XPS Depth-Profiling Studies of Chlorophyll Binding to Poly(cysteine methacrylate) Scaffolds in Pigment–Polymer Antenna Complexes Using a Gas Cluster Ion Source
X-ray photoelectron spectroscopy (XPS) depth-profiling with an argon gas cluster ion source (GCIS) was used to characterize the spatial distribution of chlorophyll a (Chl) within a poly(cysteine methacrylate) (PCysMA) brush grown by surface-initiated atom-transfer radical polymerization (ATRP) from...
Gespeichert in:
Veröffentlicht in: | Langmuir 2024-07, Vol.40 (28), p.14527-14539 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14539 |
---|---|
container_issue | 28 |
container_start_page | 14527 |
container_title | Langmuir |
container_volume | 40 |
creator | Csányi, Evelin Hammond, Deborah B. Bower, Benjamin Johnson, Edwin C. Lishchuk, Anna Armes, Steven P. Dong, Zhaogang Leggett, Graham J. |
description | X-ray photoelectron spectroscopy (XPS) depth-profiling with an argon gas cluster ion source (GCIS) was used to characterize the spatial distribution of chlorophyll a (Chl) within a poly(cysteine methacrylate) (PCysMA) brush grown by surface-initiated atom-transfer radical polymerization (ATRP) from a planar surface. The organization of Chl is controlled by adjusting the brush grafting density and polymerization time. For dense brushes, the C, N, S elemental composition remains constant throughout the 36 nm brush layer until the underlying gold substrate is approached. However, for either reduced density brushes (mean thickness ∼20 nm) or mushrooms grown with reduced grafting densities (mean thickness 6–9 nm), elemental intensities decrease continuously throughout the brush layer, because photoelectrons are less strongly attenuated for such systems. For all brushes, the fraction of positively charged nitrogen atoms (N+/N0) decreases with increasing depth. Chl binding causes a marked reduction in N+/N0 within the brushes and produces a new feature at 398.1 eV in the N1s core-line spectrum assigned to tetrapyrrole ring nitrogen atoms coordinated to Zn2+. For all grafting densities, the N/S atomic ratio remains approximately constant as a function of brush depth, which indicates a uniform distribution of Chl throughout the brush layer. However, a larger fraction of repeat units bound to Chl is observed at lower grafting densities, reflecting a progressive reduction in steric congestion that enables more uniform distribution of the bulky Chl units throughout the brush layer. In summary, XPS depth-profiling using a GCIS is a powerful tool for characterization of these complex materials. |
doi_str_mv | 10.1021/acs.langmuir.4c01361 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11256746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075372849</sourcerecordid><originalsourceid>FETCH-LOGICAL-a316t-b6f48244eff5e40e87b9b22b5e96f99a286ee969c579e5d214165f5b560e40e73</originalsourceid><addsrcrecordid>eNqFksGO0zAQhi0EYkvhDRDycTmk2I6dxCe0FFhWWolKZSVulpOOW68cu9gJojfegSfg1XgSHLW7ggucbGm-__d45kfoOSULShh9pbu0cNpv-9HGBe8ILSv6AM2oYKQQDasfohmpeVnUvCrP0JOUbgkhsuTyMTorGym4YGyGfn5erfFb2A-7YhWDsc76LV4P48ZCwsHg5c6FGPa7g3P4jfWbqTwEvArucN4d0gDWA-5h2OkuHpwe4CVed9qY4DYJW49XdtuDH359_zFJeoj4wg_gvcbL0O8dfMvP3KTJVeNLnfDSjdk04qvg8TqMsYOn6JHRLsGz0zlHN-_ffVp-KK4_Xl4tL64LXdJqKNrK8IZxDsYI4ASaupUtY60AWRkpNWsqyFfZiVqC2DDKaSWMaEVFJrwu5-j10Xc_tj1sutx11E7to-11PKigrfq74u1ObcNXRSkT1TTlOTo_OcTwZYQ0qN6mDlzeEoQxqZKKsmpoKcn_UVKLsmYNlxnlR7SLIaUI5r4lStSUBJWToO6SoE5JyLIXf37nXnS3-gyQIzDJb_OofZ7uvz1_A435x28</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075372849</pqid></control><display><type>article</type><title>XPS Depth-Profiling Studies of Chlorophyll Binding to Poly(cysteine methacrylate) Scaffolds in Pigment–Polymer Antenna Complexes Using a Gas Cluster Ion Source</title><source>American Chemical Society Journals</source><creator>Csányi, Evelin ; Hammond, Deborah B. ; Bower, Benjamin ; Johnson, Edwin C. ; Lishchuk, Anna ; Armes, Steven P. ; Dong, Zhaogang ; Leggett, Graham J.