The 5′-terminal stem–loop RNA element of SARS-CoV-2 features highly dynamic structural elements that are sensitive to differences in cellular pH

Abstract We present the nuclear magnetic resonance spectroscopy (NMR) solution structure of the 5′-terminal stem loop 5_SL1 (SL1) of the SARS-CoV-2 genome. SL1 contains two A-form helical elements and two regions with non-canonical structure, namely an apical pyrimidine-rich loop and an asymmetric i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2024-07, Vol.52 (13), p.7971-7986
Hauptverfasser: Toews, Sabrina, Wacker, Anna, Faison, Edgar M, Duchardt-Ferner, Elke, Richter, Christian, Mathieu, Daniel, Bottaro, Sandro, Zhang, Qi, Schwalbe, Harald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7986
container_issue 13
container_start_page 7971
container_title Nucleic acids research
container_volume 52
creator Toews, Sabrina
Wacker, Anna
Faison, Edgar M
Duchardt-Ferner, Elke
Richter, Christian
Mathieu, Daniel
Bottaro, Sandro
Zhang, Qi
Schwalbe, Harald
description Abstract We present the nuclear magnetic resonance spectroscopy (NMR) solution structure of the 5′-terminal stem loop 5_SL1 (SL1) of the SARS-CoV-2 genome. SL1 contains two A-form helical elements and two regions with non-canonical structure, namely an apical pyrimidine-rich loop and an asymmetric internal loop with one and two nucleotides at the 5′- and 3′-terminal part of the sequence, respectively. The conformational ensemble representing the averaged solution structure of SL1 was validated using NMR residual dipolar coupling (RDC) and small-angle X-ray scattering (SAXS) data. We show that the internal loop is the major binding site for fragments of low molecular weight. This internal loop of SL1 can be stabilized by an A12–C28 interaction that promotes the transient formation of an A+•C base pair. As a consequence, the pKa of the internal loop adenosine A12 is shifted to 5.8, compared to a pKa of 3.63 of free adenosine. Furthermore, applying a recently developed pH-differential mutational profiling (PD-MaP) approach, we not only recapitulated our NMR findings of SL1 but also unveiled multiple sites potentially sensitive to pH across the 5′-UTR of SARS-CoV-2. Graphical Abstract Graphical Abstract
doi_str_mv 10.1093/nar/gkae477
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11260494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkae477</oup_id><sourcerecordid>3065977793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-5244f3da00d7d1dda33f338c0571137c8a36182f633d50b854cb08d45f6597c73</originalsourceid><addsrcrecordid>eNp9kb1uFDEURi0EIptARY9cISQ0xB57_iq0WgFBikBKAq3lta93DDP2xPZE2i7vEJ6ER8qT4NUuETRULu65537Wh9ALSt5S0rFTJ8Pp5ocE3jSP0IKyuix4V5eP0YIwUhWU8PYIHcf4nRDKacWfoiPWtrzseLlAP696wNX97a8iQRitkwOOCcb727vB-wlffF5iGGAEl7A3-HJ5cVms_LeixAZkmgNE3NtNP2yx3jo5WpW3w6zyJIsOixGnXiYsA-AILtpkbwAnj7U1BgI4lSXWYQXDMA8y4OnsGXpi5BDh-eE9QV8_vL9anRXnXz5-Wi3PC8UITUVVcm6YloToRlOtJWOGsVaRqqGUNaqVrKZtaWrGdEXWbcXVmrSaV6auukY17AS923uneT2CVjlszi2mYEcZtsJLK_6dONuLjb8RlJY14R3PhtcHQ_DXM8QkRht3P5EO_BwFI7tTTdOxjL7Zoyr4GAOYhzuUiF2RIhcpDkVm-uXf0R7YP81l4NUe8PP0X9NvYFerfA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065977793</pqid></control><display><type>article</type><title>The 5′-terminal stem–loop RNA element of SARS-CoV-2 features highly dynamic structural elements that are sensitive to differences in cellular pH</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Toews, Sabrina ; Wacker, Anna ; Faison, Edgar M ; Duchardt-Ferner, Elke ; Richter, Christian ; Mathieu, Daniel ; Bottaro, Sandro ; Zhang, Qi ; Schwalbe, Harald</creator><creatorcontrib>Toews, Sabrina ; Wacker, Anna ; Faison, Edgar M ; Duchardt-Ferner, Elke ; Richter, Christian ; Mathieu, Daniel ; Bottaro, Sandro ; Zhang, Qi ; Schwalbe, Harald</creatorcontrib><description>Abstract We present the nuclear magnetic resonance spectroscopy (NMR) solution structure of the 