Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity

Viruses employ a range of strategies to counteract the prokaryotic adaptive immune system, clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR–Cas), including mutational escape and physical blocking of enzymatic function using anti-CRISPR proteins (Acrs)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature microbiology 2018-04, Vol.3 (4), p.461-469
Hauptverfasser: He, Fei, Bhoobalan-Chitty, Yuvaraj, Van, Lan B., Kjeldsen, Anders L., Dedola, Matteo, Makarova, Kira S., Koonin, Eugene V., Brodersen, Ditlev E., Peng, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 469
container_issue 4
container_start_page 461
container_title Nature microbiology
container_volume 3
creator He, Fei
Bhoobalan-Chitty, Yuvaraj
Van, Lan B.
Kjeldsen, Anders L.
Dedola, Matteo
Makarova, Kira S.
Koonin, Eugene V.
Brodersen, Ditlev E.
Peng, Xu
description Viruses employ a range of strategies to counteract the prokaryotic adaptive immune system, clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR–Cas), including mutational escape and physical blocking of enzymatic function using anti-CRISPR proteins (Acrs). Acrs have been found in many bacteriophages but so far not in archaeal viruses, despite the near ubiquity of CRISPR–Cas systems in archaea. Here, we report the functional and structural characterization of two archaeal Acrs from the lytic rudiviruses, SIRV2 and SIRV3. We show that a 4 kb deletion in the SIRV2 genome dramatically reduces infectivity in Sulfolobus islandicus LAL14/1 that carries functional CRISPR–Cas subtypes I-A, I-D and III-B. Subsequent insertion of a single gene from SIRV3, gp02 (AcrID1), which is conserved in the deleted fragment, successfully restored infectivity. We demonstrate that AcrID1 protein inhibits the CRISPR–Cas subtype I-D system by interacting directly with Cas10d protein, which is required for the interference stage. Sequence and structural analysis of AcrID1 show that it belongs to a conserved family of compact, dimeric αβ -sandwich proteins characterized by extreme pH and temperature stability and a tendency to form protein fibres. We identify about 50 homologues of AcrID1 in four archaeal viral families demonstrating the broad distribution of this group of anti-CRISPR proteins. Like phages, archaeal viruses also encode anti-CRISPR proteins (Acrs). These include AcrID1 from the lytic rudivirus SIRV3, which interacts with the Cas10d protein of Sulfolobus islandicus . AcrID1 homologues are present in many archaeal viral families.
doi_str_mv 10.1038/s41564-018-0120-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11249088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137528599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-49160745f1f00aaf36d783d9826512e7afd2c29f7a3556acd70647f85d6c1c533</originalsourceid><addsrcrecordid>eNp1kV1LHDEUhkNp6crWH9CbEuhNb0aTTD6vRFZrFwRF2-uQzWTcyExmm2SE8dc3sltdBS9CAuc578nhAeArRkcY1fI4Ucw4rRCW5RBUPX4ABwQxWTEi-Me99wwcpnSPEMKccC75ZzAjiiFRU3UAbk9D9tXiZnl7fQM3ccjOhwRdsEPjGriaoIl2bZzpYDdlb-GDj2NyCfqw9iufYRpXedo4uKzOoO_7Mfg8fQGfWtMld7i75-DPz_Pfi1_V5dXFcnF6WVkqcK6owhwJylrcImRMW_NGyLpRknCGiROmbYglqhWmZowb2wjEqWgla7jFltX1HJxsczfjqneNdSFH0-lN9L2Jkx6M168rwa_13fCgMSZUISlLwo9dQhz-ji5l3ftkXdeZ4IYxaYIKypWktKDf36D3wxhD2U8TXAtGJFOqUHhL2TikFF37_BuM9JM2vdWmizb9pE0_lp5v-2s8d_yXVACyBVIphTsXX0a_n_oPubSilg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137528599</pqid></control><display><type>article</type><title>Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>He, Fei ; Bhoobalan-Chitty, Yuvaraj ; Van, Lan B. ; Kjeldsen, Anders L. ; Dedola, Matteo ; Makarova, Kira S. ; Koonin, Eugene V. ; Brodersen, Ditlev E. ; Peng, Xu</creator><creatorcontrib>He, Fei ; Bhoobalan-Chitty, Yuvaraj ; Van, Lan B. ; Kjeldsen, Anders L. ; Dedola, Matteo ; Makarova, Kira S. ; Koonin, Eugene V. ; Brodersen, Ditlev E. ; Peng, Xu</creatorcontrib><description>Viruses employ a range of strategies to counteract the prokaryotic adaptive immune system, clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR–Cas), including mutational escape and physical blocking of enzymatic function using anti-CRISPR proteins (Acrs). Acrs have been found in many bacteriophages but so far not in archaeal viruses, despite the near ubiquity of