KDM6A–SND1 interaction maintains genomic stability by protecting the nascent DNA and contributes to cancer chemoresistance

Abstract Genomic instability is one of the hallmarks of cancer. While loss of histone demethylase KDM6A increases the risk of tumorigenesis, its specific role in maintaining genomic stability remains poorly understood. Here, we propose a mechanism in which KDM6A maintains genomic stability independe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2024-07, Vol.52 (13), p.7665-7686
Hauptverfasser: Wu, Jian, Jiang, Yixin, Zhang, Qin, Mao, Xiaobing, Wu, Tong, Hao, Mengqiu, Zhang, Su, Meng, Yang, Wan, Xiaowen, Qiu, Lei, Han, Junhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7686
container_issue 13
container_start_page 7665
container_title Nucleic acids research
container_volume 52
creator Wu, Jian
Jiang, Yixin
Zhang, Qin
Mao, Xiaobing
Wu, Tong
Hao, Mengqiu
Zhang, Su
Meng, Yang
Wan, Xiaowen
Qiu, Lei
Han, Junhong
description Abstract Genomic instability is one of the hallmarks of cancer. While loss of histone demethylase KDM6A increases the risk of tumorigenesis, its specific role in maintaining genomic stability remains poorly understood. Here, we propose a mechanism in which KDM6A maintains genomic stability independently on its demethylase activity. This occurs through its interaction with SND1, resulting in the establishment of a protective chromatin state that prevents replication fork collapse by recruiting of RPA and Ku70 to nascent DNA strand. Notably, KDM6A–SND1 interaction is up-regulated by KDM6A SUMOylation, while KDM6AK90A mutation almost abolish the interaction. Loss of KDM6A or SND1 leads to increased enrichment of H3K9ac and H4K8ac but attenuates the enrichment of Ku70 and H3K4me3 at nascent DNA strand. This subsequently results in enhanced cellular sensitivity to genotoxins and genomic instability. Consistent with these findings, knockdown of KDM6A and SND1 in esophageal squamous cell carcinoma (ESCC) cells increases genotoxin sensitivity. Intriguingly, KDM6A H101D & P110S, N1156T and D1216N mutations identified in ESCC patients promote genotoxin resistance via increased SND1 association. Our finding provides novel insights into the pivotal role of KDM6A–SND1 in genomic stability and chemoresistance, implying that targeting KDM6A and/or its interaction with SND1 may be a promising strategy to overcome the chemoresistance. Graphical Abstract Graphical Abstract
doi_str_mv 10.1093/nar/gkae487
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11260493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkae487</oup_id><sourcerecordid>3065978832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-29562f227f2a70fe714493adb7d99c0d0e26eb6c1084d62c8a5348ec311baac23</originalsourceid><addsrcrecordid>eNp9kU9rFDEYh4NY7Fo9eZecRJCx-TeZzEmWrtpirQf1HDKZd3ajM8maZIQFD36HfkM_iVl2LXrxEEKSh-f3hh9CTyh5SUnLz72J5-uvBoRq7qEF5ZJVopXsPloQTuqKEqFO0cOUvhBCBa3FA3TKlaoJrdsF-vFu9V4uf_28_Xizotj5DNHY7ILHkymnshJegw-Tszhl07nR5R3udngbQ4ZC-jXOG8DeJAs-49XNEhvfYxt8jq6bMyScA7bGW4jYbmAKEZIrqnLxCJ0MZkzw-Lifoc9vXn-6uKyuP7y9ulheV5YTmivW1pINjDUDMw0ZoKFCtNz0XdO3rSU9ASahk5YSJXrJrDI1Fwosp7QzxjJ-hl4dvNu5m6DfDxrNqLfRTSbudDBO__vi3Uavw3dNKZOkZBXD86Mhhm8zpKwnVz48jsZDmJPmRNZtoxTfh704oDaGlCIMdzmU6H1huhSmj4UV-unfo92xfxoqwLMDEObtf02_AfJ6oy4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065978832</pqid></control><display><type>article</type><title>KDM6A–SND1 interaction maintains genomic stability by protecting the nascent DNA and contributes to cancer chemoresistance</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Jian ; Jiang, Yixin ; Zhang, Qin ; Mao, Xiaobing ; Wu, Tong ; Hao, Mengqiu ; Zhang, Su ; Meng, Yang ; Wan, Xiaowen ; Qiu, Lei ; Han, Junhong</creator><creatorcontrib>Wu, Jian ; Jiang, Yixin ; Zhang, Qin ; Mao, Xiaobing ; Wu, Tong ; Hao, Mengqiu ; Zhang, Su ; Meng, Yang ; Wan, Xiaowen ; Qiu, Lei ; Han, Junhong</creatorcontrib><description>Abstract Genomic instability is one of