The 5′-terminal stem–loop RNA element of SARS-CoV-2 features highly dynamic structural elements that are sensitive to differences in cellular pH
Abstract We present the nuclear magnetic resonance spectroscopy (NMR) solution structure of the 5′-terminal stem loop 5_SL1 (SL1) of the SARS-CoV-2 genome. SL1 contains two A-form helical elements and two regions with non-canonical structure, namely an apical pyrimidine-rich loop and an asymmetric i...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2024-07, Vol.52 (13), p.7971-7986 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7986 |
---|---|
container_issue | 13 |
container_start_page | 7971 |
container_title | Nucleic acids research |
container_volume | 52 |
creator | Toews, Sabrina Wacker, Anna Faison, Edgar M Duchardt-Ferner, Elke Richter, Christian Mathieu, Daniel Bottaro, Sandro Zhang, Qi Schwalbe, Harald |
description | Abstract
We present the nuclear magnetic resonance spectroscopy (NMR) solution structure of the 5′-terminal stem loop 5_SL1 (SL1) of the SARS-CoV-2 genome. SL1 contains two A-form helical elements and two regions with non-canonical structure, namely an apical pyrimidine-rich loop and an asymmetric internal loop with one and two nucleotides at the 5′- and 3′-terminal part of the sequence, respectively. The conformational ensemble representing the averaged solution structure of SL1 was validated using NMR residual dipolar coupling (RDC) and small-angle X-ray scattering (SAXS) data. We show that the internal loop is the major binding site for fragments of low molecular weight. This internal loop of SL1 can be stabilized by an A12–C28 interaction that promotes the transient formation of an A+•C base pair. As a consequence, the pKa of the internal loop adenosine A12 is shifted to 5.8, compared to a pKa of 3.63 of free adenosine. Furthermore, applying a recently developed pH-differential mutational profiling (PD-MaP) approach, we not only recapitulated our NMR findings of SL1 but also unveiled multiple sites potentially sensitive to pH across the 5′-UTR of SARS-CoV-2.
Graphical Abstract
Graphical Abstract |
doi_str_mv | 10.1093/nar/gkae477 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11260494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkae477</oup_id><sourcerecordid>3065977793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-5244f3da00d7d1dda33f338c0571137c8a36182f633d50b854cb08d45f6597c73</originalsourceid><addsrcrecordid>eNp9kb1uFDEURi0EIptARY9cISQ0xB57_iq0WgFBikBKAq3lta93DDP2xPZE2i7vEJ6ER8qT4NUuETRULu65537Wh9ALSt5S0rFTJ8Pp5ocE3jSP0IKyuix4V5eP0YIwUhWU8PYIHcf4nRDKacWfoiPWtrzseLlAP696wNX97a8iQRitkwOOCcb727vB-wlffF5iGGAEl7A3-HJ5cVms_LeixAZkmgNE3NtNP2yx3jo5WpW3w6zyJIsOixGnXiYsA-AILtpkbwAnj7U1BgI4lSXWYQXDMA8y4OnsGXpi5BDh-eE9QV8_vL9anRXnXz5-Wi3PC8UITUVVcm6YloToRlOtJWOGsVaRqqGUNaqVrKZtaWrGdEXWbcXVmrSaV6auukY17AS923uneT2CVjlszi2mYEcZtsJLK_6dONuLjb8RlJY14R3PhtcHQ_DXM8QkRht3P5EO_BwFI7tTTdOxjL7Zoyr4GAOYhzuUiF2RIhcpDkVm-uXf0R7YP81l4NUe8PP0X9NvYFerfA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065977793</pqid></control><display><type>article</type><title>The 5′-terminal stem–loop RNA element of SARS-CoV-2 features highly dynamic structural elements that are sensitive to differences in cellular pH</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Toews, Sabrina ; Wacker, Anna ; Faison, Edgar M ; Duchardt-Ferner, Elke ; Richter, Christian ; Mathieu, Daniel ; Bottaro, Sandro ; Zhang, Qi ; Schwalbe, Harald</creator><creatorcontrib>Toews, Sabrina ; Wacker, Anna ; Faison, Edgar M ; Duchardt-Ferner, Elke ; Richter, Christian ; Mathieu, Daniel ; Bottaro, Sandro ; Zhang, Qi ; Schwalbe, Harald</creatorcontrib><description>Abstract
