patterns followed gaze shifts and together these formed a temporal sequence that was absent in darkness. Gaze-shift responses resembled those evoked by sequentially flashed stimuli, suggesting a large component corresponds to onset of new visual input. Notably, neurons responded in a sequence that matches their spatial frequency bias, consistent with coarse-to-fine processing. Recordings in freely gazing marmosets revealed a similar sequence following saccades, also aligned to spatial frequency preference. Our results demonstrate that active vision in both mice and marmosets consists of a dynamic temporal sequence of neural activity associated with visual sampling. Parker et al. recorded neural activity in V1 of freely moving mice and freely gazing marmosets. In both species, neurons respond to gaze shifts in a temporal sequence, such that new visual input is processed in a ‘coarse’ to ‘fine’ manner.</description><subject>631/378/2613/1875</subject><subject>631/378/2617/1795</subject><subject>631/378/3917</subject><subject>64/60</subject><subject>9/10</subject><subject>Activity patterns</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Callithrix</subject><subject>Darkness</subject><subject>Eye Movements</subject><subject>Fixation, Ocular</subject><subject>Frequency dependence</subject><subject>Head movement</subject><subject>Head Movements - physiology</subject><subject>Information processing</subject><subject>Mice</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Saccades</subject><subject>Saccadic eye movements</subject><subject>Temporal lobe</subject><subject>Visual cortex</subject><subject>Visual Perception</subject><subject>Visual stimuli</subject><issn>1097-6256</issn><issn>1546-1726</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtr3DAUhUVoyav5A10EQTfduNVb16s2hL4g0E27FrJ8PVHwyFPJHpj8-iidJE276EJIcL9zrg6HkNecveNMwvuiuG5lw0Q9XAFv7AE55lqZhlthXtQ3a21jhDZH5KSUG8aY1dAekiNp29ZooY7Jxwva75Jfx0AL_lowBaTTQLexLH6kmzwFLCWmFY0pztHP2NNuR1f-Fmm5jsNcXpGXgx8Lnj3cp-Tn508_Lr82V9-_fLu8uGqCsnpuAvfQc_BhkNgZAUZ2plemU2g0aPTaC-ACFCC2EFD2nFlmgxZDUB1U1Sn5sPfdLN0a-4Bpzn50mxzXPu_c5KP7e5LitVtNW8e5sMxwVR3ePjjkqSYts1vHEnAcfcJpKU5AK0EqbqGib_5Bb6Ylp5rvntIarAFRKbGnQp5KyTg8_YYzd9-Q2zfkakPud0POVtH58xxPksdKKiD3QKmjtML8Z_d_bO8A-i6ccA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Parker, Philip R. L.</creator><creator>Martins, Dylan M.</creator><creator>Leonard, Emmalyn S. P.</creator><creator>Casey, Nathan M.</creator><creator>Sharp, Shelby L.</creator><creator>Abe, Elliott T. T.</creator><creator>Smear, Matthew C.</creator><creator>Yates, Jacob L.</creator><creator>Mitchell, Jude F.</creator><creator>Niell, Cristopher M.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0197-7545</orcidid><orcidid>https://orcid.org/0000-0001-8322-5982</orcidid><orcidid>https://orcid.org/0000-0001-9458-2694</orcidid><orcidid>https://orcid.org/0000-0003-4689-388X</orcidid><orcidid>https://orcid.org/0000-0003-1637-4317</orcidid><orcidid>https://orcid.org/0000-0001-6283-3540</orcidid></search><sort><creationdate>20231201</creationdate><title>A dynamic sequence of visual processing initiated by gaze shifts</title><author>Parker, Philip R. L. ; Martins, Dylan M. ; Leonard, Emmalyn S. P. ; Casey, Nathan M. ; Sharp, Shelby L. ; Abe, Elliott T. T. ; Smear, Matthew C. ; Yates, Jacob L. ; Mitchell, Jude F. ; Niell, Cristopher M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-c1a8d18acf3eb62863b6d46b4e6585ea5a2812848ee98ce3d10707c52fc4b8cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/378/2613/1875</topic><topic>631/378/2617/1795</topic><topic>631/378/3917</topic><topic>64/60</topic><topic>9/10</topic><topic>Activity patterns</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Callithrix</topic><topic>Darkness</topic><topic>Eye Movements</topic><topic>Fixation, Ocular</topic><topic>Frequency dependence</topic><topic>Head movement</topic><topic>Head Movements - physiology</topic><topic>Information processing</topic><topic>Mice</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Saccades</topic><topic>Saccadic eye movements</topic><topic>Temporal lobe</topic><topic>Visual cortex</topic><topic>Visual Perception</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parker, Philip R. L.