</creator><creatorcontrib>Csányi, Evelin ; Hammond, Deborah B. ; Bower, Benjamin ; Johnson, Edwin C. ; Lishchuk, Anna ; Armes, Steven P. ; Dong, Zhaogang ; Leggett, Graham J.</creatorcontrib><description>X-ray photoelectron spectroscopy (XPS) depth-profiling with an argon gas cluster ion source (GCIS) was used to characterize the spatial distribution of chlorophyll a (Chl) within a poly(cysteine methacrylate) (PCysMA) brush grown by surface-initiated atom-transfer radical polymerization (ATRP) from a planar surface. The organization of Chl is controlled by adjusting the brush grafting density and polymerization time. For dense brushes, the C, N, S elemental composition remains constant throughout the 36 nm brush layer until the underlying gold substrate is approached. However, for either reduced density brushes (mean thickness ∼20 nm) or mushrooms grown with reduced grafting densities (mean thickness 6–9 nm), elemental intensities decrease continuously throughout the brush layer, because photoelectrons are less strongly attenuated for such systems. For all brushes, the fraction of positively charged nitrogen atoms (N+/N0) decreases with increasing depth. Chl binding causes a marked reduction in N+/N0 within the brushes and produces a new feature at 398.1 eV in the N1s core-line spectrum assigned to tetrapyrrole ring nitrogen atoms coordinated to Zn2+. For all grafting densities, the N/S atomic ratio remains approximately constant as a function of brush depth, which indicates a uniform distribution of Chl throughout the brush layer. However, a larger fraction of repeat units bound to Chl is observed at lower grafting densities, reflecting a progressive reduction in steric congestion that enables more uniform distribution of the bulky Chl units throughout the brush layer. In summary, XPS depth-profiling using a GCIS is a powerful tool for characterization of these complex materials.</description><identifier>ISSN: 0743-7463</identifier><identifier>ISSN: 1520-5827</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.4c01361</identifier><identifier>PMID: 38954522</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>chlorophyll ; cysteine ; elemental composition ; gold ; nitrogen ; polymerization ; X-ray photoelectron spectroscopy</subject><ispartof>Langmuir, 2024-07, Vol.40 (28), p.14527-14539</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a316t-b6f48244eff5e40e87b9b22b5e96f99a286ee969c579e5d214165f5b560e40e73</cites><orcidid>0000-0002-8289-6351 ; 0000-0003-3785-2947 ; 0000-0002-0929-7723 ; 0000-0002-4315-9076 ; 0000-0002-0092-1008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.4c01361$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.4c01361$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38954522$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Csányi, Evelin</creatorcontrib><creatorcontrib>Hammond, Deborah B.</creatorcontrib><creatorcontrib>Bower, Benjamin</creatorcontrib><creatorcontrib>Johnson, Edwin C.</creatorcontrib><creatorcontrib>Lishchuk, Anna</creatorcontrib><creatorcontrib>Armes, Steven P.</creatorcontrib><creatorcontrib>Dong, Zhaogang</creatorcontrib><creatorcontrib>Leggett, Graham J.</creatorcontrib><title>XPS Depth-Profiling Studies of Chlorophyll Binding to Poly(cysteine methacrylate) Scaffolds in Pigment–Polymer Antenna Complexes Using a Gas Cluster Ion Source</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>X-ray photoelectron spectroscopy (XPS) depth-profiling with an argon gas cluster ion source (GCIS) was used to characterize the spatial distribution of chlorophyll a (Chl) within a poly(cysteine methacrylate) (PCysMA) brush grown by surface-initiated atom-transfer radical polymerization (ATRP) from a planar surface. The organization of Chl is controlled by adjusting the brush grafting density and polymerization time. For dense brushes, the C, N, S elemental