Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity
Viruses employ a range of strategies to counteract the prokaryotic adaptive immune system, clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR–Cas), including mutational escape and physical blocking of enzymatic function using anti-CRISPR proteins (Acrs)....
Gespeichert in:
Veröffentlicht in: | Nature microbiology 2018-04, Vol.3 (4), p.461-469 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 469 |
---|---|
container_issue | 4 |
container_start_page | 461 |
container_title | Nature microbiology |
container_volume | 3 |
creator | He, Fei Bhoobalan-Chitty, Yuvaraj Van, Lan B. Kjeldsen, Anders L. Dedola, Matteo Makarova, Kira S. Koonin, Eugene V. Brodersen, Ditlev E. Peng, Xu |
description | Viruses employ a range of strategies to counteract the prokaryotic adaptive immune system, clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR–Cas), including mutational escape and physical blocking of enzymatic function using anti-CRISPR proteins (Acrs). Acrs have been found in many bacteriophages but so far not in archaeal viruses, despite the near ubiquity of CRISPR–Cas systems in archaea. Here, we report the functional and structural characterization of two archaeal Acrs from the lytic rudiviruses, SIRV2 and SIRV3. We show that a 4 kb deletion in the SIRV2 genome dramatically reduces infectivity in
Sulfolobus islandicus
LAL14/1 that carries functional CRISPR–Cas subtypes I-A, I-D and III-B. Subsequent insertion of a single gene from SIRV3, gp02 (AcrID1), which is conserved in the deleted fragment, successfully restored infectivity. We demonstrate that AcrID1 protein inhibits the CRISPR–Cas subtype I-D system by interacting directly with Cas10d protein, which is required for the interference stage. Sequence and structural analysis of AcrID1 show that it belongs to a conserved family of compact, dimeric
αβ
-sandwich proteins characterized by extreme pH and temperature stability and a tendency to form protein fibres. We identify about 50 homologues of AcrID1 in four archaeal viral families demonstrating the broad distribution of this group of anti-CRISPR proteins.
Like phages, archaeal viruses also encode anti-CRISPR proteins (Acrs). These include AcrID1 from the lytic rudivirus SIRV3, which interacts with the Cas10d protein of
Sulfolobus islandicus
. AcrID1 homologues are present in many archaeal viral families. |
doi_str_mv | 10.1038/s41564-018-0120-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11249088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137528599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-49160745f1f00aaf36d783d9826512e7afd2c29f7a3556acd70647f85d6c1c533</originalsourceid><addsrcrecordid>eNp1kV1LHDEUhkNp6crWH9CbEuhNb0aTTD6vRFZrFwRF2-uQzWTcyExmm2SE8dc3sltdBS9CAuc578nhAeArRkcY1fI4Ucw4rRCW5RBUPX4ABwQxWTEi-Me99wwcpnSPEMKccC75ZzAjiiFRU3UAbk9D9tXiZnl7fQM3ccjOhwRdsEPjGriaoIl2bZzpYDdlb-GDj2NyCfqw9iufYRpXedo4uKzOoO_7Mfg8fQGfWtMld7i75-DPz_Pfi1_V5dXFcnF6WVkqcK6owhwJylrcImRMW_NGyLpRknCGiROmbYglqhWmZowb2wjEqWgla7jFltX1HJxsczfjqneNdSFH0-lN9L2Jkx6M168rwa_13fCgMSZUISlLwo9dQhz-ji5l3ftkXdeZ4IYxaYIKypWktKDf36D3wxhD2U8TXAtGJFOqUHhL2TikFF37_BuM9JM2vdWmizb9pE0_lp5v-2s8d_yXVACyBVIphTsXX0a_n_oPubSilg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137528599</pqid></control><display><type>article</type><title>Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>He, Fei ; Bhoobalan-Chitty, Yuvaraj ; Van, Lan B. ; Kjeldsen, Anders L. ; Dedola, Matteo ; Makarova, Kira S. ; Koonin, Eugene V. ; Brodersen, Ditlev E. ; Peng, Xu</creator><creatorcontrib>He, Fei ; Bhoobalan-Chitty, Yuvaraj ; Van, Lan B. ; Kjeldsen, Anders L. ; Dedola, Matteo ; Makarova, Kira S. ; Koonin, Eugene V. ; Brodersen, Ditlev E. ; Peng, Xu</creatorcontrib><description>Viruses employ a range of strategies to counteract the prokaryotic adaptive immune system, clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR–Cas), including mutational escape and physical blocking of enzymatic function using anti-CRISPR proteins (Acrs). Acrs have been found in many bacteriophages but so far not in archaeal viruses, despite the near ubiquity of CRISPR–Cas systems in archaea. Here, we report the functional and structural characterization of two archaeal Acrs from the lytic rudiviruses, SIRV2 and SIRV3. We show that a 4 kb deletion in the SIRV2 genome dramatically reduces infectivity in
Sulfolobus islandicus
LAL14/1 that carries functional CRISPR–Cas subtypes I-A, I-D and III-B. Subsequent insertion of a single gene from SIRV3, gp02 (AcrID1), which is conserved in the deleted fragment, successfully restored infectivity. We demonstrate that AcrID1 protein inhibits the CRISPR–Cas subtype I-D system by interacting directly with Cas10d protein, which is required for the interference stage. Sequence and structural analysis of AcrID1 show that it belongs to a conserved family of compact, dimeric
αβ
-sandwich proteins characterized by extreme pH and temperature stability and a tendency to form protein fibres. We identify about 50 homologues of AcrID1 in four archaeal viral families demonstrating the broad distribution of this group of anti-CRISPR proteins.