5′-terminal stem loop 5_SL1 (SL1) of the SARS-CoV-2 genome. SL1 contains two A-form helical elements and two regions with non-canonical structure, namely an apical pyrimidine-rich loop and an asymmetric internal loop with one and two nucleotides at the 5′- and 3′-terminal part of the sequence, respectively. The conformational ensemble representing the averaged solution structure of SL1 was validated using NMR residual dipolar coupling (RDC) and small-angle X-ray scattering (SAXS) data. We show that the internal loop is the major binding site for fragments of low molecular weight. This internal loop of SL1 can be stabilized by an A12–C28 interaction that promotes the transient formation of an A+•C base pair. As a consequence, the pKa of the internal loop adenosine A12 is shifted to 5.8, compared to a pKa of 3.63 of free adenosine. Furthermore, applying a recently developed pH-differential mutational profiling (PD-MaP) approach, we not only recapitulated our NMR findings of SL1 but also unveiled multiple sites potentially sensitive to pH across the 5′-UTR of SARS-CoV-2. Graphical Abstract Graphical Abstract</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkae477</identifier><identifier>PMID: 38842942</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>5' Untranslated Regions ; Base Pairing ; Binding Sites ; COVID-19 - genetics ; COVID-19 - virology ; Genome, Viral ; Humans ; Hydrogen-Ion Concentration ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Nucleic Acid Conformation ; RNA, Viral - chemistry ; RNA, Viral - genetics ; RNA, Viral - metabolism ; SARS-CoV-2 - chemistry ; SARS-CoV-2 - genetics ; SARS-CoV-2 - metabolism ; Scattering, Small Angle ; Structural Biology ; X-Ray Diffraction</subject><ispartof>Nucleic acids research, 2024-07, Vol.52 (13), p.7971-7986</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-5244f3da00d7d1dda33f338c0571137c8a36182f633d50b854cb08d45f6597c73</cites><orcidid>0000-0001-5892-5661 ; 0009-0008-5501-6276 ; 0000-0003-0207-767X ; 0000-0003-1754-4058 ; 0000-0001-5693-7909 ; 0000-0001-7521-8264 ; 0000-0003-1606-890X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260494/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260494/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1605,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38842942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toews, Sabrina</creatorcontrib><creatorcontrib>Wacker, Anna</creatorcontrib><creatorcontrib>Faison, Edgar M</creatorcontrib><creatorcontrib>Duchardt-Ferner, Elke</creatorcontrib><creatorcontrib>Richter, Christian</creatorcontrib><creatorcontrib>Mathieu, Daniel</creatorcontrib><creatorcontrib>Bottaro, Sandro</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Schwalbe, Harald</creatorcontrib><title>The 5′-terminal stem–loop RNA element of SARS-CoV-2 features highly dynamic structural elements that are sensitive to differences in cellular pH</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract We present the nuclear magnetic resonance spectroscopy (NMR) solution structure of the 5′-terminal stem loop 5_SL1 (SL1) of the SARS-CoV-2 genome. SL1 contains two A-form helical elements and two regions with non-canonical structure, namely an apical pyrimidine-rich loop and an asymmetric internal loop with one and two nucleotides at the 5′- and 3′-terminal part of the sequence, respectively. The conformational ensemble representing the averaged solution structure of SL1 was validated using NMR residual dipolar coupling (RDC) and small-angle X-ray scattering (SAXS) data. We show that the internal loop is the major binding site for fragments of low molecular weight. This internal loop of SL1 can be stabilized by an A12–C28 interaction that promotes the transient formation of an A+•C base pair. As a consequence, the pKa of the internal loop adenosine A12 is shifted to 5.8, compared to a pKa