Gestational Diabetes Prevalence Estimates from Three Data Sources, 2018

Introduction We investigated 2018 gestational diabetes mellitus (GDM) prevalence estimates in three surveillance systems (National Vital Statistics System, State Inpatient Database, and Pregnancy Risk Assessment Monitoring Survey). Methods We calculated GDM prevalence for jurisdictions represented i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Maternal and child health journal 2024-08, Vol.28 (8), p.1308-1314
Hauptverfasser: Bolduc, Michele L.F., Mercado, Carla I., Zhang, Yan, Lundeen, Elizabeth A., Ford, Nicole D., Bullard, Kai McKeever, Carty, Denise C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1314
container_issue 8
container_start_page 1308
container_title Maternal and child health journal
container_volume 28
creator Bolduc, Michele L.F.
Mercado, Carla I.
Zhang, Yan
Lundeen, Elizabeth A.
Ford, Nicole D.
Bullard, Kai McKeever
Carty, Denise C.
description Introduction We investigated 2018 gestational diabetes mellitus (GDM) prevalence estimates in three surveillance systems (National Vital Statistics System, State Inpatient Database, and Pregnancy Risk Assessment Monitoring Survey). Methods We calculated GDM prevalence for jurisdictions represented in each system; a subset of data was analyzed for people 18–39 years old in 22 jurisdictions present in all three systems to observe dataset-specific demographics and GDM prevalence using comparable categories. Results GDM prevalence estimates varied widely by data system and within the data subset despite comparable demographics. Discussion Understanding the differences between GDM surveillance data systems can help researchers better identify people and places at higher risk of GDM. Significance What is Already Known on this Subject? Gestational diabetes mellitus (GDM) prevalence varies by data system and population. Estimates of GDM prevalence are essential to inform prevention, identification, and management programs. What this Report Adds? GDM prevalence estimates varied widely by data system (NVSS, SID, PRAMS) and participant demographics varied only slightly when a subset of comparable data were evaluated using jurisdictions available in all three systems (21 states and the District of Columbia). Understanding the differences between surveillance data systems can help researchers better identify people and places at higher risk of GDM.
doi_str_mv 10.1007/s10995-024-03935-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11269331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3061784406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-a7f509d9dbcfee92649fe4365d3cecabc14e88f796c430c0e7e692023b24563b3</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMovv-ACym4cWH15tlkJeJjFAQFdR3SzK1WOq0mHcF_b-qM42PhKiH3uyfn3kPIDoVDClAcRQrGyByYyIEbLnO6RNapLHiuFNPL6Q6G5YUu5BrZiPEZILWBWCVrXGswAuQ6GY0w9q6vu9Y12VntSuwxZrcB31yDrcfsPPb1xA2PVegm2f1TQMzOXO-yu24aPMaDjAHVW2Slck3E7fm5SR4uzu9PL_Prm9HV6cl17rlUfe6KSoIZm3HpK0TDlDAVCq7kmHv0rvRUoNZVYZQXHDxggcowYLxkQipe8k1yPNN9mZYTHHts--Aa-xKSyfBuO1fb35W2frKP3ZullCnDOU0K-3OF0L1O0_R2UkePTeNa7KbRclC00EKASujeH_Q5zZw2NVBapG1SMVBsRvnQxRiwWrihYIeg7Cwom4Kyn0HZwcXuzzkWLV_JJIDPgJhK7SOG77__kf0A20mdbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084100146</pqid></control><display><type>article</type><title>Gestational Diabetes Prevalence Estimates from Three Data Sources, 2018</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Bolduc, Michele L.F. ; Mercado, Carla I. ; Zhang, Yan ; Lundeen, Elizabeth A. ; Ford, Nicole D. ; Bullard, Kai McKeever ; Carty, Denise C.</creator><creatorcontrib>Bolduc, Michele L.F. ; Mercado, Carla I. ; Zhang, Yan ; Lundeen, Elizabeth A. ; Ford, Nicole D. ; Bullard, Kai McKeever ; Carty, Denise C.</creatorcontrib><description>Introduction We investigated 2018 gestational diabetes mellitus (GDM) prevalence estimates in three surveillance systems (National Vital Statistics System, State Inpatient Database, and Pregnancy Risk Assessment Monitoring Survey). Methods We calculated GDM prevalence for jurisdictions represented in each system; a subset of data was analyzed for people 18–39 years old in 22 jurisdictions present in all three systems to observe dataset-specific demographics and GDM prevalence using comparable categories. Results GDM prevalence estimates varied widely by data system and within the data subset despite comparable demographics. Discussion Understanding the differences between GDM surveillance data systems can help researchers better identify people and places at higher risk of GDM. Significance What is Already Known on this Subject? Gestational diabetes mellitus (GDM) prevalence varies by data system and population. Estimates of GDM prevalence are essential to inform prevention, identification, and management programs. What this Report Adds? GDM prevalence estimates varied widely by data system (NVSS, SID, PRAMS) and participant demographics varied only slightly when a subset of comparable data were evaluated using jurisdictions available in all three systems (21 states and the District of Columbia). Understanding the differences between surveillance data systems can help researchers better identify people and places at higher risk of GDM.