Gain-of-function variants in CLCN7 cause hypopigmentation and lysosomal storage disease

Together with its β-subunit OSTM1, ClC-7 performs 2Cl−/H+ exchange across lysosomal membranes. Pathogenic variants in either gene cause lysosome-related pathologies, including osteopetrosis and lysosomal storage. CLCN7 variants can cause recessive or dominant disease. Different variants entail diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2024-07, Vol.300 (7), p.107437, Article 107437
Hauptverfasser: Polovitskaya, Maya M., Rana, Tanushka, Ullrich, Kurt, Murko, Simona, Bierhals, Tatjana, Vogt, Guido, Stauber, Tobias, Kubisch, Christian, Santer, René, Jentsch, Thomas J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 107437
container_title The Journal of biological chemistry
container_volume 300
creator Polovitskaya, Maya M.
Rana, Tanushka
Ullrich, Kurt
Murko, Simona
Bierhals, Tatjana
Vogt, Guido
Stauber, Tobias
Kubisch, Christian
Santer, René
Jentsch, Thomas J.
description Together with its β-subunit OSTM1, ClC-7 performs 2Cl−/H+ exchange across lysosomal membranes. Pathogenic variants in either gene cause lysosome-related pathologies, including osteopetrosis and lysosomal storage. CLCN7 variants can cause recessive or dominant disease. Different variants entail different sets of symptoms. Loss of ClC-7 causes osteopetrosis and mostly neuronal lysosomal storage. A recently reported de novo CLCN7 mutation (p.Tyr715Cys) causes widespread severe lysosome pathology (hypopigmentation, organomegaly, and delayed myelination and development, “HOD syndrome”), but no osteopetrosis. We now describe two additional HOD individuals with the previously described p.Tyr715Cys and a novel p.Lys285Thr mutation, respectively. Both mutations decreased ClC-7 inhibition by PI(3,5)P2 and affected residues lining its binding pocket, and shifted voltage-dependent gating to less positive potentials, an effect partially conferred to WT subunits in WT/mutant heteromers. This shift predicts augmented pH gradient-driven Cl− uptake into vesicles. Overexpressing either mutant induced large lysosome-related vacuoles. This effect depended on Cl−/H+-exchange, as shown using mutants carrying uncoupling mutations. Fibroblasts from the p.Y715C patient also displayed giant vacuoles. This was not observed with p.K285T fibroblasts probably due to residual PI(3,5)P2 sensitivity. The gain of function caused by the shifted voltage-dependence of either mutant likely is the main pathogenic factor. Loss of PI(3,5)P2 inhibition will further increase current amplitudes, but may not be a general feature of HOD. Overactivity of ClC-7 induces pathologically enlarged vacuoles in many tissues, which is distinct from lysosomal storage observed with the loss of ClC-7 function. Osteopetrosis results from a loss of ClC-7, but osteoclasts remain resilient to increased ClC-7 activity.
doi_str_mv 10.1016/j.jbc.2024.107437
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11261146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925824019380</els_id><sourcerecordid>3065276163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-80831194f47c90321e4f34495a1724be1dafdb5700d72469f901c683d2924cd43</originalsourceid><addsrcrecordid>eNp9kUFvEzEQhS1ERUPhB3BBe-Syqcf22rvigFBUSqWIXlrBzXLs2dTRrh3s3Uj597ikVHBhLqORv3nz5EfIO6BLoCAvd8vdxi4ZZaLMSnD1giyAtrzmDfx4SRaUMqg71rTn5HXOO1pKdPCKnPO25a1SckG-Xxsf6tjX_Rzs5GOoDiZ5E6Zc-VCt1qtvqrJmzlg9HPdx77cjhsn8Bk1w1XDMMcfRDFWeYjJbrJzPaDK-IWe9GTK-feoX5P7L1d3qa72-vb5ZfV7XlnMx1W1xC9CJXijbUc4ARc-F6BoDiokNgjO92zSKUldm2fUdBStb7ljHhHWCX5BPJ939vBnR2eIumUHvkx9NOupovP73JfgHvY0HDcAkgJBF4cOTQoo_Z8yTHn22OAwmYJyz5lQ2TEmQvKBwQm2KOSfsn-8A1Y-J6J0uiejHRPQpkbLz_m-Dzxt_IijAxxOA5ZsOHpPO1mOw6HxCO2kX_X_kfwFsEpwk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065276163</pqid></control><display><type>article</type><title>Gain-of-function variants in CLCN7 cause hypopigmentation and lysosomal storage disease</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Polovitskaya, Maya M. ; Rana, Tanushka ; Ullrich, Kurt ; Murko, Simona ; Bierhals, Tatjana ; Vogt, Guido ; Stauber, Tobias ; Kubisch, Christian ; Santer, René ; Jentsch, Thomas J.</creator><creatorcontrib>Polovitskaya, Maya M. ; Rana, Tanushka ; Ullrich, Kurt ; Murko, Simona ; Bierhals, Tatjana ; Vogt, Guido ; Stauber, Tobias ; Kubisch, Christian ; Santer, René ; Jentsch, Thomas J.