CRISPR–Cas systems in archaea. Here, we report the functional and structural characterization of two archaeal Acrs from the lytic rudiviruses, SIRV2 and SIRV3. We show that a 4 kb deletion in the SIRV2 genome dramatically reduces infectivity in Sulfolobus islandicus LAL14/1 that carries functional CRISPR–Cas subtypes I-A, I-D and III-B. Subsequent insertion of a single gene from SIRV3, gp02 (AcrID1), which is conserved in the deleted fragment, successfully restored infectivity. We demonstrate that AcrID1 protein inhibits the CRISPR–Cas subtype I-D system by interacting directly with Cas10d protein, which is required for the interference stage. Sequence and structural analysis of AcrID1 show that it belongs to a conserved family of compact, dimeric αβ -sandwich proteins characterized by extreme pH and temperature stability and a tendency to form protein fibres. We identify about 50 homologues of AcrID1 in four archaeal viral families demonstrating the broad distribution of this group of anti-CRISPR proteins. Like phages, archaeal viruses also encode anti-CRISPR proteins (Acrs). These include AcrID1 from the lytic rudivirus SIRV3, which interacts with the Cas10d protein of Sulfolobus islandicus . AcrID1 homologues are present in many archaeal viral families.</description><identifier>ISSN: 2058-5276</identifier><identifier>EISSN: 2058-5276</identifier><identifier>DOI: 10.1038/s41564-018-0120-z</identifier><identifier>PMID: 29507349</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/326/26/2523 ; 631/326/596/2558 ; 631/337 ; 82 ; 82/16 ; 82/80 ; 82/83 ; Biomedical and Life Sciences ; CRISPR ; CRISPR-Associated Proteins - antagonists &amp; inhibitors ; CRISPR-Associated Proteins - metabolism ; CRISPR-Cas Systems - physiology ; Genomes ; Immune system ; Infectious Diseases ; Infectivity ; Insertion ; Life Sciences ; Medical Microbiology ; Microbiology ; Parasitology ; Phages ; Proteins ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Rudiviridae - genetics ; Rudiviridae - pathogenicity ; Structure-function relationships ; Sulfolobus - genetics ; Sulfolobus - virology ; Virology ; Viruses</subject><ispartof>Nature microbiology, 2018-04, Vol.3 (4), p.461-469</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Apr 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-49160745f1f00aaf36d783d9826512e7afd2c29f7a3556acd70647f85d6c1c533</citedby><cites>FETCH-LOGICAL-c471t-49160745f1f00aaf36d783d9826512e7afd2c29f7a3556acd70647f85d6c1c533</cites><orcidid>0000-0002-8104-7657 ; 0000-0003-3943-8299 ; 0000-0002-5413-4667 ; 0000-0003-3926-7514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29507349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Bhoobalan-Chitty, Yuvaraj</creatorcontrib><creatorcontrib>Van, Lan B.</creatorcontrib><creatorcontrib>Kjeldsen, Anders L.</creatorcontrib><creatorcontrib>Dedola, Matteo</creatorcontrib><creatorcontrib>Makarova, Kira S.</creatorcontrib><creatorcontrib>Koonin, Eugene V.</creatorcontrib><creatorcontrib>Brodersen, Ditlev E.</creatorcontrib><creatorcontrib>Peng, Xu</creatorcontrib><title>Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity</title><title>Nature microbiology</title><addtitle>Nat Microbiol</addtitle><addtitle>Nat Microbiol</addtitle><description>Viruses employ a range of strategies to counteract the prokaryotic adaptive immune system, clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR–Cas), including mutational escape and physical blocking of enzymatic function using anti-CRISPR proteins (Acrs). Acrs have been found in many bacteriophages but so far not in archaeal viruses, despite the near ubiquity of CRISPR–Cas systems in archaea. Here, we report the functional and structural characterization of two archaeal Acrs from the lytic rudiviruses, SIRV2 and SIRV3. We show that a 4 kb deletion in the SIRV2 genome dramatically reduces infectivity in Sulfolobus islandicus LAL14/1 that carries functional CRISPR–Cas subtypes I-A, I-D and III-B. Subsequent insertion of a single gene from SIRV3, gp02 (AcrID1), which is conserved in the deleted fragment, successfully restored infectivity. We demonstrate that AcrID1 protein inhibits the CRISPR–Cas subtype I-D system by interacting directly with Cas10d protein, which is required for the interference stage. Sequence and structural analysis of AcrID1 show that it belongs to a conserved family of compact, dimeric αβ -sandwich proteins characterized by extreme pH and temperature stability and a tendency to form protein fibres. We identify about 50 homologues of AcrID1 in four archaeal viral families demonstrating the broad distribution of this group of anti-CRISPR proteins. Like phages, archaeal viruses also encode anti-CRISPR proteins (Acrs). These include AcrID1 from the lytic rudivirus SIRV3, which interacts with the Cas10d protein of Sulfolobus islandicus . AcrID1 homologues are present in many archaeal viral families.