Brain metastasis magnetic resonance imaging-based deep learning for predicting epidermal growth factor receptor ( EGFR ) mutation and subtypes in metastatic non-small cell lung cancer
The preoperative identification of epidermal growth factor receptor ( ) mutations and subtypes based on magnetic resonance imaging (MRI) of brain metastases (BM) is necessary to facilitate individualized therapy. This study aimed to develop a deep learning model to preoperatively detect mutations an...
Gespeichert in:
Veröffentlicht in: | Quantitative imaging in medicine and surgery 2024-07, Vol.14 (7), p.4749-4762 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4762 |
---|---|
container_issue | 7 |
container_start_page | 4749 |
container_title | Quantitative imaging in medicine and surgery |
container_volume | 14 |
creator | Cao, Ran Fu, Langyuan Huang, Bo Liu, Yan Wang, Xiaoyu Liu, Jiani Wang, Haotian Jiang, Xiran Yang, Zhiguang Sha, Xianzheng Zhao, Nannan |
description | The preoperative identification of epidermal growth factor receptor (
) mutations and subtypes based on magnetic resonance imaging (MRI) of brain metastases (BM) is necessary to facilitate individualized therapy. This study aimed to develop a deep learning model to preoperatively detect
mutations and identify the location of
mutations in patients with non-small cell lung cancer (NSCLC) and BM.
We included 160 and 72 patients who underwent contrast-enhanced T1-weighted (T1w-CE) and T2-weighted (T2W) MRI at Liaoning Cancer Hospital and Institute (center 1) and Shengjing Hospital of China Medical University (center 2) to form a training cohort and an external validation cohort, respectively. A multiscale feature fusion network (MSF-Net) was developed by adaptively integrating features based on different stages of residual network (ResNet) 50 and by introducing channel and spatial attention modules. The external validation set from center 2 was used to assess the performance of MSF-Net and to compare it with that of handcrafted radiomics features. Receiver operating characteristic (ROC) curves, accuracy, precision, recall, and F1-score were used to evaluate the effectiveness of the models. Gradient-weighted class activation mapping (Grad-CAM) was used to demonstrate the attention of the MSF-Net model.
The developed MSF-Net generated a better diagnostic performance than did the handcrafted radiomics in terms of the microaveraged area under the curve (AUC) (MSF-Net: 0.91; radiomics: 0.80) and macroaveraged AUC (MSF-Net: 0.90; radiomics: 0.81) for predicting
mutations and subtypes.
This study provides an end-to-end and noninvasive imaging tool for the preoperative prediction of
mutation status and subtypes based on BM, which may be helpful for facilitating individualized clinical treatment plans. |
doi_str_mv | 10.21037/qims-23-1744 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11250349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082309823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-5ba99bdcf669cc9b704da8465930b5aa106f18cf2dda58daf7353415c31443743</originalsourceid><addsrcrecordid>eNpVUUtv1jAQjBCIVqVHrsjHckjxKw-fEFRtQapUqSpna2Nvvholdmo7oP4y_h5OX1DLWq93R7NjT1W9Z_SYMyq6T7duTjUXNeukfFXtc15yKWj7-inniu9Vhyn9pGV1PesYfVvtCUW3dr9f_fkawXkyY4ZUtktkhp3H7AyJmIIHb5C4UnN-Vw-Q0BKLuJAJIfpSI2OIZIloncnbFRdnMc4wkV0Mv_MNGcHkAolocNmSI3J6fnZFPpJ5zZBd8AS8JWkd8t2CifzTsknwwdepkE3EYAnTWiaYTVJ8V70ZYUp4-HgeVD_OTq9PvtUXl-ffT75c1IZ3MtfNAEoN1oxtq4xRQ0elhV62jRJ0aAAYbUfWm5FbC01vYexEIyRrjGBSik6Kg-rzA--yDjNagz5HmPQSy5_EOx3A6Zcd7270LvzSjPGGCqkKw9EjQwy3K6asZ5e254DHsCYtaM8FVSUUaP0ANTGkFHF8nsOovjdcb4ZrLvRmeMF_-F_cM_rJXvEX2iOr5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082309823</pqid></control><display><type>article</type><title>Brain metastasis magnetic resonance imaging-based deep learning for predicting epidermal growth factor receptor ( EGFR ) mutation and subtypes in metastatic non-small cell lung cancer</title><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Cao, Ran ; Fu, Langyuan ; Huang, Bo ; Liu, Yan ; Wang, Xiaoyu ; Liu, Jiani ; Wang, Haotian ; Jiang, Xiran ; Yang, Zhiguang ; Sha, Xianzheng ; Zhao, Nannan</creator><creatorcontrib>Cao, Ran ; Fu, Langyuan ; Huang, Bo ; Liu, Yan ; Wang, Xiaoyu ; Liu, Jiani ; Wang, Haotian ; Jiang, Xiran ; Yang, Zhiguang ; Sha, Xianzheng ; Zhao, Nannan</creatorcontrib><description>The preoperative identification of epidermal growth factor receptor (
) mutations and subtypes based on magnetic resonance imaging (MRI) of brain metastases (BM) is necessary to facilitate individualized therapy. This study aimed to develop a deep learning model to preoperatively detect
mutations and identify the location of
mutations in patients with non-small cell lung cancer (NSCLC) and BM.