</creatorcontrib><description>Together with its β-subunit OSTM1, ClC-7 performs 2Cl−/H+ exchange across lysosomal membranes. Pathogenic variants in either gene cause lysosome-related pathologies, including osteopetrosis and lysosomal storage. CLCN7 variants can cause recessive or dominant disease. Different variants entail different sets of symptoms. Loss of ClC-7 causes osteopetrosis and mostly neuronal lysosomal storage. A recently reported de novo CLCN7 mutation (p.Tyr715Cys) causes widespread severe lysosome pathology (hypopigmentation, organomegaly, and delayed myelination and development, “HOD syndrome”), but no osteopetrosis. We now describe two additional HOD individuals with the previously described p.Tyr715Cys and a novel p.Lys285Thr mutation, respectively. Both mutations decreased ClC-7 inhibition by PI(3,5)P2 and affected residues lining its binding pocket, and shifted voltage-dependent gating to less positive potentials, an effect partially conferred to WT subunits in WT/mutant heteromers. This shift predicts augmented pH gradient-driven Cl− uptake into vesicles. Overexpressing either mutant induced large lysosome-related vacuoles. This effect depended on Cl−/H+-exchange, as shown using mutants carrying uncoupling mutations. Fibroblasts from the p.Y715C patient also displayed giant vacuoles. This was not observed with p.K285T fibroblasts probably due to residual PI(3,5)P2 sensitivity. The gain of function caused by the shifted voltage-dependence of either mutant likely is the main pathogenic factor. Loss of PI(3,5)P2 inhibition will further increase current amplitudes, but may not be a general feature of HOD. Overactivity of ClC-7 induces pathologically enlarged vacuoles in many tissues, which is distinct from lysosomal storage observed with the loss of ClC-7 function. Osteopetrosis results from a loss of ClC-7, but osteoclasts remain resilient to increased ClC-7 activity.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2024.107437</identifier><identifier>PMID: 38838776</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>chloride transport ; electrophysiology ; gating ; genetic disease ; neurodevelopmental disorder ; neurological disease ; organellar pH homeostasis ; organomegaly ; patch clamp ; vacuolar acidification</subject><ispartof>The Journal of biological chemistry, 2024-07, Vol.300 (7), p.107437, Article 107437</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c334t-80831194f47c90321e4f34495a1724be1dafdb5700d72469f901c683d2924cd43</cites><orcidid>0000-0002-6103-105X ; 0000-0003-4220-0978 ; 0000-0002-3670-5657 ; 0009-0009-4959-3402 ; 0000-0002-7475-2972 ; 0000-0001-9182-4600 ; 0000-0002-8144-9824 ; 0000-0002-3509-2553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261146/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261146/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38838776$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Polovitskaya, Maya M.</creatorcontrib><creatorcontrib>Rana, Tanushka</creatorcontrib><creatorcontrib>Ullrich, Kurt</creatorcontrib><creatorcontrib>Murko, Simona</creatorcontrib><creatorcontrib>Bierhals, Tatjana</creatorcontrib><creatorcontrib>Vogt, Guido</creatorcontrib><creatorcontrib>Stauber, Tobias</creatorcontrib><creatorcontrib>Kubisch, Christian</creatorcontrib><creatorcontrib>Santer, René</creatorcontrib><creatorcontrib>Jentsch, Thomas J.</creatorcontrib><title>Gain-of-function variants in CLCN7 cause hypopigmentation and lysosomal storage disease</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Together with its β-subunit OSTM1, ClC-7 performs 2Cl−/H+ exchange across lysosomal membranes. Pathogenic variants in either gene cause lysosome-related pathologies, including osteopetrosis and lysosomal storage. CLCN7 variants can cause recessive or dominant disease. Different variants entail different sets of symptoms. Loss of ClC-7 causes osteopetrosis and mostly neuronal lysosomal storage. A recently reported de novo CLCN7 mutation (p.Tyr715Cys) causes widespread severe lysosome pathology (hypopigmentation, organomegaly, and delayed myelination and development, “HOD syndrome”), but no osteopetrosis. We now describe two