</creatorcontrib><creatorcontrib>Martins, Dylan M.</creatorcontrib><creatorcontrib>Leonard, Emmalyn S. P.</creatorcontrib><creatorcontrib>Casey, Nathan M.</creatorcontrib><creatorcontrib>Sharp, Shelby L.</creatorcontrib><creatorcontrib>Abe, Elliott T. T.</creatorcontrib><creatorcontrib>Smear, Matthew C.</creatorcontrib><creatorcontrib>Yates, Jacob L.</creatorcontrib><creatorcontrib>Mitchell, Jude F.</creatorcontrib><creatorcontrib>Niell, Cristopher M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parker, Philip R. L.</au><au>Martins, Dylan M.</au><au>Leonard, Emmalyn S. P.</au><au>Casey, Nathan M.</au><au>Sharp, Shelby L.</au><au>Abe, Elliott T. T.</au><au>Smear, Matthew C.</au><au>Yates, Jacob L.</au><au>Mitchell, Jude F.</au><au>Niell, Cristopher M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamic sequence of visual processing initiated by gaze shifts</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>26</volume><issue>12</issue><spage>2192</spage><epage>2202</epage><pages>2192-2202</pages><issn>1097-6256</issn><issn>1546-1726</issn><eissn>1546-1726</eissn><abstract>Animals move their head and eyes as they explore the visual scene. Neural correlates of these movements have been found in rodent primary visual cortex (V1), but their sources and computational roles are unclear. We addressed this by combining head and eye movement measurements with neural recordings in freely moving mice. V1 neurons responded primarily to gaze shifts, where head movements are accompanied by saccadic eye movements, rather than to head movements where compensatory eye movements stabilize gaze. A variety of activity patterns followed gaze shifts and together these formed a temporal sequence that was absent in darkness. Gaze-shift responses resembled those evoked by sequentially flashed stimuli, suggesting a large component corresponds to onset of new visual input. Notably, neurons responded in a sequence that matches their spatial frequency bias, consistent with coarse-to-fine processing. Recordings in freely gazing marmosets revealed a similar sequence following saccades, also aligned to spatial frequency preference. Our results demonstrate that active vision in both mice and marmosets consists of a dynamic temporal sequence of neural activity associated with visual sampling. Parker et al. recorded neural activity in V1 of freely moving mice and freely gazing marmosets. In both species, neurons respond to gaze shifts in a temporal sequence, such that new visual input is processed in a ‘coarse’ to ‘fine’ manner.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>37996524</pmid><doi>10.1038/s41593-023-01481-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0197-7545</orcidid><orcidid>https://orcid.org/0000-0001-8322-5982</orcidid><orcidid>https://orcid.org/0000-0001-9458-2694</orcidid><orcidid>https://orcid.org/0000-0003-4689-388X</orcidid><orcidid>https://orcid.org/0000-0003-1637-4317</orcidid><orcidid>https://orcid.org/0000-0001-6283-3540</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2023-12, Vol.26 (12), p.2192-2202
issn 1097-6256
1546-1726
1546-1726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11270614
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/378/2613/1875
631/378/2617/1795
631/378/3917
64/60
9/10
Activity patterns
Animal Genetics and Genomics
Animals
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Callithrix
Darkness
Eye Movements
Fixation, Ocular
Frequency dependence
Head movement
Head Movements - physiology
Information processing
Mice
Neurobiology
Neurons
Neurosciences
Saccades
Saccadic eye movements
Temporal lobe
Visual cortex
Visual Perception
Visual stimuli
title A dynamic sequence of visual processing initiated by gaze shifts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamic%20sequence%20of%20visual%20processing%20initiated%20by%20gaze%20shifts&rft.jtitle=Nature%20neuroscience&rft.au=Parker,%20Philip%20R.%20L.&rft.date=2023-12-01&rft.volume=26&rft.issue=12&rft.spage=2192&rft.epage=2202&rft.pages=2192-2202&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-023-01481-7&rft_dat=%3Cproquest_pubme%3E2895587682%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895587682&rft_id=info:pmid/37996524&rfr_iscdi=true