the hallmarks of cancer. While loss of histone demethylase KDM6A increases the risk of tumorigenesis, its specific role in maintaining genomic stability remains poorly understood. Here, we propose a mechanism in which KDM6A maintains genomic stability independently on its demethylase activity. This occurs through its interaction with SND1, resulting in the establishment of a protective chromatin state that prevents replication fork collapse by recruiting of RPA and Ku70 to nascent DNA strand. Notably, KDM6A–SND1 interaction is up-regulated by KDM6A SUMOylation, while KDM6AK90A mutation almost abolish the interaction. Loss of KDM6A or SND1 leads to increased enrichment of H3K9ac and H4K8ac but attenuates the enrichment of Ku70 and H3K4me3 at nascent DNA strand. This subsequently results in enhanced cellular sensitivity to genotoxins and genomic instability. Consistent with these findings, knockdown of KDM6A and SND1 in esophageal squamous cell carcinoma (ESCC) cells increases genotoxin sensitivity. Intriguingly, KDM6A H101D &amp; P110S, N1156T and D1216N mutations identified in ESCC patients promote genotoxin resistance via increased SND1 association. Our finding provides novel insights into the pivotal role of KDM6A–SND1 in genomic stability and chemoresistance, implying that targeting KDM6A and/or its interaction with SND1 may be a promising strategy to overcome the chemoresistance. Graphical Abstract Graphical Abstract</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkae487</identifier><identifier>PMID: 38850159</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cell Line, Tumor ; Chromatin - genetics ; Chromatin - metabolism ; DNA Replication ; Drug Resistance, Neoplasm - genetics ; Endonucleases - genetics ; Endonucleases - metabolism ; Esophageal Neoplasms - genetics ; Esophageal Neoplasms - metabolism ; Genome Integrity, Repair and ; Genomic Instability - genetics ; Histone Demethylases - genetics ; Histone Demethylases - metabolism ; Histones - metabolism ; Humans ; Ku Autoantigen - genetics ; Ku Autoantigen - metabolism ; Mutation ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Sumoylation</subject><ispartof>Nucleic acids research, 2024-07, Vol.52 (13), p.7665-7686</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-29562f227f2a70fe714493adb7d99c0d0e26eb6c1084d62c8a5348ec311baac23</cites><orcidid>0000-0002-3371-8698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260493/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260493/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38850159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jian</creatorcontrib><creatorcontrib>Jiang, Yixin</creatorcontrib><creatorcontrib>Zhang, Qin</creatorcontrib><creatorcontrib>Mao, Xiaobing</creatorcontrib><creatorcontrib>Wu, Tong</creatorcontrib><creatorcontrib>Hao, Mengqiu</creatorcontrib><creatorcontrib>Zhang, Su</creatorcontrib><creatorcontrib>Meng, Yang</creatorcontrib><creatorcontrib>Wan, Xiaowen</creatorcontrib><creatorcontrib>Qiu, Lei</creatorcontrib><creatorcontrib>Han, Junhong</creatorcontrib><title>KDM6A–SND1 interaction maintains genomic stability by protecting the nascent DNA and contributes to cancer chemoresistance</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract Genomic instability is one of the hallmarks of cancer. While loss of histone demethylase KDM6A increases the risk of tumorigenesis, its specific role in maintaining genomic stability remains poorly understood. Here, we propose a mechanism in which KDM6A maintains genomic stability independently on its demethylase activity. This occurs through its interaction with SND1, resulting in the establishment of a protective chromatin state that prevents replication fork collapse by recruiting of RPA and Ku70 to nascent DNA strand. Notably, KDM6A–SND1 interaction is up-regulated by KDM6A SUMOylation, while KDM6AK90A mutation almost abolish the interaction. Loss of KDM6A or SND1 leads to increased