Like phages, archaeal viruses also encode anti-CRISPR proteins (Acrs). These include AcrID1 from the lytic rudivirus SIRV3, which interacts with the Cas10d protein of
Sulfolobus islandicus
. AcrID1 homologues are present in many archaeal viral families.</description><identifier>ISSN: 2058-5276</identifier><identifier>EISSN: 2058-5276</identifier><identifier>DOI: 10.1038/s41564-018-0120-z</identifier><identifier>PMID: 29507349</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/326/26/2523 ; 631/326/596/2558 ; 631/337 ; 82 ; 82/16 ; 82/80 ; 82/83 ; Biomedical and Life Sciences ; CRISPR ; CRISPR-Associated Proteins - antagonists & inhibitors ; CRISPR-Associated Proteins - metabolism ; CRISPR-Cas Systems - physiology ; Genomes ; Immune system ; Infectious Diseases ; Infectivity ; Insertion ; Life Sciences ; Medical Microbiology ; Microbiology ; Parasitology ; Phages ; Proteins ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Rudiviridae - genetics ; Rudiviridae - pathogenicity ; Structure-function relationships ; Sulfolobus - genetics ; Sulfolobus - virology ; Virology ; Viruses</subject><ispartof>Nature microbiology, 2018-04, Vol.3 (4), p.461-469</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Apr 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-49160745f1f00aaf36d783d9826512e7afd2c29f7a3556acd70647f85d6c1c533</citedby><cites>FETCH-LOGICAL-c471t-49160745f1f00aaf36d783d9826512e7afd2c29f7a3556acd70647f85d6c1c533</cites><orcidid>0000-0002-8104-7657 ; 0000-0003-3943-8299 ; 0000-0002-5413-4667 ; 0000-0003-3926-7514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29507349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Bhoobalan-Chitty, Yuvaraj</creatorcontrib><creatorcontrib>Van, Lan B.</creatorcontrib><creatorcontrib>Kjeldsen, Anders L.</creatorcontrib><creatorcontrib>Dedola, Matteo</creatorcontrib><creatorcontrib>Makarova, Kira S.</creatorcontrib><creatorcontrib>Koonin, Eugene V.</creatorcontrib><creatorcontrib>Brodersen, Ditlev E.</creatorcontrib><creatorcontrib>Peng, Xu</creatorcontrib><title>Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity</title><title>Nature microbiology</title><addtitle>Nat Microbiol</addtitle><addtitle>Nat Microbiol</addtitle><description>Viruses employ a range of strategies to counteract the prokaryotic adaptive immune system, clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR–Cas), including mutational escape and physical blocking of enzymatic function using anti-CRISPR proteins (Acrs). Acrs have been found in many bacteriophages but so far not in archaeal viruses, despite the near ubiquity of CRISPR–Cas systems in archaea. Here, we report the functional and structural characterization of two archaeal Acrs from the lytic rudiviruses, SIRV2 and SIRV3. We show that a 4 kb deletion in the SIRV2 genome dramatically reduces infectivity in
Sulfolobus islandicus
LAL14/1 that carries functional CRISPR–Cas subtypes I-A, I-D and III-B. Subsequent insertion of a single gene from SIRV3, gp02 (AcrID1), which is conserved in the deleted fragment, successfully restored infectivity. We demonstrate that AcrID1 protein inhibits the CRISPR–Cas subtype I-D system by interacting directly with Cas10d protein, which is required for the interference stage. Sequence and structural analysis of AcrID1 show that it belongs to a conserved family of compact, dimeric
αβ
-sandwich proteins characterized by extreme pH and temperature stability and a tendency to form protein fibres. We identify about 50 homologues of AcrID1 in four archaeal viral families demonstrating the broad distribution of this group of anti-CRISPR proteins.
