XPS Depth-Profiling Studies of Chlorophyll Binding to Poly(cysteine methacrylate) Scaffolds in Pigment–Polymer Antenna Complexes Using a Gas Cluster Ion Source

X-ray photoelectron spectroscopy (XPS) depth-profiling with an argon gas cluster ion source (GCIS) was used to characterize the spatial distribution of chlorophyll a (Chl) within a poly­(cysteine methacrylate) (PCysMA) brush grown by surface-initiated atom-transfer radical polymerization (ATRP) from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2024-07, Vol.40 (28), p.14527-14539
Hauptverfasser: Csányi, Evelin, Hammond, Deborah B., Bower, Benjamin, Johnson, Edwin C., Lishchuk, Anna, Armes, Steven P., Dong, Zhaogang, Leggett, Graham J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14539
container_issue 28
container_start_page 14527
container_title Langmuir
container_volume 40
creator Csányi, Evelin
Hammond, Deborah B.
Bower, Benjamin
Johnson, Edwin C.
Lishchuk, Anna
Armes, Steven P.
Dong, Zhaogang
Leggett, Graham J.
description X-ray photoelectron spectroscopy (XPS) depth-profiling with an argon gas cluster ion source (GCIS) was used to characterize the spatial distribution of chlorophyll a (Chl) within a poly­(cysteine methacrylate) (PCysMA) brush grown by surface-initiated atom-transfer radical polymerization (ATRP) from a planar surface. The organization of Chl is controlled by adjusting the brush grafting density and polymerization time. For dense brushes, the C, N, S elemental composition remains constant throughout the 36 nm brush layer until the underlying gold substrate is approached. However, for either reduced density brushes (mean thickness ∼20 nm) or mushrooms grown with reduced grafting densities (mean thickness 6–9 nm), elemental intensities decrease continuously throughout the brush layer, because photoelectrons are less strongly attenuated for such systems. For all brushes, the fraction of positively charged nitrogen atoms (N+/N0) decreases with increasing depth. Chl binding causes a marked reduction in N+/N0 within the brushes and produces a new feature at 398.1 eV in the N1s core-line spectrum assigned to tetrapyrrole ring nitrogen atoms coordinated to Zn2+. For all grafting densities, the N/S atomic ratio remains approximately constant as a function of brush depth, which indicates a uniform distribution of Chl throughout the brush layer. However, a larger fraction of repeat units bound to Chl is observed at lower grafting densities, reflecting a progressive reduction in steric congestion that enables more uniform distribution of the bulky Chl units throughout the brush layer. In summary, XPS depth-profiling using a GCIS is a powerful tool for characterization of these complex materials.
doi_str_mv 10.1021/acs.langmuir.4c01361
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11256746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075372849</sourcerecordid><originalsourceid>FETCH-LOGICAL-a316t-b6f48244eff5e40e87b9b22b5e96f99a286ee969c579e5d214165f5b560e40e73</originalsourceid><addsrcrecordid>eNqFksGO0zAQhi0EYkvhDRDycTmk2I6dxCe0FFhWWolKZSVulpOOW68cu9gJojfegSfg1XgSHLW7ggucbGm-__d45kfoOSULShh9pbu0cNpv-9HGBe8ILSv6AM2oYKQQDasfohmpeVnUvCrP0JOUbgkhsuTyMTorGym4YGyGfn5erfFb2A-7YhWDsc76LV4P48ZCwsHg5c6FGPa7g3P4jfWbqTwEvArucN4d0gDWA-5h2OkuHpwe4CVed9qY4DYJW49XdtuDH359_zFJeoj4wg_gvcbL0O8dfMvP3KTJVeNLnfDSjdk04qvg8TqMsYOn6JHRLsGz0zlHN-_ffVp-KK4_Xl4tL64LXdJqKNrK8IZxDsYI4ASaupUtY60AWRkpNWsqyFfZiVqC2DDKaSWMaEVFJrwu5-j10Xc_tj1sutx11E7to-11PKigrfq74u1ObcNXRSkT1TTlOTo_OcTwZYQ0qN6mDlzeEoQxqZKKsmpoKcn_UVKLsmYNlxnlR7SLIaUI5r4lStSUBJWToO6SoE5JyLIXf37nXnS3-gyQIzDJb_OofZ7uvz1_A435x28</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075372849</pqid></control><display><type>article</type><title>XPS Depth-Profiling Studies of Chlorophyll Binding to Poly(cysteine methacrylate) Scaffolds in Pigment–Polymer Antenna Complexes Using a Gas Cluster Ion Source</title><source>American Chemical Society Journals</source><creator>Csányi, Evelin ; Hammond, Deborah B. ; Bower, Benjamin ; Johnson, Edwin C. ; Lishchuk, Anna ; Armes, Steven P. ; Dong, Zhaogang ; Leggett, Graham J.