Adsorption in Pyrene-Based Metal–Organic Frameworks: The Role of Pore Structure and Topology

Pore topology and chemistry play crucial roles in the adsorption characteristics of metal–organic frameworks (MOFs). To deepen our understanding of the interactions between MOFs and CO2 during this process, we systematically investigate the adsorption properties of a group of pyrene-based MOFs. Thes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-07, Vol.16 (28), p.36586-36598
Hauptverfasser: Pougin, Miriam J., Domingues, Nency P., Uran, F. Pelin, Ortega-Guerrero, Andres, Ireland, Christopher P., Espín, Jordi, Lee Queen, Wendy, Smit, Berend
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36598
container_issue 28
container_start_page 36586
container_title ACS applied materials & interfaces
container_volume 16
creator Pougin, Miriam J.
Domingues, Nency P.
Uran, F. Pelin
Ortega-Guerrero, Andres
Ireland, Christopher P.
Espín, Jordi
Lee Queen, Wendy
Smit, Berend
description Pore topology and chemistry play crucial roles in the adsorption characteristics of metal–organic frameworks (MOFs). To deepen our understanding of the interactions between MOFs and CO2 during this process, we systematically investigate the adsorption properties of a group of pyrene-based MOFs. These MOFs feature Zn­(II) as the metal ion and employ a pyrene-based ligand, specifically 1,3,6,8-tetrakis­(p-benzoic acid)­pyrene (TBAPy). Including different additional ligands leads to frameworks with distinctive structural and chemical features. By comparing these structures, we could isolate the role that pore size, the presence of open-metal sites (OMS), metal–oxygen bridges, and framework charges play in the CO2 adsorption of these MOFs. Frameworks with constricted pore structures display a phenomenon known as the confinement effect, fostering stronger MOF–CO2 interactions and higher uptakes at low pressures. In contrast, entropic effects dominate at elevated pressures, and the MOF’s pore volume becomes the driving factor. Through analysis of the CO2 uptakes of the benchmark materials some with narrower pores and others with larger pore volumesit becomes evident that structures with narrower pores and high binding energies excel at low pressures. In contrast, those with larger volumes perform better at elevated pressures. Moreover, this research highlights that open-metal sites and inherent charges within the frameworks of ionic MOFs stand out as CO2-philic characteristics.
doi_str_mv 10.1021/acsami.4c05527
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11261566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082305070</sourcerecordid><originalsourceid>FETCH-LOGICAL-a311t-e4a565eef2fbfa6194c02fd2f32ca5898717ac103e6f9b8aaad316570fb69ffb3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi1ERUvhyhH5iJCy9UfsJL1UpeqXVNQKlivWxBlv0yb21k6K9sZ_4B_yS0i1y6ocOM1I88w7r-Yl5B1nM84EPwCboG9nuWVKieIF2eNVnmelUOLlts_zXfI6pTvGtBRMvSK7sqyKUlTFHvl-3KQQl0MbPG09vVlF9Jh9goQN_YwDdL9__rqOC_CtpWcRevwR4n06pPNbpF9ChzQ4ehMi0q9DHO0wTh34hs7DMnRhsXpDdhx0Cd9u6j75dnY6P7nIrq7PL0-OrzKQnA8Z5qC0QnTC1Q705Nsy4RrhpLCgyqoseAGWM4naVXUJAI3kWhXM1bpyrpb75GituxzrHhuLfojQmWVse4grE6A1_058e2sW4dFwLjRXWk8KHzYKMTyMmAbTt8li14HHMCYjWSkkU6xgEzpbozaGlCK67R3OzFMqZp2K2aQyLbx_7m6L_41hAj6ugWnR3IUx-ulZ_1P7A-xHmqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082305070</pqid></control><display><type>article</type><title>Adsorption in Pyrene-Based Metal–Organic Frameworks: The Role of Pore Structure and Topology</title><source>ACS Publications</source><creator>Pougin, Miriam J. ; Domingues, Nency P. ; Uran, F. Pelin ; Ortega-Guerrero, Andres ; Ireland, Christopher P. ; Espín, Jordi ; Lee Queen, Wendy ; Smit, Berend</creator><creatorcontrib>Pougin, Miriam J. ; Domingues, Nency P. ; Uran, F. Pelin ; Ortega-Guerrero, Andres ; Ireland, Christopher P. ; Espín, Jordi ; Lee Queen, Wendy ; Smit, Berend</creatorcontrib><description>Pore topology and chemistry play crucial roles in the adsorption characteristics of metal–organic frameworks (MOFs). To deepen our understanding of the interactions between MOFs and CO2 during this process, we systematically investigate the adsorption properties of a group of pyrene-based MOFs. These MOFs feature Zn­(II) as the metal ion and employ a pyrene-based ligand, specifically 1,3,6,8-tetrakis­(p-benzoic acid)­pyrene (TBAPy). Including different additional ligands leads to frameworks with distinctive structural and chemical features. By comparing these structures, we could isolate the role that pore size, the presence of open-metal sites (OMS), metal–oxygen bridges, and