Brain metastasis magnetic resonance imaging-based deep learning for predicting epidermal growth factor receptor ( EGFR ) mutation and subtypes in metastatic non-small cell lung cancer

The preoperative identification of epidermal growth factor receptor ( ) mutations and subtypes based on magnetic resonance imaging (MRI) of brain metastases (BM) is necessary to facilitate individualized therapy. This study aimed to develop a deep learning model to preoperatively detect mutations an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative imaging in medicine and surgery 2024-07, Vol.14 (7), p.4749-4762
Hauptverfasser: Cao, Ran, Fu, Langyuan, Huang, Bo, Liu, Yan, Wang, Xiaoyu, Liu, Jiani, Wang, Haotian, Jiang, Xiran, Yang, Zhiguang, Sha, Xianzheng, Zhao, Nannan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4762
container_issue 7
container_start_page 4749
container_title Quantitative imaging in medicine and surgery
container_volume 14
creator Cao, Ran
Fu, Langyuan
Huang, Bo
Liu, Yan
Wang, Xiaoyu
Liu, Jiani
Wang, Haotian
Jiang, Xiran
Yang, Zhiguang
Sha, Xianzheng
Zhao, Nannan
description The preoperative identification of epidermal growth factor receptor ( ) mutations and subtypes based on magnetic resonance imaging (MRI) of brain metastases (BM) is necessary to facilitate individualized therapy. This study aimed to develop a deep learning model to preoperatively detect mutations and identify the location of mutations in patients with non-small cell lung cancer (NSCLC) and BM. We included 160 and 72 patients who underwent contrast-enhanced T1-weighted (T1w-CE) and T2-weighted (T2W) MRI at Liaoning Cancer Hospital and Institute (center 1) and Shengjing Hospital of China Medical University (center 2) to form a training cohort and an external validation cohort, respectively. A multiscale feature fusion network (MSF-Net) was developed by adaptively integrating features based on different stages of residual network (ResNet) 50 and by introducing channel and spatial attention modules. The external validation set from center 2 was used to assess the performance of MSF-Net and to compare it with that of handcrafted radiomics features. Receiver operating characteristic (ROC) curves, accuracy, precision, recall, and F1-score were used to evaluate the effectiveness of the models. Gradient-weighted class activation mapping (Grad-CAM) was used to demonstrate the attention of the MSF-Net model. The developed MSF-Net generated a better diagnostic performance than did the handcrafted radiomics in terms of the microaveraged area under the curve (AUC) (MSF-Net: 0.91; radiomics: 0.80) and macroaveraged AUC (MSF-Net: 0.90; radiomics: 0.81) for predicting mutations and subtypes. This study provides an end-to-end and noninvasive imaging tool for the preoperative prediction of mutation status and subtypes based on BM, which may be helpful for facilitating individualized clinical treatment plans.
doi_str_mv 10.21037/qims-23-1744
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11250349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082309823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-5ba99bdcf669cc9b704da8465930b5aa106f18cf2dda58daf7353415c31443743</originalsourceid><addsrcrecordid>eNpVUUtv1jAQjBCIVqVHrsjHckjxKw-fEFRtQapUqSpna2Nvvholdmo7oP4y_h5OX1DLWq93R7NjT1W9Z_SYMyq6T7duTjUXNeukfFXtc15yKWj7-inniu9Vhyn9pGV1PesYfVvtCUW3dr9f_fkawXkyY4ZUtktkhp3H7AyJmIIHb5C4UnN-Vw-Q0BKLuJAJIfpSI2OIZIloncnbFRdnMc4wkV0Mv_MNGcHkAolocNmSI3J6fnZFPpJ5zZBd8AS8JWkd8t2CifzTsknwwdepkE3EYAnTWiaYTVJ8V70ZYUp4-HgeVD_OTq9PvtUXl-ffT75c1IZ3MtfNAEoN1oxtq4xRQ0elhV62jRJ0aAAYbUfWm5FbC01vYexEIyRrjGBSik6Kg-rzA--yDjNagz5HmPQSy5_EOx3A6Zcd7270LvzSjPGGCqkKw9EjQwy3K6asZ5e254DHsCYtaM8FVSUUaP0ANTGkFHF8nsOovjdcb4ZrLvRmeMF_-F_cM_rJXvEX2iOr5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082309823</pqid></control><display><type>article</type><title>Brain metastasis magnetic resonance imaging-based deep learning for predicting epidermal growth