of 3.63 of free adenosine. Furthermore, applying a recently developed pH-differential mutational profiling (PD-MaP) approach, we not only recapitulated our NMR findings of SL1 but also unveiled multiple sites potentially sensitive to pH across the 5′-UTR of SARS-CoV-2. Graphical Abstract Graphical Abstract</description><subject>5' Untranslated Regions</subject><subject>Base Pairing</subject><subject>Binding Sites</subject><subject>COVID-19 - genetics</subject><subject>COVID-19 - virology</subject><subject>Genome, Viral</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Molecular</subject><subject>Nucleic Acid Conformation</subject><subject>RNA, Viral - chemistry</subject><subject>RNA, Viral - genetics</subject><subject>RNA, Viral - metabolism</subject><subject>SARS-CoV-2 - chemistry</subject><subject>SARS-CoV-2 - genetics</subject><subject>SARS-CoV-2 - metabolism</subject><subject>Scattering, Small Angle</subject><subject>Structural Biology</subject><subject>X-Ray Diffraction</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kb1uFDEURi0EIptARY9cISQ0xB57_iq0WgFBikBKAq3lta93DDP2xPZE2i7vEJ6ER8qT4NUuETRULu65537Wh9ALSt5S0rFTJ8Pp5ocE3jSP0IKyuix4V5eP0YIwUhWU8PYIHcf4nRDKacWfoiPWtrzseLlAP696wNX97a8iQRitkwOOCcb727vB-wlffF5iGGAEl7A3-HJ5cVms_LeixAZkmgNE3NtNP2yx3jo5WpW3w6zyJIsOixGnXiYsA-AILtpkbwAnj7U1BgI4lSXWYQXDMA8y4OnsGXpi5BDh-eE9QV8_vL9anRXnXz5-Wi3PC8UITUVVcm6YloToRlOtJWOGsVaRqqGUNaqVrKZtaWrGdEXWbcXVmrSaV6auukY17AS923uneT2CVjlszi2mYEcZtsJLK_6dONuLjb8RlJY14R3PhtcHQ_DXM8QkRht3P5EO_BwFI7tTTdOxjL7Zoyr4GAOYhzuUiF2RIhcpDkVm-uXf0R7YP81l4NUe8PP0X9NvYFerfA</recordid><startdate>20240722</startdate><enddate>20240722</enddate><creator>Toews, Sabrina</creator><creator>Wacker, Anna</creator><creator>Faison, Edgar M</creator><creator>Duchardt-Ferner, Elke</creator><creator>Richter, Christian</creator><creator>Mathieu, Daniel</creator><creator>Bottaro, Sandro</creator><creator>Zhang, Qi</creator><creator>Schwalbe, Harald</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5892-5661</orcidid><orcidid>https://orcid.org/0009-0008-5501-6276</orcidid><orcidid>https://orcid.org/0000-0003-0207-767X</orcidid><orcidid>https://orcid.org/0000-0003-1754-4058</orcidid><orcidid>https://orcid.org/0000-0001-5693-7909</orcidid><orcidid>https://orcid.org/0000-0001-7521-8264</orcidid><orcidid>https://orcid.org/0000-0003-1606-890X</orcidid></search><sort><creationdate>20240722</creationdate><title>The 5′-terminal stem–loop RNA element of SARS-CoV-2 features highly dynamic structural elements that are sensitive to differences in cellular pH</title><author>Toews, Sabrina ; Wacker, Anna ; Faison, Edgar M ; Duchardt-Ferner, Elke ; Richter, Christian ; Mathieu, Daniel ; Bottaro, Sandro ; Zhang, Qi ; Schwalbe, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-5244f3da00d7d1dda33f338c0571137c8a36182f633d50b854cb08d45f6597c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>5' Untranslated Regions</topic><topic>Base Pairing</topic><topic>Binding Sites</topic><topic>COVID-19 - genetics</topic><topic>COVID-19 - virology</topic><topic>Genome, Viral</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Molecular</topic><topic>Nucleic Acid Conformation</topic><topic>RNA, Viral - chemistry</topic><topic>RNA, Viral - genetics</topic><topic>RNA, Viral - metabolism</topic><topic>SARS-CoV-2 - chemistry</topic><topic>SARS-CoV-2 - genetics</topic><topic>SARS-CoV-2 - metabolism</topic><topic>Scattering, Small Angle</topic><topic>Structural Biology</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toews, Sabrina</creatorcontrib><creatorcontrib>Wacker, Anna</creatorcontrib><creatorcontrib>Faison, Edgar M</creatorcontrib><creatorcontrib>Duchardt-Ferner, Elke</creatorcontrib><creatorcontrib>Richter, Christian</creatorcontrib><creatorcontrib>Mathieu, Daniel</creatorcontrib><creatorcontrib>Bottaro, Sandro</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Schwalbe, Harald</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toews, Sabrina</au><au>Wacker, Anna</au><au>Faison, Edgar