</creator><creatorcontrib>Csányi, Evelin ; Hammond, Deborah B. ; Bower, Benjamin ; Johnson, Edwin C. ; Lishchuk, Anna ; Armes, Steven P. ; Dong, Zhaogang ; Leggett, Graham J.</creatorcontrib><description>X-ray photoelectron spectroscopy (XPS) depth-profiling with an argon gas cluster ion source (GCIS) was used to characterize the spatial distribution of chlorophyll a (Chl) within a poly­(cysteine methacrylate) (PCysMA) brush grown by surface-initiated atom-transfer radical polymerization (ATRP) from a planar surface. The organization of Chl is controlled by adjusting the brush grafting density and polymerization time. For dense brushes, the C, N, S elemental composition remains constant throughout the 36 nm brush layer until the underlying gold substrate is approached. However, for either reduced density brushes (mean thickness ∼20 nm) or mushrooms grown with reduced grafting densities (mean thickness 6–9 nm), elemental intensities decrease continuously throughout the brush layer, because photoelectrons are less strongly attenuated for such systems. For all brushes, the fraction of positively charged nitrogen atoms (N+/N0) decreases with increasing depth. Chl binding causes a marked reduction in N+/N0 within the brushes and produces a new feature at 398.1 eV in the N1s core-line spectrum assigned to tetrapyrrole ring nitrogen atoms coordinated to Zn2+. For all grafting densities, the N/S atomic ratio remains approximately constant as a function of brush depth, which indicates a uniform distribution of Chl throughout the brush layer. However, a larger fraction of repeat units bound to Chl is observed at lower grafting densities, reflecting a progressive reduction in steric congestion that enables more uniform distribution of the bulky Chl units throughout the brush layer. In summary, XPS depth-profiling using a GCIS is a powerful tool for characterization of these complex materials.</description><identifier>ISSN: 0743-7463</identifier><identifier>ISSN: 1520-5827</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.4c01361</identifier><identifier>PMID: 38954522</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>chlorophyll ; cysteine ; elemental composition ; gold ; nitrogen ; polymerization ; X-ray photoelectron spectroscopy</subject><ispartof>Langmuir, 2024-07, Vol.40 (28), p.14527-14539</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a316t-b6f48244eff5e40e87b9b22b5e96f99a286ee969c579e5d214165f5b560e40e73</cites><orcidid>0000-0002-8289-6351 ; 0000-0003-3785-2947 ; 0000-0002-0929-7723 ; 0000-0002-4315-9076 ; 0000-0002-0092-1008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.4c01361$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.4c01361$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38954522$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Csányi, Evelin</creatorcontrib><creatorcontrib>Hammond, Deborah B.</creatorcontrib><creatorcontrib>Bower, Benjamin</creatorcontrib><creatorcontrib>Johnson, Edwin C.</creatorcontrib><creatorcontrib>Lishchuk, Anna</creatorcontrib><creatorcontrib>Armes, Steven P.</creatorcontrib><creatorcontrib>Dong, Zhaogang</creatorcontrib><creatorcontrib>Leggett, Graham J.</creatorcontrib><title>XPS Depth-Profiling Studies of Chlorophyll Binding to Poly(cysteine methacrylate) Scaffolds in Pigment–Polymer Antenna Complexes Using a Gas Cluster Ion Source</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>X-ray photoelectron spectroscopy (XPS) depth-profiling with an argon gas cluster ion source (GCIS) was used to characterize the spatial distribution of chlorophyll a (Chl) within a poly­(cysteine methacrylate) (PCysMA) brush grown by surface-initiated atom-transfer radical polymerization (ATRP) from a planar surface. The organization of Chl is controlled by adjusting the brush grafting