</description><identifier>ISSN: 1092-7875</identifier><identifier>ISSN: 1573-6628</identifier><identifier>EISSN: 1573-6628</identifier><identifier>DOI: 10.1007/s10995-024-03935-1</identifier><identifier>PMID: 38809405</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adolescent ; Adult ; Brief Report ; Databases, Factual ; Demographics ; Diabetes, Gestational - epidemiology ; Female ; Gestational diabetes ; Gynecology ; Humans ; Information Sources ; Jurisdiction ; Maternal and Child Health ; Medicine ; Medicine &amp; Public Health ; Pediatrics ; Population Economics ; Population Surveillance - methods ; Pregnancy ; Prevalence ; Public Health ; Risk assessment ; Risk Assessment - methods ; Sociology ; Surveillance ; United States - epidemiology ; Vital statistics ; Young Adult</subject><ispartof>Maternal and child health journal, 2024-08, Vol.28 (8), p.1308-1314</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024</rights><rights>2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-a7f509d9dbcfee92649fe4365d3cecabc14e88f796c430c0e7e692023b24563b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10995-024-03935-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10995-024-03935-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38809405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bolduc, Michele L.F.</creatorcontrib><creatorcontrib>Mercado, Carla I.</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Lundeen, Elizabeth A.</creatorcontrib><creatorcontrib>Ford, Nicole D.</creatorcontrib><creatorcontrib>Bullard, Kai McKeever</creatorcontrib><creatorcontrib>Carty, Denise C.</creatorcontrib><title>Gestational Diabetes Prevalence Estimates from Three Data Sources, 2018</title><title>Maternal and child health journal</title><addtitle>Matern Child Health J</addtitle><addtitle>Matern Child Health J</addtitle><description>Introduction We investigated 2018 gestational diabetes mellitus (GDM) prevalence estimates in three surveillance systems (National Vital Statistics System, State Inpatient Database, and Pregnancy Risk Assessment Monitoring Survey). Methods We calculated GDM prevalence for jurisdictions represented in each system; a subset of data was analyzed for people 18–39 years old in 22 jurisdictions present in all three systems to observe dataset-specific demographics and GDM prevalence using comparable categories. Results GDM prevalence estimates varied widely by data system and within the data subset despite comparable demographics. Discussion Understanding the differences between GDM surveillance data systems can help researchers better identify people and places at higher risk of GDM. Significance What is Already Known on this Subject? Gestational diabetes mellitus (GDM) prevalence varies by data system and population. Estimates of GDM prevalence are essential to inform prevention, identification, and management programs. What this Report Adds? GDM prevalence estimates varied widely by data system (NVSS, SID, PRAMS) and participant demographics varied only slightly when a subset of comparable data were evaluated using jurisdictions available in all three systems (21 states and the District of Columbia). Understanding the differences between surveillance data systems can help researchers better identify people and places at higher risk of GDM.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Brief Report</subject><subject>Databases, Factual</subject><subject>Demographics</subject><subject>Diabetes, Gestational - epidemiology</subject><subject>Female</subject><subject>Gestational diabetes</subject><subject>Gynecology</subject><subject>Humans</subject><subject>Information Sources</subject><subject>Jurisdiction</subject><subject>Maternal and Child Health</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Pediatrics</subject><subject>Population Economics</subject><subject>Population Surveillance - methods</subject><subject>Pregnancy</subject><subject>Prevalence</subject><subject>Public Health</subject><subject>Risk assessment</subject><subject>Risk Assessment - methods</subject><subject>Sociology</subject><subject>Surveillance</subject><subject>United States - epidemiology</subject><subject>Vital statistics</subject><subject>Young Adult</subject><issn>1092-7875</issn><issn>1573-6628</issn><issn>1573-6628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtLxDAUhYMovv-ACym4cWH15tlkJeJjFAQFdR3SzK1WOq0mHcF_b-qM42PhKiH3uyfn3kPIDoVDClAcRQrGyByYyIEbLnO6RNapLHiuFNPL6Q6G5YUu5BrZiPEZILWBWCVrXGswAuQ6GY0w9q6vu9Y12VntSuwxZrcB31yDrcfsPPb1xA2PVegm2f1TQMzOXO-yu24aPMaDjAHVW2Slck3E7fm5SR4uzu9PL_Prm9HV6cl17rlUfe6KSoIZm3HpK0TDlDAVCq7kmHv0rvRUoNZVYZQXHDxggcowYLxkQipe8k1yPNN9mZYTHHts--Aa-xKSyfBuO1fb35W2frKP3ZullCnDOU0K-3OF0L1O0_R2UkePTeNa7KbRclC00EKASujeH_Q5zZw2NVBapG1SMVBsRvnQxRiwWrihYIeg7Cwom4Kyn0HZwcXuzzkWLV_JJIDPgJhK7SOG77__kf0A20mdbQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Bolduc, Michele L.F.</creator><creator>Mercado, Carla I.</creator><creator>Zhang, Yan</creator><creator>Lundeen, Elizabeth A.</creator><creator>Ford, Nicole D.