additional HOD individuals with the previously described p.Tyr715Cys and a novel p.Lys285Thr mutation, respectively. Both mutations decreased ClC-7 inhibition by PI(3,5)P2 and affected residues lining its binding pocket, and shifted voltage-dependent gating to less positive potentials, an effect partially conferred to WT subunits in WT/mutant heteromers. This shift predicts augmented pH gradient-driven Cl− uptake into vesicles. Overexpressing either mutant induced large lysosome-related vacuoles. This effect depended on Cl−/H+-exchange, as shown using mutants carrying uncoupling mutations. Fibroblasts from the p.Y715C patient also displayed giant vacuoles. This was not observed with p.K285T fibroblasts probably due to residual PI(3,5)P2 sensitivity. The gain of function caused by the shifted voltage-dependence of either mutant likely is the main pathogenic factor. Loss of PI(3,5)P2 inhibition will further increase current amplitudes, but may not be a general feature of HOD. Overactivity of ClC-7 induces pathologically enlarged vacuoles in many tissues, which is distinct from lysosomal storage observed with the loss of ClC-7 function. Osteopetrosis results from a loss of ClC-7, but osteoclasts remain resilient to increased ClC-7 activity.</description><subject>chloride transport</subject><subject>electrophysiology</subject><subject>gating</subject><subject>genetic disease</subject><subject>neurodevelopmental disorder</subject><subject>neurological disease</subject><subject>organellar pH homeostasis</subject><subject>organomegaly</subject><subject>patch clamp</subject><subject>vacuolar acidification</subject><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUFvEzEQhS1ERUPhB3BBe-Syqcf22rvigFBUSqWIXlrBzXLs2dTRrh3s3Uj597ikVHBhLqORv3nz5EfIO6BLoCAvd8vdxi4ZZaLMSnD1giyAtrzmDfx4SRaUMqg71rTn5HXOO1pKdPCKnPO25a1SckG-Xxsf6tjX_Rzs5GOoDiZ5E6Zc-VCt1qtvqrJmzlg9HPdx77cjhsn8Bk1w1XDMMcfRDFWeYjJbrJzPaDK-IWe9GTK-feoX5P7L1d3qa72-vb5ZfV7XlnMx1W1xC9CJXijbUc4ARc-F6BoDiokNgjO92zSKUldm2fUdBStb7ljHhHWCX5BPJ939vBnR2eIumUHvkx9NOupovP73JfgHvY0HDcAkgJBF4cOTQoo_Z8yTHn22OAwmYJyz5lQ2TEmQvKBwQm2KOSfsn-8A1Y-J6J0uiejHRPQpkbLz_m-Dzxt_IijAxxOA5ZsOHpPO1mOw6HxCO2kX_X_kfwFsEpwk</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Polovitskaya, Maya M.</creator><creator>Rana, Tanushka</creator><creator>Ullrich, Kurt</creator><creator>Murko, Simona</creator><creator>Bierhals, Tatjana</creator><creator>Vogt, Guido</creator><creator>Stauber, Tobias</creator><creator>Kubisch, Christian</creator><creator>Santer, René</creator><creator>Jentsch, Thomas J.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6103-105X</orcidid><orcidid>https://orcid.org/0000-0003-4220-0978</orcidid><orcidid>https://orcid.org/0000-0002-3670-5657</orcidid><orcidid>https://orcid.org/0009-0009-4959-3402</orcidid><orcidid>https://orcid.org/0000-0002-7475-2972</orcidid><orcidid>https://orcid.org/0000-0001-9182-4600</orcidid><orcidid>https://orcid.org/0000-0002-8144-9824</orcidid><orcidid>https://orcid.org/0000-0002-3509-2553</orcidid></search><sort><creationdate>20240701</creationdate><title>Gain-of-function variants in CLCN7 cause hypopigmentation and lysosomal storage disease</title><author>Polovitskaya, Maya M. ; Rana, Tanushka ; Ullrich, Kurt ; Murko, Simona ; Bierhals, Tatjana ; Vogt, Guido ; Stauber, Tobias ; Kubisch, Christian ; Santer, René ; Jentsch, Thomas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-80831194f47c90321e4f34495a1724be1dafdb5700d72469f901c683d2924cd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>chloride transport</topic><topic>electrophysiology</topic><topic>gating</topic><topic>genetic disease</topic><topic>neurodevelopmental disorder</topic><topic>neurological disease</topic><topic>organellar pH homeostasis</topic><topic>organomegaly</topic><topic>patch clamp</topic><topic>vacuolar acidification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polovitskaya, Maya M.</creatorcontrib><creatorcontrib>Rana, Tanushka</creatorcontrib><creatorcontrib>Ullrich, Kurt</creatorcontrib><creatorcontrib>Murko, Simona</creatorcontrib><creatorcontrib>Bierhals, Tatjana</creatorcontrib><creatorcontrib>Vogt, Guido</creatorcontrib><creatorcontrib>Stauber, Tobias</creatorcontrib><creatorcontrib>Kubisch, Christian</creatorcontrib><creatorcontrib>Santer, René</creatorcontrib><creatorcontrib>Jentsch, Thomas J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polovitskaya, Maya M.