density and polymerization time. For dense brushes, the C, N, S elemental composition remains constant throughout the 36 nm brush layer until the underlying gold substrate is approached. However, for either reduced density brushes (mean thickness ∼20 nm) or mushrooms grown with reduced grafting densities (mean thickness 6–9 nm), elemental intensities decrease continuously throughout the brush layer, because photoelectrons are less strongly attenuated for such systems. For all brushes, the fraction of positively charged nitrogen atoms (N+/N0) decreases with increasing depth. Chl binding causes a marked reduction in N+/N0 within the brushes and produces a new feature at 398.1 eV in the N1s core-line spectrum assigned to tetrapyrrole ring nitrogen atoms coordinated to Zn2+. For all grafting densities, the N/S atomic ratio remains approximately constant as a function of brush depth, which indicates a uniform distribution of Chl throughout the brush layer. However, a larger fraction of repeat units bound to Chl is observed at lower grafting densities, reflecting a progressive reduction in steric congestion that enables more uniform distribution of the bulky Chl units throughout the brush layer. In summary, XPS depth-profiling using a GCIS is a powerful tool for characterization of these complex materials.</description><subject>chlorophyll</subject><subject>cysteine</subject><subject>elemental composition</subject><subject>gold</subject><subject>nitrogen</subject><subject>polymerization</subject><subject>X-ray photoelectron spectroscopy</subject><issn>0743-7463</issn><issn>1520-5827</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFksGO0zAQhi0EYkvhDRDycTmk2I6dxCe0FFhWWolKZSVulpOOW68cu9gJojfegSfg1XgSHLW7ggucbGm-__d45kfoOSULShh9pbu0cNpv-9HGBe8ILSv6AM2oYKQQDasfohmpeVnUvCrP0JOUbgkhsuTyMTorGym4YGyGfn5erfFb2A-7YhWDsc76LV4P48ZCwsHg5c6FGPa7g3P4jfWbqTwEvArucN4d0gDWA-5h2OkuHpwe4CVed9qY4DYJW49XdtuDH359_zFJeoj4wg_gvcbL0O8dfMvP3KTJVeNLnfDSjdk04qvg8TqMsYOn6JHRLsGz0zlHN-_ffVp-KK4_Xl4tL64LXdJqKNrK8IZxDsYI4ASaupUtY60AWRkpNWsqyFfZiVqC2DDKaSWMaEVFJrwu5-j10Xc_tj1sutx11E7to-11PKigrfq74u1ObcNXRSkT1TTlOTo_OcTwZYQ0qN6mDlzeEoQxqZKKsmpoKcn_UVKLsmYNlxnlR7SLIaUI5r4lStSUBJWToO6SoE5JyLIXf37nXnS3-gyQIzDJb_OofZ7uvz1_A435x28</recordid><startdate>20240716</startdate><enddate>20240716</enddate><creator>Csányi, Evelin</creator><creator>Hammond, Deborah B.</creator><creator>Bower, Benjamin</creator><creator>Johnson, Edwin C.</creator><creator>Lishchuk, Anna</creator><creator>Armes, Steven P.</creator><creator>Dong, Zhaogang</creator><creator>Leggett, Graham J.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8289-6351</orcidid><orcidid>https://orcid.org/0000-0003-3785-2947</orcidid><orcidid>https://orcid.org/0000-0002-0929-7723</orcidid><orcidid>https://orcid.org/0000-0002-4315-9076</orcidid><orcidid>https://orcid.org/0000-0002-0092-1008</orcidid></search><sort><creationdate>20240716</creationdate><title>XPS Depth-Profiling Studies of Chlorophyll Binding to Poly(cysteine methacrylate) Scaffolds in Pigment–Polymer Antenna Complexes Using a Gas Cluster Ion Source</title><author>Csányi, Evelin ; Hammond, Deborah B. ; Bower, Benjamin ; Johnson, Edwin C. ; Lishchuk, Anna ; Armes, Steven P. ; Dong, Zhaogang ; Leggett, Graham J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a316t-b6f48244eff5e40e87b9b22b5e96f99a286ee969c579e5d214165f5b560e40e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>chlorophyll</topic><topic>cysteine</topic><topic>elemental composition</topic><topic>gold</topic><topic>nitrogen</topic><topic>polymerization</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Csányi, Evelin</creatorcontrib><creatorcontrib>Hammond, Deborah B.</creatorcontrib><creatorcontrib>Bower, Benjamin</creatorcontrib><creatorcontrib>Johnson, Edwin C.</creatorcontrib><creatorcontrib>Lishchuk, Anna</creatorcontrib><creatorcontrib>Armes, Steven P.