Like phages, archaeal viruses also encode anti-CRISPR proteins (Acrs). These include AcrID1 from the lytic rudivirus SIRV3, which interacts with the Cas10d protein of
Sulfolobus islandicus
. AcrID1 homologues are present in many archaeal viral families.</description><subject>631/326/26/2523</subject><subject>631/326/596/2558</subject><subject>631/337</subject><subject>82</subject><subject>82/16</subject><subject>82/80</subject><subject>82/83</subject><subject>Biomedical and Life Sciences</subject><subject>CRISPR</subject><subject>CRISPR-Associated Proteins - antagonists & inhibitors</subject><subject>CRISPR-Associated Proteins - metabolism</subject><subject>CRISPR-Cas Systems - physiology</subject><subject>Genomes</subject><subject>Immune system</subject><subject>Infectious Diseases</subject><subject>Infectivity</subject><subject>Insertion</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Microbiology</subject><subject>Parasitology</subject><subject>Phages</subject><subject>Proteins</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Rudiviridae - genetics</subject><subject>Rudiviridae - pathogenicity</subject><subject>Structure-function relationships</subject><subject>Sulfolobus - genetics</subject><subject>Sulfolobus - virology</subject><subject>Virology</subject><subject>Viruses</subject><issn>2058-5276</issn><issn>2058-5276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kV1LHDEUhkNp6crWH9CbEuhNb0aTTD6vRFZrFwRF2-uQzWTcyExmm2SE8dc3sltdBS9CAuc578nhAeArRkcY1fI4Ucw4rRCW5RBUPX4ABwQxWTEi-Me99wwcpnSPEMKccC75ZzAjiiFRU3UAbk9D9tXiZnl7fQM3ccjOhwRdsEPjGriaoIl2bZzpYDdlb-GDj2NyCfqw9iufYRpXedo4uKzOoO_7Mfg8fQGfWtMld7i75-DPz_Pfi1_V5dXFcnF6WVkqcK6owhwJylrcImRMW_NGyLpRknCGiROmbYglqhWmZowb2wjEqWgla7jFltX1HJxsczfjqneNdSFH0-lN9L2Jkx6M168rwa_13fCgMSZUISlLwo9dQhz-ji5l3ftkXdeZ4IYxaYIKypWktKDf36D3wxhD2U8TXAtGJFOqUHhL2TikFF37_BuM9JM2vdWmizb9pE0_lp5v-2s8d_yXVACyBVIphTsXX0a_n_oPubSilg</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>He, Fei</creator><creator>Bhoobalan-Chitty, Yuvaraj</creator><creator>Van, Lan B.</creator><creator>Kjeldsen, Anders L.</creator><creator>Dedola, Matteo</creator><creator>Makarova, Kira S.</creator><creator>Koonin, Eugene V.</creator><creator>Brodersen, Ditlev E.</creator><creator>Peng, Xu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8104-7657</orcidid><orcidid>https://orcid.org/0000-0003-3943-8299</orcidid><orcidid>https://orcid.org/0000-0002-5413-4667</orcidid><orcidid>https://orcid.org/0000-0003-3926-7514</orcidid></search><sort><creationdate>20180401</creationdate><title>Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity</title><author>He, Fei ; Bhoobalan-Chitty, Yuvaraj ; Van, Lan B. ; Kjeldsen, Anders L. ; Dedola, Matteo ; Makarova, Kira S. ; Koonin, Eugene V. ; Brodersen, Ditlev E. ; Peng, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-49160745f1f00aaf36d783d9826512e7afd2c29f7a3556acd70647f85d6c1c533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/326/26/2523</topic><topic>631/326/596/2558</topic><topic>631/337</topic><topic>82</topic><topic>82/16</topic><topic>82/80</topic><topic>82/83</topic><topic>Biomedical and Life Sciences</topic><topic>CRISPR</topic><topic>CRISPR-Associated Proteins - antagonists & inhibitors</topic><topic>CRISPR-Associated Proteins - metabolism</topic><topic>CRISPR-Cas Systems - physiology</topic><topic>Genomes</topic><topic>Immune system</topic><topic>Infectious Diseases</topic><topic>Infectivity</topic><topic>Insertion</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Microbiology</topic><topic>Parasitology</topic><topic>Phages</topic><topic>Proteins</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Rudiviridae - genetics</topic><topic>Rudiviridae - pathogenicity</topic><topic>Structure-function relationships</topic><topic>Sulfolobus - genetics</topic><topic>Sulfolobus - virology</topic><topic>Virology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Bhoobalan-Chitty, Yuvaraj</creatorcontrib><creatorcontrib>Van, Lan B.</creatorcontrib><creatorcontrib>Kjeldsen, Anders L.</creatorcontrib><creatorcontrib>Dedola, Matteo</creatorcontrib><creatorcontrib>Makarova, Kira S.