We included 160 and 72 patients who underwent contrast-enhanced T1-weighted (T1w-CE) and T2-weighted (T2W) MRI at Liaoning Cancer Hospital and Institute (center 1) and Shengjing Hospital of China Medical University (center 2) to form a training cohort and an external validation cohort, respectively. A multiscale feature fusion network (MSF-Net) was developed by adaptively integrating features based on different stages of residual network (ResNet) 50 and by introducing channel and spatial attention modules. The external validation set from center 2 was used to assess the performance of MSF-Net and to compare it with that of handcrafted radiomics features. Receiver operating characteristic (ROC) curves, accuracy, precision, recall, and F1-score were used to evaluate the effectiveness of the models. Gradient-weighted class activation mapping (Grad-CAM) was used to demonstrate the attention of the MSF-Net model.
The developed MSF-Net generated a better diagnostic performance than did the handcrafted radiomics in terms of the microaveraged area under the curve (AUC) (MSF-Net: 0.91; radiomics: 0.80) and macroaveraged AUC (MSF-Net: 0.90; radiomics: 0.81) for predicting
mutations and subtypes.
This study provides an end-to-end and noninvasive imaging tool for the preoperative prediction of
mutation status and subtypes based on BM, which may be helpful for facilitating individualized clinical treatment plans.</description><identifier>ISSN: 2223-4292</identifier><identifier>EISSN: 2223-4306</identifier><identifier>DOI: 10.21037/qims-23-1744</identifier><identifier>PMID: 39022238</identifier><language>eng</language><publisher>China: AME Publishing Company</publisher><subject>Original</subject><ispartof>Quantitative imaging in medicine and surgery, 2024-07, Vol.14 (7), p.4749-4762</ispartof><rights>2024 Quantitative Imaging in Medicine and Surgery. All rights reserved.</rights><rights>2024 Quantitative Imaging in Medicine and Surgery. All rights reserved. 2024 Quantitative Imaging in Medicine and Surgery.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250349/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250349/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39022238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Ran</creatorcontrib><creatorcontrib>Fu, Langyuan</creatorcontrib><creatorcontrib>Huang, Bo</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Wang, Xiaoyu</creatorcontrib><creatorcontrib>Liu, Jiani</creatorcontrib><creatorcontrib>Wang, Haotian</creatorcontrib><creatorcontrib>Jiang, Xiran</creatorcontrib><creatorcontrib>Yang, Zhiguang</creatorcontrib><creatorcontrib>Sha, Xianzheng</creatorcontrib><creatorcontrib>Zhao, Nannan</creatorcontrib><title>Brain metastasis magnetic resonance imaging-based deep learning for predicting epidermal growth factor receptor ( EGFR ) mutation and subtypes in metastatic non-small cell lung cancer</title><title>Quantitative imaging in medicine and surgery</title><addtitle>Quant Imaging Med Surg</addtitle><description>The preoperative identification of epidermal growth factor receptor (
) mutations and subtypes based on magnetic resonance imaging (MRI) of brain metastases (BM) is necessary to facilitate individualized therapy. This study aimed to develop a deep learning model to preoperatively detect
mutations and identify the location of
mutations in patients with non-small cell lung cancer (NSCLC) and BM.