composition remains constant throughout the 36 nm brush layer until the underlying gold substrate is approached. However, for either reduced density brushes (mean thickness ∼20 nm) or mushrooms grown with reduced grafting densities (mean thickness 6–9 nm), elemental intensities decrease continuously throughout the brush layer, because photoelectrons are less strongly attenuated for such systems. For all brushes, the fraction of positively charged nitrogen atoms (N+/N0) decreases with increasing depth. Chl binding causes a marked reduction in N+/N0 within the brushes and produces a new feature at 398.1 eV in the N1s core-line spectrum assigned to tetrapyrrole ring nitrogen atoms coordinated to Zn2+. For all grafting densities, the N/S atomic ratio remains approximately constant as a function of brush depth, which indicates a uniform distribution of Chl throughout the brush layer. However, a larger fraction of repeat units bound to Chl is observed at lower grafting densities, reflecting a progressive reduction in steric congestion that enables more uniform distribution of the bulky Chl units throughout the brush layer. In summary, XPS depth-profiling using a GCIS is a powerful tool for characterization of these complex materials.</description><subject>chlorophyll</subject><subject>cysteine</subject><subject>elemental composition</subject><subject>gold</subject><subject>nitrogen</subject><subject>polymerization</subject><subject>X-ray photoelectron spectroscopy</subject><issn>0743-7463</issn><issn>1520-5827</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFksGO0zAQhi0EYkvhDRDycTmk2I6dxCe0FFhWWolKZSVulpOOW68cu9gJojfegSfg1XgSHLW7ggucbGm-__d45kfoOSULShh9pbu0cNpv-9HGBe8ILSv6AM2oYKQQDasfohmpeVnUvCrP0JOUbgkhsuTyMTorGym4YGyGfn5erfFb2A-7YhWDsc76LV4P48ZCwsHg5c6FGPa7g3P4jfWbqTwEvArucN4d0gDWA-5h2OkuHpwe4CVed9qY4DYJW49XdtuDH359_zFJeoj4wg_gvcbL0O8dfMvP3KTJVeNLnfDSjdk04qvg8TqMsYOn6JHRLsGz0zlHN-_ffVp-KK4_Xl4tL64LXdJqKNrK8IZxDsYI4ASaupUtY60AWRkpNWsqyFfZiVqC2DDKaSWMaEVFJrwu5-j10Xc_tj1sutx11E7to-11PKigrfq74u1ObcNXRSkT1TTlOTo_OcTwZYQ0qN6mDlzeEoQxqZKKsmpoKcn_UVKLsmYNlxnlR7SLIaUI5r4lStSUBJWToO6SoE5JyLIXf37nXnS3-gyQIzDJb_OofZ7uvz1_A435x28</recordid><startdate>20240716</startdate><enddate>20240716</enddate><creator>Csányi, Evelin</creator><creator>Hammond, Deborah B.</creator><creator>Bower, Benjamin</creator><creator>Johnson, Edwin C.</creator><creator>Lishchuk, Anna</creator><creator>Armes, Steven P.</creator><creator>Dong, Zhaogang</creator><creator>Leggett, Graham J.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8289-6351</orcidid><orcidid>https://orcid.org/0000-0003-3785-2947</orcidid><orcidid>https://orcid.org/0000-0002-0929-7723</orcidid><orcidid>https://orcid.org/0000-0002-4315-9076</orcidid><orcidid>https://orcid.org/0000-0002-0092-1008</orcidid></search><sort><creationdate>20240716</creationdate><title>XPS Depth-Profiling Studies of Chlorophyll Binding to Poly(cysteine methacrylate) Scaffolds in Pigment–Polymer Antenna Complexes Using a Gas Cluster Ion Source</title><author>Csányi, Evelin ; Hammond, Deborah B. ; Bower, Benjamin ; Johnson, Edwin C. ; Lishchuk, Anna ; Armes, Steven P. ; Dong, Zhaogang ; Leggett, Graham J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a316t-b6f48244eff5e40e87b9b22b5e96f99a286ee969c579e5d214165f5b560e40e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>chlorophyll</topic><topic>cysteine</topic><topic>elemental composition</topic><topic>gold</topic><topic>nitrogen</topic><topic>polymerization</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Csányi, Evelin</creatorcontrib><creatorcontrib>Hammond, Deborah B.</creatorcontrib><creatorcontrib>Bower, Benjamin</creatorcontrib><creatorcontrib>Johnson, Edwin C.</creatorcontrib><creatorcontrib>Lishchuk, Anna</creatorcontrib><creatorcontrib>Armes, Steven P.</creatorcontrib><creatorcontrib>Dong, Zhaogang</creatorcontrib><creatorcontrib>Leggett, Graham J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Csányi, Evelin</au><au>Hammond, Deborah B.