framework charges play in the CO2 adsorption of these MOFs. Frameworks with constricted pore structures display a phenomenon known as the confinement effect, fostering stronger MOF–CO2 interactions and higher uptakes at low pressures. In contrast, entropic effects dominate at elevated pressures, and the MOF’s pore volume becomes the driving factor. Through analysis of the CO2 uptakes of the benchmark materials some with narrower pores and others with larger pore volumesit becomes evident that structures with narrower pores and high binding energies excel at low pressures. In contrast, those with larger volumes perform better at elevated pressures. Moreover, this research highlights that open-metal sites and inherent charges within the frameworks of ionic MOFs stand out as CO2-philic characteristics.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c05527</identifier><identifier>PMID: 38978297</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Inorganic Materials and Devices</subject><ispartof>ACS applied materials &amp; interfaces, 2024-07, Vol.16 (28), p.36586-36598</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a311t-e4a565eef2fbfa6194c02fd2f32ca5898717ac103e6f9b8aaad316570fb69ffb3</cites><orcidid>0000-0002-0065-0623 ; 0000-0003-4653-8562 ; 0000-0002-8375-2341 ; 0000-0003-3010-7450 ; 0000-0001-6381-6259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c05527$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c05527$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38978297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pougin, Miriam J.</creatorcontrib><creatorcontrib>Domingues, Nency P.</creatorcontrib><creatorcontrib>Uran, F. Pelin</creatorcontrib><creatorcontrib>Ortega-Guerrero, Andres</creatorcontrib><creatorcontrib>Ireland, Christopher P.</creatorcontrib><creatorcontrib>Espín, Jordi</creatorcontrib><creatorcontrib>Lee Queen, Wendy</creatorcontrib><creatorcontrib>Smit, Berend</creatorcontrib><title>Adsorption in Pyrene-Based Metal–Organic Frameworks: The Role of Pore Structure and Topology</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Pore topology and chemistry play crucial roles in the adsorption characteristics of metal–organic frameworks (MOFs). To deepen our understanding of the interactions between MOFs and CO2 during this process, we systematically investigate the adsorption properties of a group of pyrene-based MOFs. These MOFs feature Zn­(II) as the metal ion and employ a pyrene-based ligand, specifically 1,3,6,8-tetrakis­(p-benzoic acid)­pyrene (TBAPy). Including different additional ligands leads to frameworks with distinctive structural and chemical features. By comparing these structures, we could isolate the role that pore size, the presence of open-metal sites (OMS), metal–oxygen bridges, and framework charges play in the CO2 adsorption of these MOFs. Frameworks with constricted pore structures display a phenomenon known as the confinement effect, fostering stronger MOF–CO2 interactions and higher uptakes at low pressures. In contrast, entropic effects dominate at elevated pressures, and the MOF’s pore volume becomes the driving factor. Through analysis of the CO2 uptakes of the benchmark materials some with narrower pores and others with larger pore volumesit becomes evident that structures with narrower pores and high binding energies excel at low pressures. In contrast, those with larger volumes perform better at elevated pressures. Moreover, this research highlights that open-metal sites and inherent charges within the frameworks of ionic MOFs stand out as CO2-philic characteristics.</description><subject>Functional Inorganic Materials and Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU1v1DAQhi1ERUvhyhH5iJCy9UfsJL1UpeqXVNQKlivWxBlv0yb21k6K9sZ_4B_yS0i1y6ocOM1I88w7r-Yl5B1nM84EPwCboG9nuWVKieIF2eNVnmelUOLlts_zXfI6pTvGtBRMvSK7sqyKUlTFHvl-3KQQl0MbPG09vVlF9Jh9goQN_YwDdL9__rqOC_CtpWcRevwR4n06pPNbpF9ChzQ4ehMi0q9DHO0wTh34hs7DMnRhsXpDdhx0Cd9u6j75dnY6P7nIrq7PL0-OrzKQnA8Z5qC0QnTC1Q705Nsy4RrhpLCgyqoseAGWM4naVXUJAI3kWhXM1bpyrpb75GituxzrHhuLfojQmWVse4grE6A1_058e2sW4dFwLjRXWk8KHzYKMTyMmAbTt8li14HHMCYjWSkkU6xgEzpbozaGlCK67R3OzFMqZp2K2aQyLbx_7m6L_41hAj6ugWnR3IUx-ulZ_1P7A-xHmqQ</recordid><startdate>20240717</startdate><enddate>20240717</enddate><creator>Pougin, Miriam J.</creator><creator>Domingues, Nency P.</creator><creator>Uran, F. Pelin</creator><creator>Ortega-Guerrero, Andres</creator><creator>Ireland, Christopher P.