HERMES: Holographic Equivariant neuRal network model for Mutational Effect and Stability prediction

Predicting the stability and fitness effects of amino acid mutations in proteins is a cornerstone of biological discovery and engineering. Various experimental techniques have been developed to measure mutational effects, providing us with extensive datasets across a diverse range of proteins. By tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ArXiv.org 2024-07
Hauptverfasser: Visani, Gian Marco, Pun, Michael N, Galvin, William, Daniel, Eric, Borisiak, Kevin, Wagura, Utheri, Nourmohammad, Armita
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title ArXiv.org
container_volume
creator Visani, Gian Marco
Pun, Michael N
Galvin, William
Daniel, Eric
Borisiak, Kevin
Wagura, Utheri
Nourmohammad, Armita
description Predicting the stability and fitness effects of amino acid mutations in proteins is a cornerstone of biological discovery and engineering. Various experimental techniques have been developed to measure mutational effects, providing us with extensive datasets across a diverse range of proteins. By training on these data, traditional computational modeling and more recent machine learning approaches have advanced significantly in predicting mutational effects. Here, we introduce HERMES, a 3D rotationally equivariant structure-based neural network model for mutational effect and stability prediction. Pre-trained to predict amino acid propensity from its surrounding 3D structure, HERMES can be fine-tuned for mutational effects using our open-source code. We present a suite of HERMES models, pre-trained with different strategies, and fine-tuned to predict the stability effect of mutations. Benchmarking against other models shows that HERMES often outperforms or matches their performance in predicting mutational effect on stability, binding, and fitness. HERMES offers versatile tools for evaluating mutational effects and can be fine-tuned for specific predictive objectives.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11261993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083680088</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1123-10364cb20146bdca00d29b98acd5409909ff76a7e354f01e5d789ea6756bfe0a3</originalsourceid><addsrcrecordid>eNpVkF1LwzAUhosobsz9BcmlN4PTpE0bb0RGdcKGsOl1OU3TLZo2XZpO9u-t-MG8eg-8L88D5ywYU8bCWRpRen5yj4Jp170BAOUJjWN2GYyYgAh4BONALrL1KtvckoU1duuw3WlJsn2vD-g0Np40ql-jGcJ_WPdOalsqQyrryKr36LVthjKrKiU9waYkG4-FNtofSetUqeXX4iq4qNB0avqTk-D1IXuZL2bL58en-f1y1oYhZbMQGI9kQSGMeFFKBCipKESKsowjEAJEVSUcE8XiqIJQxWWSCoU8iXlRKUA2Ce6-uW1f1KqUqvEOTd46XaM75hZ1_r9p9C7f2kM-6HkoBBsINz8EZ_e96nxe604qY7BRtu9yBinjKUCaDtPrU9mf5fe17BPK2ng_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083680088</pqid></control><display><type>article</type><title>HERMES: Holographic Equivariant neuRal network model for Mutational Effect and Stability prediction</title><source>Free E- Journals</source><creator>Visani, Gian Marco ; Pun, Michael N ; Galvin, William ; Daniel, Eric ; Borisiak, Kevin ; Wagura, Utheri ; Nourmohammad, Armita</creator><creatorcontrib>Visani, Gian Marco ; Pun, Michael N ; Galvin, William ; Daniel, Eric ; Borisiak, Kevin ; Wagura, Utheri ; Nourmohammad, Armita</creatorcontrib><description>Predicting the stability and fitness effects of amino acid mutations in proteins is a cornerstone of biological discovery and engineering. Various experimental techniques have been developed to measure mutational effects, providing us with extensive datasets across a diverse range of proteins. By training on these data, traditional computational modeling and more recent machine learning approaches have advanced significantly in predicting mutational effects. Here, we introduce HERMES, a 3D rotationally equivariant structure-based neural network model for mutational effect and stability prediction. Pre-trained to predict amino acid propensity from its surrounding 3D structure, HERMES can be fine-tuned for mutational effects using our open-source code. We present a suite of HERMES models, pre-trained with different strategies, and fine-tuned to predict the stability effect of mutations. Benchmarking against other models shows that HERMES often outperforms or matches their performance in predicting mutational effect on stability, binding, and fitness. HERMES offers versatile tools for evaluating mutational effects and can be fine-tuned for specific predictive objectives.</description><identifier>ISSN: 2331-8422</identifier><identifier>EISSN: 2331-8422</identifier><identifier>PMID: 39040640</identifier><language>eng</language><publisher>United States: Cornell University</publisher><ispartof>ArXiv.org, 2024-07</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39040640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Visani, Gian Marco</creatorcontrib><creatorcontrib>Pun, Michael N</creatorcontrib><creatorcontrib>Galvin, William</creatorcontrib><creatorcontrib>Daniel, Eric</creatorcontrib><creatorcontrib>Borisiak, Kevin</creatorcontrib><creatorcontrib>Wagura, Utheri</creatorcontrib><creatorcontrib>Nourmohammad, Armita</creatorcontrib><title>HERMES: Holographic Equivariant neuRal network model for Mutational Effect and Stability prediction</title><title>ArXiv.org</title><addtitle>ArXiv</addtitle><description>Predicting the stability and fitness effects