Adsorption in Pyrene-Based Metal–Organic Frameworks: The Role of Pore Structure and Topology
Pore topology and chemistry play crucial roles in the adsorption characteristics of metal–organic frameworks (MOFs). To deepen our understanding of the interactions between MOFs and CO2 during this process, we systematically investigate the adsorption properties of a group of pyrene-based MOFs. Thes...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-07, Vol.16 (28), p.36586-36598 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36598 |
---|---|
container_issue | 28 |
container_start_page | 36586 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Pougin, Miriam J. Domingues, Nency P. Uran, F. Pelin Ortega-Guerrero, Andres Ireland, Christopher P. Espín, Jordi Lee Queen, Wendy Smit, Berend |
description | Pore topology and chemistry play crucial roles in the adsorption characteristics of metal–organic frameworks (MOFs). To deepen our understanding of the interactions between MOFs and CO2 during this process, we systematically investigate the adsorption properties of a group of pyrene-based MOFs. These MOFs feature Zn(II) as the metal ion and employ a pyrene-based ligand, specifically 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy). Including different additional ligands leads to frameworks with distinctive structural and chemical features. By comparing these structures, we could isolate the role that pore size, the presence of open-metal sites (OMS), metal–oxygen bridges, and framework charges play in the CO2 adsorption of these MOFs. Frameworks with constricted pore structures display a phenomenon known as the confinement effect, fostering stronger MOF–CO2 interactions and higher uptakes at low pressures. In contrast, entropic effects dominate at elevated pressures, and the MOF’s pore volume becomes the driving factor. Through analysis of the CO2 uptakes of the benchmark materials some with narrower pores and others with larger pore volumesit becomes evident that structures with narrower pores and high binding energies excel at low pressures. In contrast, those with larger volumes perform better at elevated pressures. Moreover, this research highlights that open-metal sites and inherent charges within the frameworks of ionic MOFs stand out as CO2-philic characteristics. |
doi_str_mv | 10.1021/acsami.4c05527 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11261566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082305070</sourcerecordid><originalsourceid>FETCH-LOGICAL-a311t-e4a565eef2fbfa6194c02fd2f32ca5898717ac103e6f9b8aaad316570fb69ffb3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi1ERUvhyhH5iJCy9UfsJL1UpeqXVNQKlivWxBlv0yb21k6K9sZ_4B_yS0i1y6ocOM1I88w7r-Yl5B1nM84EPwCboG9nuWVKieIF2eNVnmelUOLlts_zXfI6pTvGtBRMvSK7sqyKUlTFHvl-3KQQl0MbPG09vVlF9Jh9goQN_YwDdL9__rqOC_CtpWcRevwR4n06pPNbpF9ChzQ4ehMi0q9DHO0wTh34hs7DMnRhsXpDdhx0Cd9u6j75dnY6P7nIrq7PL0-OrzKQnA8Z5qC0QnTC1Q705Nsy4RrhpLCgyqoseAGWM4naVXUJAI3kWhXM1bpyrpb75GituxzrHhuLfojQmWVse4grE6A1_058e2sW4dFwLjRXWk8KHzYKMTyMmAbTt8li14HHMCYjWSkkU6xgEzpbozaGlCK67R3OzFMqZp2K2aQyLbx_7m6L_41hAj6ugWnR3IUx-ulZ_1P7A-xHmqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082305070</pqid></control><display><type>article</type><title>Adsorption in Pyrene-Based Metal–Organic Frameworks: The Role of Pore Structure and Topology</title><source>ACS Publications</source><creator>Pougin, Miriam J. ; Domingues, Nency P. ; Uran, F. Pelin ; Ortega-Guerrero, Andres ; Ireland, Christopher P. ; Espín, Jordi ; Lee Queen, Wendy ; Smit, Berend</creator><creatorcontrib>Pougin, Miriam J. ; Domingues, Nency P. ; Uran, F. Pelin ; Ortega-Guerrero, Andres ; Ireland, Christopher P. ; Espín, Jordi ; Lee Queen, Wendy ; Smit, Berend</creatorcontrib><description>Pore topology and chemistry play crucial roles in the adsorption characteristics of metal–organic frameworks (MOFs). To deepen our understanding of the interactions between MOFs and CO2 during this process, we systematically investigate the adsorption properties of a group of pyrene-based MOFs. These MOFs feature Zn(II) as the metal ion and employ a pyrene-based ligand, specifically 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy). Including different additional ligands leads to frameworks with distinctive structural and chemical features. By comparing these structures, we could isolate the role that pore size, the presence of open-metal sites (OMS), metal–oxygen bridges, and framework charges play in the CO2 adsorption of these MOFs. Frameworks with constricted pore structures