</creator><creator>Bullard, Kai McKeever</creator><creator>Carty, Denise C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240801</creationdate><title>Gestational Diabetes Prevalence Estimates from Three Data Sources, 2018</title><author>Bolduc, Michele L.F. ; Mercado, Carla I. ; Zhang, Yan ; Lundeen, Elizabeth A. ; Ford, Nicole D. ; Bullard, Kai McKeever ; Carty, Denise C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-a7f509d9dbcfee92649fe4365d3cecabc14e88f796c430c0e7e692023b24563b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Brief Report</topic><topic>Databases, Factual</topic><topic>Demographics</topic><topic>Diabetes, Gestational - epidemiology</topic><topic>Female</topic><topic>Gestational diabetes</topic><topic>Gynecology</topic><topic>Humans</topic><topic>Information Sources</topic><topic>Jurisdiction</topic><topic>Maternal and Child Health</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Pediatrics</topic><topic>Population Economics</topic><topic>Population Surveillance - methods</topic><topic>Pregnancy</topic><topic>Prevalence</topic><topic>Public Health</topic><topic>Risk assessment</topic><topic>Risk Assessment - methods</topic><topic>Sociology</topic><topic>Surveillance</topic><topic>United States - epidemiology</topic><topic>Vital statistics</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bolduc, Michele L.F.</creatorcontrib><creatorcontrib>Mercado, Carla I.</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Lundeen, Elizabeth A.</creatorcontrib><creatorcontrib>Ford, Nicole D.</creatorcontrib><creatorcontrib>Bullard, Kai McKeever</creatorcontrib><creatorcontrib>Carty, Denise C.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Maternal and child health journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolduc, Michele L.F.</au><au>Mercado, Carla I.</au><au>Zhang, Yan</au><au>Lundeen, Elizabeth A.</au><au>Ford, Nicole D.</au><au>Bullard, Kai McKeever</au><au>Carty, Denise C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gestational Diabetes Prevalence Estimates from Three Data Sources, 2018</atitle><jtitle>Maternal and child health journal</jtitle><stitle>Matern Child Health J</stitle><addtitle>Matern Child Health J</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>28</volume><issue>8</issue><spage>1308</spage><epage>1314</epage><pages>1308-1314</pages><issn>1092-7875</issn><issn>1573-6628</issn><eissn>1573-6628</eissn><abstract>Introduction We investigated 2018 gestational diabetes mellitus (GDM) prevalence estimates in three surveillance systems (National Vital Statistics System, State Inpatient Database, and Pregnancy Risk Assessment Monitoring Survey). Methods We calculated GDM prevalence for jurisdictions represented in each system; a subset of data was analyzed for people 18–39 years old in 22 jurisdictions present in all three systems to observe dataset-specific demographics and GDM prevalence using comparable categories. Results GDM prevalence estimates varied widely by data system and within the data subset despite comparable demographics. Discussion Understanding the differences between GDM surveillance data systems can help researchers better identify people and places at higher risk of GDM. Significance What is Already Known on this Subject? Gestational diabetes mellitus (GDM) prevalence varies by data system and population. Estimates of GDM prevalence are essential to inform prevention, identification, and management programs. What this Report Adds? GDM prevalence estimates varied widely by data system (NVSS, SID, PRAMS) and participant demographics varied only slightly when a subset of comparable data were evaluated using jurisdictions available in all three systems (21 states and the District of Columbia). Understanding the differences between surveillance data systems can help researchers better identify people and places at higher risk of GDM.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>38809405</pmid><doi>10.1007/s10995-024-03935-1</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1092-7875
ispartof Maternal and child health journal, 2024-08, Vol.28 (8), p.1308-1314
issn 1092-7875
1573-6628
1573-6628
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11269331
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Adolescent
Adult
Brief Report
Databases, Factual
Demographics
Diabetes, Gestational - epidemiology
Female
Gestational diabetes
Gynecology
Humans
Information Sources
Jurisdiction
Maternal and Child Health
Medicine
Medicine & Public Health
Pediatrics
Population Economics
Population Surveillance - methods
Pregnancy
Prevalence
Public Health
Risk assessment
Risk Assessment - methods
Sociology
Surveillance
United States - epidemiology
Vital statistics
Young Adult
title Gestational Diabetes Prevalence Estimates from Three Data Sources, 2018
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A18%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gestational%20Diabetes%20Prevalence%20Estimates%20from%20Three%20Data%20Sources,%202018&rft.jtitle=Maternal%20and%20child%20health%20journal&rft.au=Bolduc,%20Michele%20L.F.&rft.date=2024-08-01&rft.volume=28&rft.issue=8&rft.spage=1308&rft.epage=1314&rft.pages=1308-1314&rft.issn=1092-7875&rft.eissn=1573-6628&rft_id=info:doi/10.1007/s10995-024-03935-1&rft_dat=%3Cproquest_pubme%3E3061784406%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084100146&rft_id=info:pmid/38809405&rfr_iscdi=true