factor receptor ( EGFR ) mutation and subtypes in metastatic non-small cell lung cancer</title><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Cao, Ran ; Fu, Langyuan ; Huang, Bo ; Liu, Yan ; Wang, Xiaoyu ; Liu, Jiani ; Wang, Haotian ; Jiang, Xiran ; Yang, Zhiguang ; Sha, Xianzheng ; Zhao, Nannan</creator><creatorcontrib>Cao, Ran ; Fu, Langyuan ; Huang, Bo ; Liu, Yan ; Wang, Xiaoyu ; Liu, Jiani ; Wang, Haotian ; Jiang, Xiran ; Yang, Zhiguang ; Sha, Xianzheng ; Zhao, Nannan</creatorcontrib><description>The preoperative identification of epidermal growth factor receptor ( ) mutations and subtypes based on magnetic resonance imaging (MRI) of brain metastases (BM) is necessary to facilitate individualized therapy. This study aimed to develop a deep learning model to preoperatively detect mutations and identify the location of mutations in patients with non-small cell lung cancer (NSCLC) and BM. We included 160 and 72 patients who underwent contrast-enhanced T1-weighted (T1w-CE) and T2-weighted (T2W) MRI at Liaoning Cancer Hospital and Institute (center 1) and Shengjing Hospital of China Medical University (center 2) to form a training cohort and an external validation cohort, respectively. A multiscale feature fusion network (MSF-Net) was developed by adaptively integrating features based on different stages of residual network (ResNet) 50 and by introducing channel and spatial attention modules. The external validation set from center 2 was used to assess the performance of MSF-Net and to compare it with that of handcrafted radiomics features. Receiver operating characteristic (ROC) curves, accuracy, precision, recall, and F1-score were used to evaluate the effectiveness of the models. Gradient-weighted class activation mapping (Grad-CAM) was used to demonstrate the attention of the MSF-Net model. The developed MSF-Net generated a better diagnostic performance than did the handcrafted radiomics in terms of the microaveraged area under the curve (AUC) (MSF-Net: 0.91; radiomics: 0.80) and macroaveraged AUC (MSF-Net: 0.90; radiomics: 0.81) for predicting mutations and subtypes. This study provides an end-to-end and noninvasive imaging tool for the preoperative prediction of mutation status and subtypes based on BM, which may be helpful for facilitating individualized clinical treatment plans.</description><identifier>ISSN: 2223-4292</identifier><identifier>EISSN: 2223-4306</identifier><identifier>DOI: 10.21037/qims-23-1744</identifier><identifier>PMID: 39022238</identifier><language>eng</language><publisher>China: AME Publishing Company</publisher><subject>Original</subject><ispartof>Quantitative imaging in medicine and surgery, 2024-07, Vol.14 (7), p.4749-4762</ispartof><rights>2024 Quantitative Imaging in Medicine and Surgery. All rights reserved.</rights><rights>2024 Quantitative Imaging in Medicine and Surgery. All rights reserved. 2024 Quantitative Imaging in Medicine and Surgery.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250349/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250349/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39022238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Ran</creatorcontrib><creatorcontrib>Fu, Langyuan</creatorcontrib><creatorcontrib>Huang, Bo</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Wang, Xiaoyu</creatorcontrib><creatorcontrib>Liu, Jiani</creatorcontrib><creatorcontrib>Wang, Haotian</creatorcontrib><creatorcontrib>Jiang, Xiran</creatorcontrib><creatorcontrib>Yang, Zhiguang</creatorcontrib><creatorcontrib>Sha, Xianzheng</creatorcontrib><creatorcontrib>Zhao, Nannan</creatorcontrib><title>Brain metastasis magnetic resonance imaging-based deep learning for predicting epidermal growth factor receptor ( EGFR ) mutation and subtypes in metastatic non-small cell lung cancer</title><title>Quantitative imaging in medicine and surgery</title><addtitle>Quant Imaging Med Surg</addtitle><description>The preoperative identification of