display a phenomenon known as the confinement effect, fostering stronger MOF–CO2 interactions and higher uptakes at low pressures. In contrast, entropic effects dominate at elevated pressures, and the MOF’s pore volume becomes the driving factor. Through analysis of the CO2 uptakes of the benchmark materials some with narrower pores and others with larger pore volumesit becomes evident that structures with narrower pores and high binding energies excel at low pressures. In contrast, those with larger volumes perform better at elevated pressures. Moreover, this research highlights that open-metal sites and inherent charges within the frameworks of ionic MOFs stand out as CO2-philic characteristics.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c05527</identifier><identifier>PMID: 38978297</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Inorganic Materials and Devices</subject><ispartof>ACS applied materials & interfaces, 2024-07, Vol.16 (28), p.36586-36598</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a311t-e4a565eef2fbfa6194c02fd2f32ca5898717ac103e6f9b8aaad316570fb69ffb3</cites><orcidid>0000-0002-0065-0623 ; 0000-0003-4653-8562 ; 0000-0002-8375-2341 ; 0000-0003-3010-7450 ; 0000-0001-6381-6259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c05527$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c05527$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38978297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pougin, Miriam J.</creatorcontrib><creatorcontrib>Domingues, Nency P.</creatorcontrib><creatorcontrib>Uran, F. Pelin</creatorcontrib><creatorcontrib>Ortega-Guerrero, Andres</creatorcontrib><creatorcontrib>Ireland, Christopher P.</creatorcontrib><creatorcontrib>Espín, Jordi</creatorcontrib><creatorcontrib>Lee Queen, Wendy</creatorcontrib><creatorcontrib>Smit, Berend</creatorcontrib><title>Adsorption in Pyrene-Based Metal–Organic Frameworks: The Role of Pore Structure and Topology</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Pore topology and chemistry play crucial roles in the adsorption characteristics of metal–organic frameworks (MOFs). To deepen our understanding of the interactions between MOFs and CO2 during this process, we systematically investigate the adsorption properties of a group of pyrene-based MOFs. These MOFs feature Zn(II) as the metal ion and employ a pyrene-based ligand, specifically 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy). Including different additional ligands leads to frameworks with distinctive structural and chemical features. By comparing these structures, we could isolate the role that pore size, the presence of open-metal sites (OMS), metal–oxygen bridges, and framework charges play in the CO2 adsorption of these MOFs. Frameworks with constricted pore structures display a phenomenon known as the confinement effect, fostering stronger MOF–CO2 interactions and higher uptakes at low pressures. In contrast, entropic effects dominate at elevated pressures, and the MOF’s pore volume becomes the driving factor. Through analysis of the CO2 uptakes of the benchmark materials some with narrower pores and others with larger pore volumesit becomes evident that structures with narrower pores and high binding energies excel at low pressures. In contrast, those with larger volumes perform better at elevated pressures. Moreover, this research highlights that open-metal sites and inherent charges within the frameworks of ionic MOFs stand out as CO2-philic characteristics.</description><subject>Functional Inorganic Materials and Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU1v1DAQhi1ERUvhyhH5iJCy9UfsJL1UpeqXVNQKlivWxBlv0yb21k6K9sZ_4B_yS0i1y6ocOM1I88w7r-Yl5B1nM84EPwCboG9nuWVKieIF2eNVnmelUOLlts_zXfI6pTvGtBRMvSK7sqyKUlTFHvl-3KQQl0MbPG09vVlF9Jh9goQN_YwDdL9__rqOC_CtpWcRevwR4n06pPNbpF9ChzQ4ehMi0q9DHO0wTh34hs7DMnRhsXpDdhx0Cd9u6j75dnY6P7nIrq7PL0-OrzKQnA8Z5qC0QnTC1Q705Nsy4RrhpLCgyqoseAGWM4naVXUJAI3kWhXM1bpyrpb75GituxzrHhuLfojQmWVse4grE6A1_058e2sW4dFwLjRXWk8KHzYKMTyMmAbTt8li14HHMCYjWSkkU6xgEzpbozaGlCK67R3OzFMqZp2K2aQyLbx_7m6L_41hAj6ugWnR3IUx-ulZ_1P7A-xHmqQ</recordid><startdate>20240717</startdate><enddate>20240717</enddate><creator>Pougin, Miriam J.</creator><creator>Domingues, Nency P.</creator><creator>Uran, F. Pelin</creator><creator>Ortega-Guerrero, Andres</creator><creator>Ireland, Christopher P.