</creator><creator>Espín, Jordi</creator><creator>Lee Queen, Wendy</creator><creator>Smit, Berend</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0065-0623</orcidid><orcidid>https://orcid.org/0000-0003-4653-8562</orcidid><orcidid>https://orcid.org/0000-0002-8375-2341</orcidid><orcidid>https://orcid.org/0000-0003-3010-7450</orcidid><orcidid>https://orcid.org/0000-0001-6381-6259</orcidid></search><sort><creationdate>20240717</creationdate><title>Adsorption in Pyrene-Based Metal–Organic Frameworks: The Role of Pore Structure and Topology</title><author>Pougin, Miriam J. ; Domingues, Nency P. ; Uran, F. Pelin ; Ortega-Guerrero, Andres ; Ireland, Christopher P. ; Espín, Jordi ; Lee Queen, Wendy ; Smit, Berend</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a311t-e4a565eef2fbfa6194c02fd2f32ca5898717ac103e6f9b8aaad316570fb69ffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Functional Inorganic Materials and Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pougin, Miriam J.</creatorcontrib><creatorcontrib>Domingues, Nency P.</creatorcontrib><creatorcontrib>Uran, F. Pelin</creatorcontrib><creatorcontrib>Ortega-Guerrero, Andres</creatorcontrib><creatorcontrib>Ireland, Christopher P.</creatorcontrib><creatorcontrib>Espín, Jordi</creatorcontrib><creatorcontrib>Lee Queen, Wendy</creatorcontrib><creatorcontrib>Smit, Berend</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pougin, Miriam J.</au><au>Domingues, Nency P.</au><au>Uran, F. Pelin</au><au>Ortega-Guerrero, Andres</au><au>Ireland, Christopher P.</au><au>Espín, Jordi</au><au>Lee Queen, Wendy</au><au>Smit, Berend</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption in Pyrene-Based Metal–Organic Frameworks: The Role of Pore Structure and Topology</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-07-17</date><risdate>2024</risdate><volume>16</volume><issue>28</issue><spage>36586</spage><epage>36598</epage><pages>36586-36598</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Pore topology and chemistry play crucial roles in the adsorption characteristics of metal–organic frameworks (MOFs). To deepen our understanding of the interactions between MOFs and CO2 during this process, we systematically investigate the adsorption properties of a group of pyrene-based MOFs. These MOFs feature Zn­(II) as the metal ion and employ a pyrene-based ligand, specifically 1,3,6,8-tetrakis­(p-benzoic acid)­pyrene (TBAPy). Including different additional ligands leads to frameworks with distinctive structural and chemical features. By comparing these structures, we could isolate the role that pore size, the presence of open-metal sites (OMS), metal–oxygen bridges, and framework charges play in the CO2 adsorption of these MOFs. Frameworks with constricted pore structures display a phenomenon known as the confinement effect, fostering stronger MOF–CO2 interactions and higher uptakes at low pressures. In contrast, entropic effects dominate at elevated pressures, and the MOF’s pore volume becomes the driving factor. Through analysis of the CO2 uptakes of the benchmark materials some with narrower pores and others with larger pore volumesit becomes evident that structures with narrower pores and high binding energies excel at low pressures. In contrast, those with larger volumes perform better at elevated pressures. Moreover, this research highlights that open-metal sites and inherent charges within the frameworks of ionic MOFs stand out as CO2-philic characteristics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38978297</pmid><doi>10.1021/acsami.4c05527</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0065-0623</orcidid><orcidid>https://orcid.org/0000-0003-4653-8562</orcidid><orcidid>https://orcid.org/0000-0002-8375-2341</orcidid><orcidid>https://orcid.org/0000-0003-3010-7450</orcidid><orcidid>https://orcid.org/0000-0001-6381-6259</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-07, Vol.16 (28), p.36586-36598
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11261566
source ACS Publications
subjects Functional Inorganic Materials and Devices
title Adsorption in Pyrene-Based Metal–Organic Frameworks: The Role of Pore Structure and Topology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20in%20Pyrene-Based%20Metal%E2%80%93Organic%20Frameworks:%20The%20Role%20of%20Pore%20Structure%20and%20Topology&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Pougin,%20Miriam%20J.&rft.date=2024-07-17&rft.volume=16&rft.issue=28&rft.spage=36586&rft.epage=36598&rft.pages=36586-36598&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c05527&rft_dat=%3Cproquest_pubme%3E3082305070%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082305070&rft_id=info:pmid/38978297&rfr_iscdi=true