epidermal growth factor receptor ( ) mutations and subtypes based on magnetic resonance imaging (MRI) of brain metastases (BM) is necessary to facilitate individualized therapy. This study aimed to develop a deep learning model to preoperatively detect mutations and identify the location of mutations in patients with non-small cell lung cancer (NSCLC) and BM. We included 160 and 72 patients who underwent contrast-enhanced T1-weighted (T1w-CE) and T2-weighted (T2W) MRI at Liaoning Cancer Hospital and Institute (center 1) and Shengjing Hospital of China Medical University (center 2) to form a training cohort and an external validation cohort, respectively. A multiscale feature fusion network (MSF-Net) was developed by adaptively integrating features based on different stages of residual network (ResNet) 50 and by introducing channel and spatial attention modules. The external validation set from center 2 was used to assess the performance of MSF-Net and to compare it with that of handcrafted radiomics features. Receiver operating characteristic (ROC) curves, accuracy, precision, recall, and F1-score were used to evaluate the effectiveness of the models. Gradient-weighted class activation mapping (Grad-CAM) was used to demonstrate the attention of the MSF-Net model. The developed MSF-Net generated a better diagnostic performance than did the handcrafted radiomics in terms of the microaveraged area under the curve (AUC) (MSF-Net: 0.91; radiomics: 0.80) and macroaveraged AUC (MSF-Net: 0.90; radiomics: 0.81) for predicting mutations and subtypes. This study provides an end-to-end and noninvasive imaging tool for the preoperative prediction of mutation status and subtypes based on BM, which may be helpful for facilitating individualized clinical treatment plans.</description><subject>Original</subject><issn>2223-4292</issn><issn>2223-4306</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVUUtv1jAQjBCIVqVHrsjHckjxKw-fEFRtQapUqSpna2Nvvholdmo7oP4y_h5OX1DLWq93R7NjT1W9Z_SYMyq6T7duTjUXNeukfFXtc15yKWj7-inniu9Vhyn9pGV1PesYfVvtCUW3dr9f_fkawXkyY4ZUtktkhp3H7AyJmIIHb5C4UnN-Vw-Q0BKLuJAJIfpSI2OIZIloncnbFRdnMc4wkV0Mv_MNGcHkAolocNmSI3J6fnZFPpJ5zZBd8AS8JWkd8t2CifzTsknwwdepkE3EYAnTWiaYTVJ8V70ZYUp4-HgeVD_OTq9PvtUXl-ffT75c1IZ3MtfNAEoN1oxtq4xRQ0elhV62jRJ0aAAYbUfWm5FbC01vYexEIyRrjGBSik6Kg-rzA--yDjNagz5HmPQSy5_EOx3A6Zcd7270LvzSjPGGCqkKw9EjQwy3K6asZ5e254DHsCYtaM8FVSUUaP0ANTGkFHF8nsOovjdcb4ZrLvRmeMF_-F_cM_rJXvEX2iOr5Q</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Cao, Ran</creator><creator>Fu, Langyuan</creator><creator>Huang, Bo</creator><creator>Liu, Yan</creator><creator>Wang, Xiaoyu</creator><creator>Liu, Jiani</creator><creator>Wang, Haotian</creator><creator>Jiang, Xiran</creator><creator>Yang, Zhiguang</creator><creator>Sha, Xianzheng</creator><creator>Zhao, Nannan</creator><general>AME Publishing Company</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240701</creationdate><title>Brain metastasis magnetic resonance imaging-based deep learning for predicting epidermal growth factor receptor ( EGFR ) mutation and subtypes in metastatic non-small cell lung cancer</title><author>Cao, Ran ; Fu, Langyuan ; Huang, Bo ; Liu, Yan ; Wang, Xiaoyu ; Liu, Jiani ; Wang, Haotian ; Jiang, Xiran ; Yang, Zhiguang ; Sha, Xianzheng ; Zhao, Nannan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-5ba99bdcf669cc9b704da8465930b5aa106f18cf2dda58daf7353415c31443743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Original</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao, Ran</creatorcontrib><creatorcontrib>Fu, Langyuan</creatorcontrib><creatorcontrib>Huang, Bo</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Wang, Xiaoyu</creatorcontrib><creatorcontrib>Liu, Jiani</creatorcontrib><creatorcontrib>Wang, Haotian</creatorcontrib><creatorcontrib>Jiang, Xiran</creatorcontrib><creatorcontrib>Yang, Zhiguang</creatorcontrib><creatorcontrib>Sha, Xianzheng</creatorcontrib><creatorcontrib>Zhao, Nannan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Quantitative