We present the nuclear magnetic resonance spectroscopy (NMR) solution structure of the 5′-terminal stem loop 5_SL1 (SL1) of the SARS-CoV-2 genome. SL1 contains two A-form helical elements and two regions with non-canonical structure, namely an apical pyrimidine-rich loop and an asymmetric internal loop with one and two nucleotides at the 5′- and 3′-terminal part of the sequence, respectively. The conformational ensemble representing the averaged solution structure of SL1 was validated using NMR residual dipolar coupling (RDC) and small-angle X-ray scattering (SAXS) data. We show that the internal loop is the major binding site for fragments of low molecular weight. This internal loop of SL1 can be stabilized by an A12–C28 interaction that promotes the transient formation of an A+•C base pair. As a consequence, the pKa of the internal loop adenosine A12 is shifted to 5.8, compared to a pKa of 3.63 of free adenosine. Furthermore, applying a recently developed pH-differential mutational profiling (PD-MaP) approach, we not only recapitulated our NMR findings of SL1 but also unveiled multiple sites potentially sensitive to pH across the 5′-UTR of SARS-CoV-2.
Graphical Abstract
Graphical Abstract</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkae477</identifier><identifier>PMID: 38842942</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>5' Untranslated Regions ; Base Pairing ; Binding Sites ; COVID-19 - genetics ; COVID-19 - virology ; Genome, Viral ; Humans ; Hydrogen-Ion Concentration ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Nucleic Acid Conformation ; RNA, Viral - chemistry ; RNA, Viral - genetics ; RNA, Viral - metabolism ; SARS-CoV-2 - chemistry ; SARS-CoV-2 - genetics ; SARS-CoV-2 - metabolism ; Scattering, Small Angle ; Structural Biology ; X-Ray Diffraction</subject><ispartof>Nucleic acids research, 2024-07, Vol.52 (13), p.7971-7986</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-5244f3da00d7d1dda33f338c0571137c8a36182f633d50b854cb08d45f6597c73</cites><orcidid>0000-0001-5892-5661 ; 0009-0008-5501-6276 ; 0000-0003-0207-767X ; 0000-0003-1754-4058 ; 0000-0001-5693-7909 ; 0000-0001-7521-8264 ; 0000-0003-1606-890X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260494/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260494/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1605,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38842942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toews, Sabrina</creatorcontrib><creatorcontrib>Wacker, Anna</creatorcontrib><creatorcontrib>Faison, Edgar M</creatorcontrib><creatorcontrib>Duchardt-Ferner, Elke</creatorcontrib><creatorcontrib>Richter, Christian</creatorcontrib><creatorcontrib>Mathieu, Daniel</creatorcontrib><creatorcontrib>Bottaro, Sandro</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Schwalbe, Harald</creatorcontrib><title>The 5′-terminal stem–loop RNA element of SARS-CoV-2 features highly dynamic structural elements that are sensitive to differences in cellular pH</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract
We present the nuclear magnetic resonance spectroscopy (NMR) solution structure of the 5′-terminal stem loop 5_SL1 (SL1) of the SARS-CoV-2 genome. SL1 contains two A-form helical elements and two regions with non-canonical structure, namely an apical pyrimidine-rich loop and an asymmetric internal loop with one and two nucleotides at the 5′- and 3′-terminal part of the sequence, respectively. The conformational ensemble representing the averaged solution structure of SL1 was validated using NMR residual dipolar coupling (RDC) and small-angle X-ray scattering (SAXS) data. We show that the internal loop is the major binding site for fragments of low molecular weight. This internal loop of SL1 can be stabilized by an A12–C28 interaction that promotes the transient formation of an A+•C base pair. As a consequence, the pKa of the internal loop adenosine A12 is shifted to 5.8, compared to a pKa of 3.63 of free adenosine. Furthermore, applying a recently developed pH-differential mutational profiling (PD-MaP) approach, we not only recapitulated our NMR findings of SL1 but also unveiled multiple sites potentially sensitive to pH across the 5′-UTR of SARS-CoV-2.