</au><au>Rana, Tanushka</au><au>Ullrich, Kurt</au><au>Murko, Simona</au><au>Bierhals, Tatjana</au><au>Vogt, Guido</au><au>Stauber, Tobias</au><au>Kubisch, Christian</au><au>Santer, René</au><au>Jentsch, Thomas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gain-of-function variants in CLCN7 cause hypopigmentation and lysosomal storage disease</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>300</volume><issue>7</issue><spage>107437</spage><pages>107437-</pages><artnum>107437</artnum><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>Together with its β-subunit OSTM1, ClC-7 performs 2Cl−/H+ exchange across lysosomal membranes. Pathogenic variants in either gene cause lysosome-related pathologies, including osteopetrosis and lysosomal storage. CLCN7 variants can cause recessive or dominant disease. Different variants entail different sets of symptoms. Loss of ClC-7 causes osteopetrosis and mostly neuronal lysosomal storage. A recently reported de novo CLCN7 mutation (p.Tyr715Cys) causes widespread severe lysosome pathology (hypopigmentation, organomegaly, and delayed myelination and development, “HOD syndrome”), but no osteopetrosis. We now describe two additional HOD individuals with the previously described p.Tyr715Cys and a novel p.Lys285Thr mutation, respectively. Both mutations decreased ClC-7 inhibition by PI(3,5)P2 and affected residues lining its binding pocket, and shifted voltage-dependent gating to less positive potentials, an effect partially conferred to WT subunits in WT/mutant heteromers. This shift predicts augmented pH gradient-driven Cl− uptake into vesicles. Overexpressing either mutant induced large lysosome-related vacuoles. This effect depended on Cl−/H+-exchange, as shown using mutants carrying uncoupling mutations. Fibroblasts from the p.Y715C patient also displayed giant vacuoles. This was not observed with p.K285T fibroblasts probably due to residual PI(3,5)P2 sensitivity. The gain of function caused by the shifted voltage-dependence of either mutant likely is the main pathogenic factor. Loss of PI(3,5)P2 inhibition will further increase current amplitudes, but may not be a general feature of HOD. Overactivity of ClC-7 induces pathologically enlarged vacuoles in many tissues, which is distinct from lysosomal storage observed with the loss of ClC-7 function. Osteopetrosis results from a loss of ClC-7, but osteoclasts remain resilient to increased ClC-7 activity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38838776</pmid><doi>10.1016/j.jbc.2024.107437</doi><orcidid>https://orcid.org/0000-0002-6103-105X</orcidid><orcidid>https://orcid.org/0000-0003-4220-0978</orcidid><orcidid>https://orcid.org/0000-0002-3670-5657</orcidid><orcidid>https://orcid.org/0009-0009-4959-3402</orcidid><orcidid>https://orcid.org/0000-0002-7475-2972</orcidid><orcidid>https://orcid.org/0000-0001-9182-4600</orcidid><orcidid>https://orcid.org/0000-0002-8144-9824</orcidid><orcidid>https://orcid.org/0000-0002-3509-2553</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2024-07, Vol.300 (7), p.107437, Article 107437
issn 0021-9258
1083-351X
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11261146
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects chloride transport
electrophysiology
gating
genetic disease
neurodevelopmental disorder
neurological disease
organellar pH homeostasis
organomegaly
patch clamp
vacuolar acidification
title Gain-of-function variants in CLCN7 cause hypopigmentation and lysosomal storage disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A35%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gain-of-function%20variants%20in%20CLCN7%20cause%20hypopigmentation%20and%20lysosomal%20storage%20disease&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Polovitskaya,%20Maya%20M.&rft.date=2024-07-01&rft.volume=300&rft.issue=7&rft.spage=107437&rft.pages=107437-&rft.artnum=107437&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2024.107437&rft_dat=%3Cproquest_pubme%3E3065276163%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065276163&rft_id=info:pmid/38838776&rft_els_id=S0021925824019380&rfr_iscdi=true