</creatorcontrib><creatorcontrib>Koonin, Eugene V.</creatorcontrib><creatorcontrib>Brodersen, Ditlev E.</creatorcontrib><creatorcontrib>Peng, Xu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Fei</au><au>Bhoobalan-Chitty, Yuvaraj</au><au>Van, Lan B.</au><au>Kjeldsen, Anders L.</au><au>Dedola, Matteo</au><au>Makarova, Kira S.</au><au>Koonin, Eugene V.</au><au>Brodersen, Ditlev E.</au><au>Peng, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity</atitle><jtitle>Nature microbiology</jtitle><stitle>Nat Microbiol</stitle><addtitle>Nat Microbiol</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>3</volume><issue>4</issue><spage>461</spage><epage>469</epage><pages>461-469</pages><issn>2058-5276</issn><eissn>2058-5276</eissn><abstract>Viruses employ a range of strategies to counteract the prokaryotic adaptive immune system, clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR–Cas), including mutational escape and physical blocking of enzymatic function using anti-CRISPR proteins (Acrs). Acrs have been found in many bacteriophages but so far not in archaeal viruses, despite the near ubiquity of CRISPR–Cas systems in archaea. Here, we report the functional and structural characterization of two archaeal Acrs from the lytic rudiviruses, SIRV2 and SIRV3. We show that a 4 kb deletion in the SIRV2 genome dramatically reduces infectivity in
Sulfolobus islandicus
LAL14/1 that carries functional CRISPR–Cas subtypes I-A, I-D and III-B. Subsequent insertion of a single gene from SIRV3, gp02 (AcrID1), which is conserved in the deleted fragment, successfully restored infectivity. We demonstrate that AcrID1 protein inhibits the CRISPR–Cas subtype I-D system by interacting directly with Cas10d protein, which is required for the interference stage. Sequence and structural analysis of AcrID1 show that it belongs to a conserved family of compact, dimeric
αβ
-sandwich proteins characterized by extreme pH and temperature stability and a tendency to form protein fibres. We identify about 50 homologues of AcrID1 in four archaeal viral families demonstrating the broad distribution of this group of anti-CRISPR proteins.
Like phages, archaeal viruses also encode anti-CRISPR proteins (Acrs). These include AcrID1 from the lytic rudivirus SIRV3, which interacts with the Cas10d protein of
Sulfolobus islandicus
. AcrID1 homologues are present in many archaeal viral families.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29507349</pmid><doi>10.1038/s41564-018-0120-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8104-7657</orcidid><orcidid>https://orcid.org/0000-0003-3943-8299</orcidid><orcidid>https://orcid.org/0000-0002-5413-4667</orcidid><orcidid>https://orcid.org/0000-0003-3926-7514</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-5276 |
ispartof | Nature microbiology, 2018-04, Vol.3 (4), p.461-469 |
issn | 2058-5276 2058-5276 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11249088 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | 631/326/26/2523 631/326/596/2558 631/337 82 82/16 82/80 82/83 Biomedical and Life Sciences CRISPR CRISPR-Associated Proteins - antagonists & inhibitors CRISPR-Associated Proteins - metabolism CRISPR-Cas Systems - physiology Genomes Immune system Infectious Diseases Infectivity Insertion Life Sciences Medical Microbiology Microbiology Parasitology Phages Proteins Repressor Proteins - genetics Repressor Proteins - metabolism Rudiviridae - genetics Rudiviridae - pathogenicity Structure-function relationships Sulfolobus - genetics Sulfolobus - virology Virology Viruses |
title | Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-CRISPR%20proteins%20encoded%20by%20archaeal%20lytic%20viruses%20inhibit%20subtype%20I-D%20immunity&rft.jtitle=Nature%20microbiology&rft.au=He,%20Fei&rft.date=2018-04-01&rft.volume=3&rft.issue=4&rft.spage=461&rft.epage=469&rft.pages=461-469&rft.issn=2058-5276&rft.eissn=2058-5276&rft_id=info:doi/10.1038/s41564-018-0120-z&rft_dat=%3Cproquest_pubme%3E2137528599%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137528599&rft_id=info:pmid/29507349&rfr_iscdi=true |