</creator><creator>Espín, Jordi</creator><creator>Lee Queen, Wendy</creator><creator>Smit, Berend</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0065-0623</orcidid><orcidid>https://orcid.org/0000-0003-4653-8562</orcidid><orcidid>https://orcid.org/0000-0002-8375-2341</orcidid><orcidid>https://orcid.org/0000-0003-3010-7450</orcidid><orcidid>https://orcid.org/0000-0001-6381-6259</orcidid></search><sort><creationdate>20240717</creationdate><title>Adsorption in Pyrene-Based Metal–Organic Frameworks: The Role of Pore Structure and Topology</title><author>Pougin, Miriam J. ; Domingues, Nency P. ; Uran, F. Pelin ; Ortega-Guerrero, Andres ; Ireland, Christopher P. ; Espín, Jordi ; Lee Queen, Wendy ; Smit, Berend</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a311t-e4a565eef2fbfa6194c02fd2f32ca5898717ac103e6f9b8aaad316570fb69ffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Functional Inorganic Materials and Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pougin, Miriam J.</creatorcontrib><creatorcontrib>Domingues, Nency P.</creatorcontrib><creatorcontrib>Uran, F. Pelin</creatorcontrib><creatorcontrib>Ortega-Guerrero, Andres</creatorcontrib><creatorcontrib>Ireland, Christopher P.</creatorcontrib><creatorcontrib>Espín, Jordi</creatorcontrib><creatorcontrib>Lee Queen, Wendy</creatorcontrib><creatorcontrib>Smit, Berend</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pougin, Miriam J.</au><au>Domingues, Nency P.</au><au>Uran, F. Pelin</au><au>Ortega-Guerrero, Andres</au><au>Ireland, Christopher P.</au><au>Espín, Jordi</au><au>Lee Queen, Wendy</au><au>Smit, Berend</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption in Pyrene-Based Metal–Organic Frameworks: The Role of Pore Structure and Topology</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-07-17</date><risdate>2024</risdate><volume>16</volume><issue>28</issue><spage>36586</spage><epage>36598</epage><pages>36586-36598</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Pore topology and chemistry play crucial roles in the adsorption characteristics of metal–organic frameworks (MOFs). To deepen our understanding of the interactions between MOFs and CO2 during this process, we systematically investigate the adsorption properties of a group of pyrene-based MOFs. These MOFs feature Zn(II) as the metal ion and employ a pyrene-based ligand, specifically 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy). Including different additional ligands leads to frameworks with distinctive structural and chemical features. By comparing these structures, we could isolate the role that pore size, the presence of open-metal sites (OMS), metal–oxygen bridges, and framework charges play in the CO2 adsorption of these MOFs. Frameworks with constricted pore structures display a phenomenon known as the confinement effect, fostering stronger MOF–CO2 interactions and higher uptakes at low pressures. In contrast, entropic effects dominate at elevated pressures, and the MOF’s pore volume becomes the driving factor. Through analysis of the CO2 uptakes of the benchmark materials some with narrower pores and others with larger pore volumesit becomes evident that structures with narrower pores and high binding energies excel at low pressures. In contrast, those with larger volumes perform better at elevated pressures. Moreover, this research highlights that open-metal sites and inherent charges within the frameworks of ionic MOFs stand out as CO2-philic characteristics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38978297</pmid><doi>10.1021/acsami.4c05527</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0065-0623</orcidid><orcidid>https://orcid.org/0000-0003-4653-8562</orcidid><orcidid>https://orcid.org/0000-0002-8375-2341</orcidid><orcidid>https://orcid.org/0000-0003-3010-7450</orcidid><orcidid>https://orcid.org/0000-0001-6381-6259</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-07, Vol.16 (28), p.36586-36598 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11261566 |
source | ACS Publications |
subjects | Functional Inorganic Materials and Devices |
title | Adsorption in Pyrene-Based Metal–Organic Frameworks: The Role of Pore Structure and Topology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20in%20Pyrene-Based%20Metal%E2%80%93Organic%20Frameworks:%20The%20Role%20of%20Pore%20Structure%20and%20Topology&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Pougin,%20Miriam%20J.&rft.date=2024-07-17&rft.volume=16&rft.issue=28&rft.spage=36586&rft.epage=36598&rft.pages=36586-36598&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c05527&rft_dat=%3Cproquest_pubme%3E3082305070%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082305070&rft_id=info:pmid/38978297&rfr_iscdi=true |