</creatorcontrib><creatorcontrib>Dong, Zhaogang</creatorcontrib><creatorcontrib>Leggett, Graham J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Csányi, Evelin</au><au>Hammond, Deborah B.</au><au>Bower, Benjamin</au><au>Johnson, Edwin C.</au><au>Lishchuk, Anna</au><au>Armes, Steven P.</au><au>Dong, Zhaogang</au><au>Leggett, Graham J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>XPS Depth-Profiling Studies of Chlorophyll Binding to Poly(cysteine methacrylate) Scaffolds in Pigment–Polymer Antenna Complexes Using a Gas Cluster Ion Source</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2024-07-16</date><risdate>2024</risdate><volume>40</volume><issue>28</issue><spage>14527</spage><epage>14539</epage><pages>14527-14539</pages><issn>0743-7463</issn><issn>1520-5827</issn><eissn>1520-5827</eissn><abstract>X-ray photoelectron spectroscopy (XPS) depth-profiling with an argon gas cluster ion source (GCIS) was used to characterize the spatial distribution of chlorophyll a (Chl) within a poly­(cysteine methacrylate) (PCysMA) brush grown by surface-initiated atom-transfer radical polymerization (ATRP) from a planar surface. The organization of Chl is controlled by adjusting the brush grafting density and polymerization time. For dense brushes, the C, N, S elemental composition remains constant throughout the 36 nm brush layer until the underlying gold substrate is approached. However, for either reduced density brushes (mean thickness ∼20 nm) or mushrooms grown with reduced grafting densities (mean thickness 6–9 nm), elemental intensities decrease continuously throughout the brush layer, because photoelectrons are less strongly attenuated for such systems. For all brushes, the fraction of positively charged nitrogen atoms (N+/N0) decreases with increasing depth. Chl binding causes a marked reduction in N+/N0 within the brushes and produces a new feature at 398.1 eV in the N1s core-line spectrum assigned to tetrapyrrole ring nitrogen atoms coordinated to Zn2+. For all grafting densities, the N/S atomic ratio remains approximately constant as a function of brush depth, which indicates a uniform distribution of Chl throughout the brush layer. However, a larger fraction of repeat units bound to Chl is observed at lower grafting densities, reflecting a progressive reduction in steric congestion that enables more uniform distribution of the bulky Chl units throughout the brush layer. In summary, XPS depth-profiling using a GCIS is a powerful tool for characterization of these complex materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38954522</pmid><doi>10.1021/acs.langmuir.4c01361</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8289-6351</orcidid><orcidid>https://orcid.org/0000-0003-3785-2947</orcidid><orcidid>https://orcid.org/0000-0002-0929-7723</orcidid><orcidid>https://orcid.org/0000-0002-4315-9076</orcidid><orcidid>https://orcid.org/0000-0002-0092-1008</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2024-07, Vol.40 (28), p.14527-14539
issn 0743-7463
1520-5827
1520-5827
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11256746
source American Chemical Society Journals
subjects chlorophyll
cysteine
elemental composition
gold
nitrogen
polymerization
X-ray photoelectron spectroscopy
title XPS Depth-Profiling Studies of Chlorophyll Binding to Poly(cysteine methacrylate) Scaffolds in Pigment–Polymer Antenna Complexes Using a Gas Cluster Ion Source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=XPS%20Depth-Profiling%20Studies%20of%20Chlorophyll%20Binding%20to%20Poly(cysteine%20methacrylate)%20Scaffolds%20in%20Pigment%E2%80%93Polymer%20Antenna%20Complexes%20Using%20a%20Gas%20Cluster%20Ion%20Source&rft.jtitle=Langmuir&rft.au=Csa%CC%81nyi,%20Evelin&rft.date=2024-07-16&rft.volume=40&rft.issue=28&rft.spage=14527&rft.epage=14539&rft.pages=14527-14539&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.4c01361&rft_dat=%3Cproquest_pubme%3E3075372849%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075372849&rft_id=info:pmid/38954522&rfr_iscdi=true