</description><subject>631/326/26/2523</subject><subject>631/326/596/2558</subject><subject>631/337</subject><subject>82</subject><subject>82/16</subject><subject>82/80</subject><subject>82/83</subject><subject>Biomedical and Life Sciences</subject><subject>CRISPR</subject><subject>CRISPR-Associated Proteins - antagonists &amp; inhibitors</subject><subject>CRISPR-Associated Proteins - metabolism</subject><subject>CRISPR-Cas Systems - physiology</subject><subject>Genomes</subject><subject>Immune system</subject><subject>Infectious Diseases</subject><subject>Infectivity</subject><subject>Insertion</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Microbiology</subject><subject>Parasitology</subject><subject>Phages</subject><subject>Proteins</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Rudiviridae - genetics</subject><subject>Rudiviridae - pathogenicity</subject><subject>Structure-function relationships</subject><subject>Sulfolobus - genetics</subject><subject>Sulfolobus - virology</subject><subject>Virology</subject><subject>Viruses</subject><issn>2058-5276</issn><issn>2058-5276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kV1LHDEUhkNp6crWH9CbEuhNb0aTTD6vRFZrFwRF2-uQzWTcyExmm2SE8dc3sltdBS9CAuc578nhAeArRkcY1fI4Ucw4rRCW5RBUPX4ABwQxWTEi-Me99wwcpnSPEMKccC75ZzAjiiFRU3UAbk9D9tXiZnl7fQM3ccjOhwRdsEPjGriaoIl2bZzpYDdlb-GDj2NyCfqw9iufYRpXedo4uKzOoO_7Mfg8fQGfWtMld7i75-DPz_Pfi1_V5dXFcnF6WVkqcK6owhwJylrcImRMW_NGyLpRknCGiROmbYglqhWmZowb2wjEqWgla7jFltX1HJxsczfjqneNdSFH0-lN9L2Jkx6M168rwa_13fCgMSZUISlLwo9dQhz-ji5l3ftkXdeZ4IYxaYIKypWktKDf36D3wxhD2U8TXAtGJFOqUHhL2TikFF37_BuM9JM2vdWmizb9pE0_lp5v-2s8d_yXVACyBVIphTsXX0a_n_oPubSilg</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>He, Fei</creator><creator>Bhoobalan-Chitty, Yuvaraj</creator><creator>Van, Lan B.</creator><creator>Kjeldsen, Anders L.</creator><creator>Dedola, Matteo</creator><creator>Makarova, Kira S.</creator><creator>Koonin, Eugene V.</creator><creator>Brodersen, Ditlev E.</creator><creator>Peng, Xu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8104-7657</orcidid><orcidid>https://orcid.org/0000-0003-3943-8299</orcidid><orcidid>https://orcid.org/0000-0002-5413-4667</orcidid><orcidid>https://orcid.org/0000-0003-3926-7514</orcidid></search><sort><creationdate>20180401</creationdate><title>Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity</title><author>He, Fei ; Bhoobalan-Chitty, Yuvaraj ; Van, Lan B. ; Kjeldsen, Anders L. ; Dedola, Matteo ; Makarova, Kira S. ; Koonin, Eugene V. ; Brodersen, Ditlev E. ; Peng, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-49160745f1f00aaf36d783d9826512e7afd2c29f7a3556acd70647f85d6c1c533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/326/26/2523</topic><topic>631/326/596/2558</topic><topic>631/337</topic><topic>82</topic><topic>82/16</topic><topic>82/80</topic><topic>82/83</topic><topic>Biomedical and Life Sciences</topic><topic>CRISPR</topic><topic>CRISPR-Associated Proteins - antagonists &amp; inhibitors</topic><topic>CRISPR-Associated Proteins - metabolism</topic><topic>CRISPR-Cas Systems - physiology</topic><topic>Genomes</topic><topic>Immune system</topic><topic>Infectious Diseases</topic><topic>Infectivity</topic><topic>Insertion</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Microbiology</topic><topic>Parasitology</topic><topic>Phages</topic><topic>Proteins</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Rudiviridae - genetics</topic><topic>Rudiviridae - pathogenicity</topic><topic>Structure-function relationships</topic><topic>Sulfolobus - genetics</topic><topic>Sulfolobus - virology</topic><topic>Virology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Bhoobalan-Chitty, Yuvaraj</creatorcontrib><creatorcontrib>Van, Lan B.