Graphical Abstract
Graphical Abstract</description><subject>5' Untranslated Regions</subject><subject>Base Pairing</subject><subject>Binding Sites</subject><subject>COVID-19 - genetics</subject><subject>COVID-19 - virology</subject><subject>Genome, Viral</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Molecular</subject><subject>Nucleic Acid Conformation</subject><subject>RNA, Viral - chemistry</subject><subject>RNA, Viral - genetics</subject><subject>RNA, Viral - metabolism</subject><subject>SARS-CoV-2 - chemistry</subject><subject>SARS-CoV-2 - genetics</subject><subject>SARS-CoV-2 - metabolism</subject><subject>Scattering, Small Angle</subject><subject>Structural Biology</subject><subject>X-Ray Diffraction</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kb1uFDEURi0EIptARY9cISQ0xB57_iq0WgFBikBKAq3lta93DDP2xPZE2i7vEJ6ER8qT4NUuETRULu65537Wh9ALSt5S0rFTJ8Pp5ocE3jSP0IKyuix4V5eP0YIwUhWU8PYIHcf4nRDKacWfoiPWtrzseLlAP696wNX97a8iQRitkwOOCcb727vB-wlffF5iGGAEl7A3-HJ5cVms_LeixAZkmgNE3NtNP2yx3jo5WpW3w6zyJIsOixGnXiYsA-AILtpkbwAnj7U1BgI4lSXWYQXDMA8y4OnsGXpi5BDh-eE9QV8_vL9anRXnXz5-Wi3PC8UITUVVcm6YloToRlOtJWOGsVaRqqGUNaqVrKZtaWrGdEXWbcXVmrSaV6auukY17AS923uneT2CVjlszi2mYEcZtsJLK_6dONuLjb8RlJY14R3PhtcHQ_DXM8QkRht3P5EO_BwFI7tTTdOxjL7Zoyr4GAOYhzuUiF2RIhcpDkVm-uXf0R7YP81l4NUe8PP0X9NvYFerfA</recordid><startdate>20240722</startdate><enddate>20240722</enddate><creator>Toews, Sabrina</creator><creator>Wacker, Anna</creator><creator>Faison, Edgar M</creator><creator>Duchardt-Ferner, Elke</creator><creator>Richter, Christian</creator><creator>Mathieu, Daniel</creator><creator>Bottaro, Sandro</creator><creator>Zhang, Qi</creator><creator>Schwalbe, Harald</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5892-5661</orcidid><orcidid>https://orcid.org/0009-0008-5501-6276</orcidid><orcidid>https://orcid.org/0000-0003-0207-767X</orcidid><orcidid>https://orcid.org/0000-0003-1754-4058</orcidid><orcidid>https://orcid.org/0000-0001-5693-7909</orcidid><orcidid>https://orcid.org/0000-0001-7521-8264</orcidid><orcidid>https://orcid.org/0000-0003-1606-890X</orcidid></search><sort><creationdate>20240722</creationdate><title>The 5′-terminal stem–loop RNA element of SARS-CoV-2 features highly dynamic structural elements that are sensitive to differences in cellular pH</title><author>Toews, Sabrina ; Wacker, Anna ; Faison, Edgar M ; Duchardt-Ferner, Elke ; Richter, Christian ; Mathieu, Daniel ; Bottaro, Sandro ; Zhang, Qi ; Schwalbe, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-5244f3da00d7d1dda33f338c0571137c8a36182f633d50b854cb08d45f6597c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>5' Untranslated Regions</topic><topic>Base Pairing</topic><topic>Binding Sites</topic><topic>COVID-19 - genetics</topic><topic>COVID-19 - virology</topic><topic>Genome, Viral</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Molecular</topic><topic>Nucleic Acid Conformation</topic><topic>RNA, Viral - chemistry</topic><topic>RNA, Viral - genetics</topic><topic>RNA, Viral - metabolism</topic><topic>SARS-CoV-2 - chemistry</topic><topic>SARS-CoV-2 - genetics</topic><topic>SARS-CoV-2 - metabolism</topic><topic>Scattering, Small Angle</topic><topic>Structural Biology</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toews, Sabrina</creatorcontrib><creatorcontrib>Wacker, Anna</creatorcontrib><creatorcontrib>Faison, Edgar M</creatorcontrib><creatorcontrib>Duchardt-Ferner, Elke</creatorcontrib><creatorcontrib>Richter, Christian</creatorcontrib><creatorcontrib>Mathieu, Daniel</creatorcontrib><creatorcontrib>Bottaro, Sandro</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Schwalbe, Harald</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toews, Sabrina</au><au>Wacker, Anna</au><au>Faison, Edgar M</au><au>Duchardt-Ferner, Elke</au><au>Richter, Christian</au><au>Mathieu, Daniel</au><au>Bottaro, Sandro</au><au>Zhang, Qi</au><au>Schwalbe, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 5′-terminal stem–loop RNA element of SARS-CoV-2 features highly dynamic structural elements that are sensitive to differences in cellular pH</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2024-07-22</date><risdate>2024</risdate><volume>52</volume><issue>13</issue><spage>7971</spage><epage>7986</epage><pages>7971-7986</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>Abstract