M</au><au>Duchardt-Ferner, Elke</au><au>Richter, Christian</au><au>Mathieu, Daniel</au><au>Bottaro, Sandro</au><au>Zhang, Qi</au><au>Schwalbe, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 5′-terminal stem–loop RNA element of SARS-CoV-2 features highly dynamic structural elements that are sensitive to differences in cellular pH</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2024-07-22</date><risdate>2024</risdate><volume>52</volume><issue>13</issue><spage>7971</spage><epage>7986</epage><pages>7971-7986</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>Abstract We present the nuclear magnetic resonance spectroscopy (NMR) solution structure of the 5′-terminal stem loop 5_SL1 (SL1) of the SARS-CoV-2 genome. SL1 contains two A-form helical elements and two regions with non-canonical structure, namely an apical pyrimidine-rich loop and an asymmetric internal loop with one and two nucleotides at the 5′- and 3′-terminal part of the sequence, respectively. The conformational ensemble representing the averaged solution structure of SL1 was validated using NMR residual dipolar coupling (RDC) and small-angle X-ray scattering (SAXS) data. We show that the internal loop is the major binding site for fragments of low molecular weight. This internal loop of SL1 can be stabilized by an A12–C28 interaction that promotes the transient formation of an A+•C base pair. As a consequence, the pKa of the internal loop adenosine A12 is shifted to 5.8, compared to a pKa of 3.63 of free adenosine. Furthermore, applying a recently developed pH-differential mutational profiling (PD-MaP) approach, we not only recapitulated our NMR findings of SL1 but also unveiled multiple sites potentially sensitive to pH across the 5′-UTR of SARS-CoV-2. Graphical Abstract Graphical Abstract</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38842942</pmid><doi>10.1093/nar/gkae477</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5892-5661</orcidid><orcidid>https://orcid.org/0009-0008-5501-6276</orcidid><orcidid>https://orcid.org/0000-0003-0207-767X</orcidid><orcidid>https://orcid.org/0000-0003-1754-4058</orcidid><orcidid>https://orcid.org/0000-0001-5693-7909</orcidid><orcidid>https://orcid.org/0000-0001-7521-8264</orcidid><orcidid>https://orcid.org/0000-0003-1606-890X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2024-07, Vol.52 (13), p.7971-7986
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11260494
source MEDLINE; DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry
subjects 5' Untranslated Regions
Base Pairing
Binding Sites
COVID-19 - genetics
COVID-19 - virology
Genome, Viral
Humans
Hydrogen-Ion Concentration
Magnetic Resonance Spectroscopy
Models, Molecular
Nucleic Acid Conformation
RNA, Viral - chemistry
RNA, Viral - genetics
RNA, Viral - metabolism
SARS-CoV-2 - chemistry
SARS-CoV-2 - genetics
SARS-CoV-2 - metabolism
Scattering, Small Angle
Structural Biology
X-Ray Diffraction
title The 5′-terminal stem–loop RNA element of SARS-CoV-2 features highly dynamic structural elements that are sensitive to differences in cellular pH
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T03%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%205%E2%80%B2-terminal%20stem%E2%80%93loop%20RNA%20element%20of%20SARS-CoV-2%20features%20highly%20dynamic%20structural%20elements%20that%20are%20sensitive%20to%20differences%20in%20cellular%20pH&rft.jtitle=Nucleic%20acids%20research&rft.au=Toews,%20Sabrina&rft.date=2024-07-22&rft.volume=52&rft.issue=13&rft.spage=7971&rft.epage=7986&rft.pages=7971-7986&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkae477&rft_dat=%3Cproquest_pubme%3E3065977793%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065977793&rft_id=info:pmid/38842942&rft_oup_id=10.1093/nar/gkae477&rfr_iscdi=true