</creatorcontrib><creatorcontrib>Kjeldsen, Anders L.</creatorcontrib><creatorcontrib>Dedola, Matteo</creatorcontrib><creatorcontrib>Makarova, Kira S.</creatorcontrib><creatorcontrib>Koonin, Eugene V.</creatorcontrib><creatorcontrib>Brodersen, Ditlev E.</creatorcontrib><creatorcontrib>Peng, Xu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Fei</au><au>Bhoobalan-Chitty, Yuvaraj</au><au>Van, Lan B.</au><au>Kjeldsen, Anders L.</au><au>Dedola, Matteo</au><au>Makarova, Kira S.</au><au>Koonin, Eugene V.</au><au>Brodersen, Ditlev E.</au><au>Peng, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity</atitle><jtitle>Nature microbiology</jtitle><stitle>Nat Microbiol</stitle><addtitle>Nat Microbiol</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>3</volume><issue>4</issue><spage>461</spage><epage>469</epage><pages>461-469</pages><issn>2058-5276</issn><eissn>2058-5276</eissn><abstract>Viruses employ a range of strategies to counteract the prokaryotic adaptive immune system, clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR–Cas), including mutational escape and physical blocking of enzymatic function using anti-CRISPR proteins (Acrs). Acrs have been found in many bacteriophages but so far not in archaeal viruses, despite the near ubiquity of CRISPR–Cas systems in archaea. Here, we report the functional and structural characterization of two archaeal Acrs from the lytic rudiviruses, SIRV2 and SIRV3. We show that a 4 kb deletion in the SIRV2 genome dramatically reduces infectivity in Sulfolobus islandicus LAL14/1 that carries functional CRISPR–Cas subtypes I-A, I-D and III-B. Subsequent insertion of a single gene from SIRV3, gp02 (AcrID1), which is conserved in the deleted fragment, successfully restored infectivity. We demonstrate that AcrID1 protein inhibits the CRISPR–Cas subtype I-D system by interacting directly with Cas10d protein, which is required for the interference stage. Sequence and structural analysis of AcrID1 show that it belongs to a conserved family of compact, dimeric αβ -sandwich proteins characterized by extreme pH and temperature stability and a tendency to form protein fibres. We identify about 50 homologues of AcrID1 in four archaeal viral families demonstrating the broad distribution of this group of anti-CRISPR proteins. Like phages, archaeal viruses also encode anti-CRISPR proteins (Acrs). These include AcrID1 from the lytic rudivirus SIRV3, which interacts with the Cas10d protein of Sulfolobus islandicus . AcrID1 homologues are present in many archaeal viral families.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29507349</pmid><doi>10.1038/s41564-018-0120-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8104-7657</orcidid><orcidid>https://orcid.org/0000-0003-3943-8299</orcidid><orcidid>https://orcid.org/0000-0002-5413-4667</orcidid><orcidid>https://orcid.org/0000-0003-3926-7514</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-5276
ispartof Nature microbiology, 2018-04, Vol.3 (4), p.461-469
issn 2058-5276
2058-5276
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11249088
source MEDLINE; Alma/SFX Local Collection
subjects 631/326/26/2523
631/326/596/2558
631/337
82
82/16
82/80
82/83
Biomedical and Life Sciences
CRISPR
CRISPR-Associated Proteins - antagonists & inhibitors
CRISPR-Associated Proteins - metabolism
CRISPR-Cas Systems - physiology
Genomes
Immune system
Infectious Diseases
Infectivity
Insertion
Life Sciences
Medical Microbiology
Microbiology
Parasitology
Phages
Proteins
Repressor Proteins - genetics
Repressor Proteins - metabolism
Rudiviridae - genetics
Rudiviridae - pathogenicity
Structure-function relationships
Sulfolobus - genetics
Sulfolobus - virology
Virology
Viruses
title Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-CRISPR%20proteins%20encoded%20by%20archaeal%20lytic%20viruses%20inhibit%20subtype%20I-D%20immunity&rft.jtitle=Nature%20microbiology&rft.au=He,%20Fei&rft.date=2018-04-01&rft.volume=3&rft.issue=4&rft.spage=461&rft.epage=469&rft.pages=461-469&rft.issn=2058-5276&rft.eissn=2058-5276&rft_id=info:doi/10.1038/s41564-018-0120-z&rft_dat=%3Cproquest_pubme%3E2137528599%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137528599&rft_id=info:pmid/29507349&rfr_iscdi=true