</au><au>Bower, Benjamin</au><au>Johnson, Edwin C.</au><au>Lishchuk, Anna</au><au>Armes, Steven P.</au><au>Dong, Zhaogang</au><au>Leggett, Graham J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>XPS Depth-Profiling Studies of Chlorophyll Binding to Poly(cysteine methacrylate) Scaffolds in Pigment–Polymer Antenna Complexes Using a Gas Cluster Ion Source</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2024-07-16</date><risdate>2024</risdate><volume>40</volume><issue>28</issue><spage>14527</spage><epage>14539</epage><pages>14527-14539</pages><issn>0743-7463</issn><issn>1520-5827</issn><eissn>1520-5827</eissn><abstract>X-ray photoelectron spectroscopy (XPS) depth-profiling with an argon gas cluster ion source (GCIS) was used to characterize the spatial distribution of chlorophyll a (Chl) within a poly(cysteine methacrylate) (PCysMA) brush grown by surface-initiated atom-transfer radical polymerization (ATRP) from a planar surface. The organization of Chl is controlled by adjusting the brush grafting density and polymerization time. For dense brushes, the C, N, S elemental composition remains constant throughout the 36 nm brush layer until the underlying gold substrate is approached. However, for either reduced density brushes (mean thickness ∼20 nm) or mushrooms grown with reduced grafting densities (mean thickness 6–9 nm), elemental intensities decrease continuously throughout the brush layer, because photoelectrons are less strongly attenuated for such systems. For all brushes, the fraction of positively charged nitrogen atoms (N+/N0) decreases with increasing depth. Chl binding causes a marked reduction in N+/N0 within the brushes and produces a new feature at 398.1 eV in the N1s core-line spectrum assigned to tetrapyrrole ring nitrogen atoms coordinated to Zn2+. For all grafting densities, the N/S atomic ratio remains approximately constant as a function of brush depth, which indicates a uniform distribution of Chl throughout the brush layer. However, a larger fraction of repeat units bound to Chl is observed at lower grafting densities, reflecting a progressive reduction in steric congestion that enables more uniform distribution of the bulky Chl units throughout the brush layer. In summary, XPS depth-profiling using a GCIS is a powerful tool for characterization of these complex materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38954522</pmid><doi>10.1021/acs.langmuir.4c01361</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8289-6351</orcidid><orcidid>https://orcid.org/0000-0003-3785-2947</orcidid><orcidid>https://orcid.org/0000-0002-0929-7723</orcidid><orcidid>https://orcid.org/0000-0002-4315-9076</orcidid><orcidid>https://orcid.org/0000-0002-0092-1008</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2024-07, Vol.40 (28), p.14527-14539 |
issn | 0743-7463 1520-5827 1520-5827 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11256746 |
source | American Chemical Society Journals |
subjects | chlorophyll cysteine elemental composition gold nitrogen polymerization X-ray photoelectron spectroscopy |
title | XPS Depth-Profiling Studies of Chlorophyll Binding to Poly(cysteine methacrylate) Scaffolds in Pigment–Polymer Antenna Complexes Using a Gas Cluster Ion Source |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=XPS%20Depth-Profiling%20Studies%20of%20Chlorophyll%20Binding%20to%20Poly(cysteine%20methacrylate)%20Scaffolds%20in%20Pigment%E2%80%93Polymer%20Antenna%20Complexes%20Using%20a%20Gas%20Cluster%20Ion%20Source&rft.jtitle=Langmuir&rft.au=Csa%CC%81nyi,%20Evelin&rft.date=2024-07-16&rft.volume=40&rft.issue=28&rft.spage=14527&rft.epage=14539&rft.pages=14527-14539&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.4c01361&rft_dat=%3Cproquest_pubme%3E3075372849%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075372849&rft_id=info:pmid/38954522&rfr_iscdi=true |