We present the nuclear magnetic resonance spectroscopy (NMR) solution structure of the 5′-terminal stem loop 5_SL1 (SL1) of the SARS-CoV-2 genome. SL1 contains two A-form helical elements and two regions with non-canonical structure, namely an apical pyrimidine-rich loop and an asymmetric internal loop with one and two nucleotides at the 5′- and 3′-terminal part of the sequence, respectively. The conformational ensemble representing the averaged solution structure of SL1 was validated using NMR residual dipolar coupling (RDC) and small-angle X-ray scattering (SAXS) data. We show that the internal loop is the major binding site for fragments of low molecular weight. This internal loop of SL1 can be stabilized by an A12–C28 interaction that promotes the transient formation of an A+•C base pair. As a consequence, the pKa of the internal loop adenosine A12 is shifted to 5.8, compared to a pKa of 3.63 of free adenosine. Furthermore, applying a recently developed pH-differential mutational profiling (PD-MaP) approach, we not only recapitulated our NMR findings of SL1 but also unveiled multiple sites potentially sensitive to pH across the 5′-UTR of SARS-CoV-2.
Graphical Abstract
Graphical Abstract</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38842942</pmid><doi>10.1093/nar/gkae477</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5892-5661</orcidid><orcidid>https://orcid.org/0009-0008-5501-6276</orcidid><orcidid>https://orcid.org/0000-0003-0207-767X</orcidid><orcidid>https://orcid.org/0000-0003-1754-4058</orcidid><orcidid>https://orcid.org/0000-0001-5693-7909</orcidid><orcidid>https://orcid.org/0000-0001-7521-8264</orcidid><orcidid>https://orcid.org/0000-0003-1606-890X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2024-07, Vol.52 (13), p.7971-7986 |
issn | 0305-1048 1362-4962 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11260494 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 5' Untranslated Regions Base Pairing Binding Sites COVID-19 - genetics COVID-19 - virology Genome, Viral Humans Hydrogen-Ion Concentration Magnetic Resonance Spectroscopy Models, Molecular Nucleic Acid Conformation RNA, Viral - chemistry RNA, Viral - genetics RNA, Viral - metabolism SARS-CoV-2 - chemistry SARS-CoV-2 - genetics SARS-CoV-2 - metabolism Scattering, Small Angle Structural Biology X-Ray Diffraction |
title | The 5′-terminal stem–loop RNA element of SARS-CoV-2 features highly dynamic structural elements that are sensitive to differences in cellular pH |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T03%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%205%E2%80%B2-terminal%20stem%E2%80%93loop%20RNA%20element%20of%20SARS-CoV-2%20features%20highly%20dynamic%20structural%20elements%20that%20are%20sensitive%20to%20differences%20in%20cellular%20pH&rft.jtitle=Nucleic%20acids%20research&rft.au=Toews,%20Sabrina&rft.date=2024-07-22&rft.volume=52&rft.issue=13&rft.spage=7971&rft.epage=7986&rft.pages=7971-7986&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkae477&rft_dat=%3Cproquest_pubme%3E3065977793%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065977793&rft_id=info:pmid/38842942&rft_oup_id=10.1093/nar/gkae477&rfr_iscdi=true |