We included 160 and 72 patients who underwent contrast-enhanced T1-weighted (T1w-CE) and T2-weighted (T2W) MRI at Liaoning Cancer Hospital and Institute (center 1) and Shengjing Hospital of China Medical University (center 2) to form a training cohort and an external validation cohort, respectively. A multiscale feature fusion network (MSF-Net) was developed by adaptively integrating features based on different stages of residual network (ResNet) 50 and by introducing channel and spatial attention modules. The external validation set from center 2 was used to assess the performance of MSF-Net and to compare it with that of handcrafted radiomics features. Receiver operating characteristic (ROC) curves, accuracy, precision, recall, and F1-score were used to evaluate the effectiveness of the models. Gradient-weighted class activation mapping (Grad-CAM) was used to demonstrate the attention of the MSF-Net model.
The developed MSF-Net generated a better diagnostic performance than did the handcrafted radiomics in terms of the microaveraged area under the curve (AUC) (MSF-Net: 0.91; radiomics: 0.80) and macroaveraged AUC (MSF-Net: 0.90; radiomics: 0.81) for predicting
mutations and subtypes.
This study provides an end-to-end and noninvasive imaging tool for the preoperative prediction of
mutation status and subtypes based on BM, which may be helpful for facilitating individualized clinical treatment plans.</description><subject>Original</subject><issn>2223-4292</issn><issn>2223-4306</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVUUtv1jAQjBCIVqVHrsjHckjxKw-fEFRtQapUqSpna2Nvvholdmo7oP4y_h5OX1DLWq93R7NjT1W9Z_SYMyq6T7duTjUXNeukfFXtc15yKWj7-inniu9Vhyn9pGV1PesYfVvtCUW3dr9f_fkawXkyY4ZUtktkhp3H7AyJmIIHb5C4UnN-Vw-Q0BKLuJAJIfpSI2OIZIloncnbFRdnMc4wkV0Mv_MNGcHkAolocNmSI3J6fnZFPpJ5zZBd8AS8JWkd8t2CifzTsknwwdepkE3EYAnTWiaYTVJ8V70ZYUp4-HgeVD_OTq9PvtUXl-ffT75c1IZ3MtfNAEoN1oxtq4xRQ0elhV62jRJ0aAAYbUfWm5FbC01vYexEIyRrjGBSik6Kg-rzA--yDjNagz5HmPQSy5_EOx3A6Zcd7270LvzSjPGGCqkKw9EjQwy3K6asZ5e254DHsCYtaM8FVSUUaP0ANTGkFHF8nsOovjdcb4ZrLvRmeMF_-F_cM_rJXvEX2iOr5Q</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Cao, Ran</creator><creator>Fu, Langyuan</creator><creator>Huang, Bo</creator><creator>Liu, Yan</creator><creator>Wang, Xiaoyu</creator><creator>Liu, Jiani</creator><creator>Wang, Haotian</creator><creator>Jiang, Xiran</creator><creator>Yang, Zhiguang</creator><creator>Sha, Xianzheng</creator><creator>Zhao, Nannan</creator><general>AME Publishing Company</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240701</creationdate><title>Brain metastasis magnetic resonance imaging-based deep learning for predicting epidermal growth factor receptor ( EGFR ) mutation and subtypes in metastatic non-small cell lung cancer</title><author>Cao, Ran ; Fu, Langyuan ; Huang, Bo ; Liu, Yan ; Wang, Xiaoyu ; Liu, Jiani ; Wang, Haotian ; Jiang, Xiran ; Yang, Zhiguang ; Sha, Xianzheng ; Zhao, Nannan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-5ba99bdcf669cc9b704da8465930b5aa106f18cf2dda58daf7353415c31443743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Original</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao, Ran</creatorcontrib><creatorcontrib>Fu, Langyuan</creatorcontrib><creatorcontrib>Huang, Bo</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Wang, Xiaoyu</creatorcontrib><creatorcontrib>Liu, Jiani</creatorcontrib><creatorcontrib>Wang, Haotian</creatorcontrib><creatorcontrib>Jiang, Xiran</creatorcontrib><creatorcontrib>Yang, Zhiguang</creatorcontrib><creatorcontrib>Sha, Xianzheng</creatorcontrib><creatorcontrib>Zhao, Nannan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Quantitative imaging in medicine and surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Ran</au><au>Fu, Langyuan</au><au>Huang, Bo</au><au>Liu, Yan</au><au>Wang, Xiaoyu</au><au>Liu, Jiani</au><au>Wang, Haotian</au><au>Jiang, Xiran</au><au>Yang, Zhiguang</au><au>Sha, Xianzheng</au><au>Zhao, Nannan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain metastasis magnetic resonance imaging-based deep learning for predicting epidermal growth factor receptor ( EGFR ) mutation and subtypes in metastatic non-small cell lung cancer</atitle><jtitle>Quantitative imaging in medicine and surgery</jtitle><addtitle>Quant Imaging Med Surg</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>14</volume><issue>7</issue><spage>4749</spage><epage>4762</epage><pages>4749-4762</pages><issn>2223-4292</issn><eissn>2223-4306</eissn><abstract>The preoperative identification of epidermal growth factor receptor (
) mutations and subtypes based on magnetic resonance imaging (MRI) of brain metastases (BM) is necessary to facilitate individualized therapy. This study aimed to develop a deep learning model to preoperatively detect
mutations and identify the location of
mutations in patients with non-small cell lung cancer (NSCLC) and BM.
We included 160 and 72 patients who underwent contrast-enhanced T1-weighted (T1w-CE) and T2-weighted (T2W) MRI at Liaoning Cancer Hospital and Institute (center 1) and Shengjing Hospital of China Medical University (center 2) to form a training cohort and an external validation cohort, respectively. A multiscale feature fusion network (MSF-Net) was developed by adaptively integrating features based on different stages of residual network (ResNet) 50 and by introducing channel and spatial attention modules. The external validation set from center 2 was used to assess the performance of MSF-Net and to compare it with that of handcrafted radiomics features. Receiver operating characteristic (ROC) curves, accuracy, precision, recall, and F1-score were used to evaluate the effectiveness of the models. Gradient-weighted class activation mapping (Grad-CAM) was used to demonstrate the attention of the MSF-Net model.
The developed MSF-Net generated a better diagnostic performance than did the handcrafted radiomics in terms of the microaveraged area under the curve (AUC) (MSF-Net: 0.91; radiomics: 0.80) and macroaveraged AUC (MSF-Net: 0.90; radiomics: 0.81) for predicting
mutations and subtypes.
This study provides an end-to-end and noninvasive imaging tool for the preoperative prediction of
mutation status and subtypes based on BM, which may be helpful for facilitating individualized clinical treatment plans.</abstract><cop>China</cop><pub>AME Publishing Company</pub><pmid>39022238</pmid><doi>10.21037/qims-23-1744</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2223-4292 |
ispartof | Quantitative imaging in medicine and surgery, 2024-07, Vol.14 (7), p.4749-4762 |
issn | 2223-4292 2223-4306 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11250349 |
source | PubMed Central; EZB Electronic Journals Library |
subjects | Original |
title | Brain metastasis magnetic resonance imaging-based deep learning for predicting epidermal growth factor receptor ( EGFR ) mutation and subtypes in metastatic non-small cell lung cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20metastasis%20magnetic%20resonance%20imaging-based%20deep%20learning%20for%20predicting%20epidermal%20growth%20factor%20receptor%20(%20EGFR%20)%20mutation%20and%20subtypes%20in%20metastatic%20non-small%20cell%20lung%20cancer&rft.jtitle=Quantitative%20imaging%20in%20medicine%20and%20surgery&rft.au=Cao,%20Ran&rft.date=2024-07-01&rft.volume=14&rft.issue=7&rft.spage=4749&rft.epage=4762&rft.pages=4749-4762&rft.issn=2223-4292&rft.eissn=2223-4306&rft_id=info:doi/10.21037/qims-23-1744&rft_dat=%3Cproquest_pubme%3E3082309823%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082309823&rft_id=info:pmid/39022238&rfr_iscdi=true |