imaging in medicine and surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Ran</au><au>Fu, Langyuan</au><au>Huang, Bo</au><au>Liu, Yan</au><au>Wang, Xiaoyu</au><au>Liu, Jiani</au><au>Wang, Haotian</au><au>Jiang, Xiran</au><au>Yang, Zhiguang</au><au>Sha, Xianzheng</au><au>Zhao, Nannan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain metastasis magnetic resonance imaging-based deep learning for predicting epidermal growth factor receptor ( EGFR ) mutation and subtypes in metastatic non-small cell lung cancer</atitle><jtitle>Quantitative imaging in medicine and surgery</jtitle><addtitle>Quant Imaging Med Surg</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>14</volume><issue>7</issue><spage>4749</spage><epage>4762</epage><pages>4749-4762</pages><issn>2223-4292</issn><eissn>2223-4306</eissn><abstract>The preoperative identification of epidermal growth factor receptor ( ) mutations and subtypes based on magnetic resonance imaging (MRI) of brain metastases (BM) is necessary to facilitate individualized therapy. This study aimed to develop a deep learning model to preoperatively detect mutations and identify the location of mutations in patients with non-small cell lung cancer (NSCLC) and BM. We included 160 and 72 patients who underwent contrast-enhanced T1-weighted (T1w-CE) and T2-weighted (T2W) MRI at Liaoning Cancer Hospital and Institute (center 1) and Shengjing Hospital of China Medical University (center 2) to form a training cohort and an external validation cohort, respectively. A multiscale feature fusion network (MSF-Net) was developed by adaptively integrating features based on different stages of residual network (ResNet) 50 and by introducing channel and spatial attention modules. The external validation set from center 2 was used to assess the performance of MSF-Net and to compare it with that of handcrafted radiomics features. Receiver operating characteristic (ROC) curves, accuracy, precision, recall, and F1-score were used to evaluate the effectiveness of the models. Gradient-weighted class activation mapping (Grad-CAM) was used to demonstrate the attention of the MSF-Net model. The developed MSF-Net generated a better diagnostic performance than did the handcrafted radiomics in terms of the microaveraged area under the curve (AUC) (MSF-Net: 0.91; radiomics: 0.80) and macroaveraged AUC (MSF-Net: 0.90; radiomics: 0.81) for predicting mutations and subtypes. This study provides an end-to-end and noninvasive imaging tool for the preoperative prediction of mutation status and subtypes based on BM, which may be helpful for facilitating individualized clinical treatment plans.</abstract><cop>China</cop><pub>AME Publishing Company</pub><pmid>39022238</pmid><doi>10.21037/qims-23-1744</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2223-4292
ispartof Quantitative imaging in medicine and surgery, 2024-07, Vol.14 (7), p.4749-4762
issn 2223-4292
2223-4306
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11250349
source PubMed Central; EZB Electronic Journals Library
subjects Original
title Brain metastasis magnetic resonance imaging-based deep learning for predicting epidermal growth factor receptor ( EGFR ) mutation and subtypes in metastatic non-small cell lung cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20metastasis%20magnetic%20resonance%20imaging-based%20deep%20learning%20for%20predicting%20epidermal%20growth%20factor%20receptor%20(%20EGFR%20)%20mutation%20and%20subtypes%20in%20metastatic%20non-small%20cell%20lung%20cancer&rft.jtitle=Quantitative%20imaging%20in%20medicine%20and%20surgery&rft.au=Cao,%20Ran&rft.date=2024-07-01&rft.volume=14&rft.issue=7&rft.spage=4749&rft.epage=4762&rft.pages=4749-4762&rft.issn=2223-4292&rft.eissn=2223-4306&rft_id=info:doi/10.21037/qims-23-1744&rft_dat=%3Cproquest_pubme%3E3082309823%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082309823&rft_id=info:pmid/39022238&rfr_iscdi=true