of amino acid mutations in proteins is a cornerstone of biological discovery and engineering. Various experimental techniques have been developed to measure mutational effects, providing us with extensive datasets across a diverse range of proteins. By training on these data, traditional computational modeling and more recent machine learning approaches have advanced significantly in predicting mutational effects. Here, we introduce HERMES, a 3D rotationally equivariant structure-based neural network model for mutational effect and stability prediction. Pre-trained to predict amino acid propensity from its surrounding 3D structure, HERMES can be fine-tuned for mutational effects using our open-source code. We present a suite of HERMES models, pre-trained with different strategies, and fine-tuned to predict the stability effect of mutations. Benchmarking against other models shows that HERMES often outperforms or matches their performance in predicting mutational effect on stability, binding, and fitness. HERMES offers versatile tools for evaluating mutational effects and can be fine-tuned for specific predictive objectives.</description><issn>2331-8422</issn><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkF1LwzAUhosobsz9BcmlN4PTpE0bb0RGdcKGsOl1OU3TLZo2XZpO9u-t-MG8eg-8L88D5ywYU8bCWRpRen5yj4Jp170BAOUJjWN2GYyYgAh4BONALrL1KtvckoU1duuw3WlJsn2vD-g0Np40ql-jGcJ_WPdOalsqQyrryKr36LVthjKrKiU9waYkG4-FNtofSetUqeXX4iq4qNB0avqTk-D1IXuZL2bL58en-f1y1oYhZbMQGI9kQSGMeFFKBCipKESKsowjEAJEVSUcE8XiqIJQxWWSCoU8iXlRKUA2Ce6-uW1f1KqUqvEOTd46XaM75hZ1_r9p9C7f2kM-6HkoBBsINz8EZ_e96nxe604qY7BRtu9yBinjKUCaDtPrU9mf5fe17BPK2ng_</recordid><startdate>20240709</startdate><enddate>20240709</enddate><creator>Visani, Gian Marco</creator><creator>Pun, Michael N</creator><creator>Galvin, William</creator><creator>Daniel, Eric</creator><creator>Borisiak, Kevin</creator><creator>Wagura, Utheri</creator><creator>Nourmohammad, Armita</creator><general>Cornell University</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240709</creationdate><title>HERMES: Holographic Equivariant neuRal network model for Mutational Effect and Stability prediction</title><author>Visani, Gian Marco ; Pun, Michael N ; Galvin, William ; Daniel, Eric ; Borisiak, Kevin ; Wagura, Utheri ; Nourmohammad, Armita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1123-10364cb20146bdca00d29b98acd5409909ff76a7e354f01e5d789ea6756bfe0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Visani, Gian Marco</creatorcontrib><creatorcontrib>Pun, Michael N</creatorcontrib><creatorcontrib>Galvin, William</creatorcontrib><creatorcontrib>Daniel, Eric</creatorcontrib><creatorcontrib>Borisiak, Kevin</creatorcontrib><creatorcontrib>Wagura, Utheri</creatorcontrib><creatorcontrib>Nourmohammad, Armita</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ArXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Visani, Gian Marco</au><au>Pun, Michael N</au><au>Galvin, William</au><au>Daniel, Eric</au><au>Borisiak, Kevin</au><au>Wagura, Utheri</au><au>Nourmohammad, Armita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HERMES: Holographic Equivariant neuRal network model for Mutational Effect and Stability prediction</atitle><jtitle>ArXiv.org</jtitle><addtitle>ArXiv</addtitle><date>2024-07-09</date><risdate>2024</risdate><issn>2331-8422</issn><eissn>2331-8422</eissn><abstract>Predicting the stability and fitness effects of amino acid mutations in proteins is a cornerstone of biological discovery and engineering. Various experimental techniques have been developed to measure mutational effects, providing us with extensive datasets across a diverse range of proteins. By training on these data, traditional computational modeling and more recent machine learning approaches have advanced significantly in predicting mutational effects. Here, we introduce HERMES, a 3D rotationally equivariant structure-based neural network model for mutational effect and stability prediction. Pre-trained to predict amino acid propensity from its surrounding 3D structure, HERMES can be fine-tuned for mutational effects using our open-source code. We present a suite of HERMES models, pre-trained with different strategies, and fine-tuned to predict the stability effect of mutations. Benchmarking against other models shows that HERMES often outperforms or matches their performance in predicting mutational effect on stability, binding, and fitness. HERMES offers versatile tools for evaluating mutational effects and can be fine-tuned for specific predictive objectives.</abstract><cop>United States</cop><pub>Cornell University</pub><pmid>39040640</pmid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2331-8422
ispartof ArXiv.org, 2024-07
issn 2331-8422
2331-8422
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11261993
source Free E- Journals
title HERMES: Holographic Equivariant neuRal network model for Mutational Effect and Stability prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HERMES:%20Holographic%20Equivariant%20neuRal%20network%20model%20for%20Mutational%20Effect%20and%20Stability%20prediction&rft.jtitle=ArXiv.org&rft.au=Visani,%20Gian%20Marco&rft.date=2024-07-09&rft.issn=2331-8422&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E3083680088%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083680088&rft_id=info:pmid/39040640&rfr_iscdi=true