enrichment of H3K9ac and H4K8ac but attenuates the enrichment of Ku70 and H3K4me3 at nascent DNA strand. This subsequently results in enhanced cellular sensitivity to genotoxins and genomic instability. Consistent with these findings, knockdown of KDM6A and SND1 in esophageal squamous cell carcinoma (ESCC) cells increases genotoxin sensitivity. Intriguingly, KDM6A H101D &amp; P110S, N1156T and D1216N mutations identified in ESCC patients promote genotoxin resistance via increased SND1 association. Our finding provides novel insights into the pivotal role of KDM6A–SND1 in genomic stability and chemoresistance, implying that targeting KDM6A and/or its interaction with SND1 may be a promising strategy to overcome the chemoresistance. Graphical Abstract Graphical Abstract</description><subject>Cell Line, Tumor</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>DNA Replication</subject><subject>Drug Resistance, Neoplasm - genetics</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Esophageal Neoplasms - genetics</subject><subject>Esophageal Neoplasms - metabolism</subject><subject>Genome Integrity, Repair and</subject><subject>Genomic Instability - genetics</subject><subject>Histone Demethylases - genetics</subject><subject>Histone Demethylases - metabolism</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Ku Autoantigen - genetics</subject><subject>Ku Autoantigen - metabolism</subject><subject>Mutation</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Sumoylation</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU9rFDEYh4NY7Fo9eZecRJCx-TeZzEmWrtpirQf1HDKZd3ajM8maZIQFD36HfkM_iVl2LXrxEEKSh-f3hh9CTyh5SUnLz72J5-uvBoRq7qEF5ZJVopXsPloQTuqKEqFO0cOUvhBCBa3FA3TKlaoJrdsF-vFu9V4uf_28_Xizotj5DNHY7ILHkymnshJegw-Tszhl07nR5R3udngbQ4ZC-jXOG8DeJAs-49XNEhvfYxt8jq6bMyScA7bGW4jYbmAKEZIrqnLxCJ0MZkzw-Lifoc9vXn-6uKyuP7y9ulheV5YTmivW1pINjDUDMw0ZoKFCtNz0XdO3rSU9ASahk5YSJXrJrDI1Fwosp7QzxjJ-hl4dvNu5m6DfDxrNqLfRTSbudDBO__vi3Uavw3dNKZOkZBXD86Mhhm8zpKwnVz48jsZDmJPmRNZtoxTfh704oDaGlCIMdzmU6H1huhSmj4UV-unfo92xfxoqwLMDEObtf02_AfJ6oy4</recordid><startdate>20240722</startdate><enddate>20240722</enddate><creator>Wu, Jian</creator><creator>Jiang, Yixin</creator><creator>Zhang, Qin</creator><creator>Mao, Xiaobing</creator><creator>Wu, Tong</creator><creator>Hao, Mengqiu</creator><creator>Zhang, Su</creator><creator>Meng, Yang</creator><creator>Wan, Xiaowen</creator><creator>Qiu, Lei</creator><creator>Han, Junhong</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3371-8698</orcidid></search><sort><creationdate>20240722</creationdate><title>KDM6A–SND1 interaction maintains genomic stability by protecting the nascent DNA and contributes to cancer chemoresistance</title><author>Wu, Jian ; Jiang, Yixin ; Zhang, Qin ; Mao, Xiaobing ; Wu, Tong ; Hao, Mengqiu ; Zhang, Su ; Meng, Yang ; Wan, Xiaowen ; Qiu, Lei ; Han, Junhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-29562f227f2a70fe714493adb7d99c0d0e26eb6c1084d62c8a5348ec311baac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cell Line, Tumor</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>DNA Replication</topic><topic>Drug Resistance, Neoplasm - genetics</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Esophageal Neoplasms - genetics</topic><topic>Esophageal Neoplasms - metabolism</topic><topic>Genome Integrity, Repair and</topic><topic>Genomic Instability - genetics</topic><topic>Histone Demethylases - genetics</topic><topic>Histone Demethylases - metabolism</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Ku Autoantigen - genetics</topic><topic>Ku Autoantigen - metabolism</topic><topic>Mutation</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Sumoylation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jian</creatorcontrib><creatorcontrib>Jiang, Yixin</creatorcontrib><creatorcontrib>Zhang, Qin</creatorcontrib><creatorcontrib>Mao, Xiaobing</creatorcontrib><creatorcontrib>Wu, Tong</creatorcontrib><creatorcontrib>Hao, Mengqiu</creatorcontrib><creatorcontrib>Zhang, Su</creatorcontrib><creatorcontrib>Meng, Yang</creatorcontrib><creatorcontrib>Wan, Xiaowen</creatorcontrib><creatorcontrib>Qiu, Lei</creatorcontrib><creatorcontrib>Han, Junhong</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jian</au><au>Jiang, Yixin</au><au>Zhang, Qin</au><au>Mao, Xiaobing</au><au>Wu, Tong</au><au>Hao, Mengqiu</au><au>Zhang, Su</au><au>Meng, Yang</au><au>Wan, Xiaowen</au><au>Qiu, Lei</au><au>Han, Junhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KDM6A–SND1 interaction maintains genomic stability by protecting the nascent DNA and contributes to cancer chemoresistance</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2024-07-22</date><risdate>2024</risdate><volume>52</volume><issue>13</issue><spage>7665</spage><epage>7686</epage><pages>7665-7686</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>Abstract Genomic instability is one of the hallmarks of cancer. While loss of histone demethylase KDM6A increases the risk of tumorigenesis, its specific role in maintaining genomic stability remains poorly understood. Here, we propose a mechanism in which KDM6A maintains genomic stability independently on its demethylase activity. This occurs through its interaction with SND1, resulting in the establishment of a protective chromatin state that prevents replication fork collapse by recruiting of RPA and Ku70 to nascent DNA strand. Notably, KDM6A–SND1 interaction is up-regulated by KDM6A SUMOylation, while KDM6AK90A mutation almost abolish the interaction. Loss of KDM6A or SND1 leads to increased enrichment of H3K9ac and H4K8ac but attenuates the enrichment of Ku70 and H3K4me3 at nascent DNA strand. This subsequently results in enhanced cellular sensitivity to genotoxins and genomic instability. Consistent with these findings, knockdown of KDM6A and SND1 in esophageal squamous cell carcinoma (ESCC) cells increases genotoxin sensitivity. Intriguingly, KDM6A H101D &amp; P110S, N1156T and D1216N mutations identified in ESCC patients promote genotoxin resistance via increased SND1 association. Our finding provides novel insights into the pivotal role of KDM6A–SND1 in genomic stability and chemoresistance, implying that targeting KDM6A and/or its interaction with SND1 may be a promising strategy to overcome the chemoresistance. Graphical Abstract Graphical Abstract</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38850159</pmid><doi>10.1093/nar/gkae487</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-3371-8698</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2024-07, Vol.52 (13), p.7665-7686
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11260493
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Cell Line, Tumor
Chromatin - genetics
Chromatin - metabolism
DNA Replication
Drug Resistance, Neoplasm - genetics
Endonucleases - genetics
Endonucleases - metabolism
Esophageal Neoplasms - genetics
Esophageal Neoplasms - metabolism
Genome Integrity, Repair and
Genomic Instability - genetics
Histone Demethylases - genetics
Histone Demethylases - metabolism
Histones - metabolism
Humans
Ku Autoantigen - genetics
Ku Autoantigen - metabolism
Mutation
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Sumoylation
title KDM6A–SND1 interaction maintains genomic stability by protecting the nascent DNA and contributes to cancer chemoresistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KDM6A%E2%80%93SND1%20interaction%20maintains%20genomic%20stability%20by%20protecting%20the%20nascent%20DNA%20and%20contributes%20to%20cancer%20chemoresistance&rft.jtitle=Nucleic%20acids%20research&rft.au=Wu,%20Jian&rft.date=2024-07-22&rft.volume=52&rft.issue=13&rft.spage=7665&rft.epage=7686&rft.pages=7665-7686&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkae487&rft_dat=%3Cproquest_pubme%3E3065978832%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065978832&rft_id=info:pmid/38850159&rft_oup_id=10.1093/nar/gkae487&rfr_iscdi=true