Universal digital high-resolution melting for the detection of pulmonary mold infections

Invasive mold infections (IMIs) are associated with high morbidity, particularly in immunocompromised patients, with mortality rates between 40% and 80%. Early initiation of appropriate antifungal therapy can substantially improve outcomes, yet early diagnosis remains difficult to establish and ofte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical microbiology 2024-06, Vol.62 (6), p.e0147623
Hauptverfasser: Goshia, Tyler, Aralar, April, Wiederhold, Nathan, Jenks, Jeffrey D, Mehta, Sanjay R, Karmakar, Aprajita, E S, Monish, Sharma, Ankit, Sun, Haoxiang, Kebadireng, Refilwe, White, P Lewis, Sinha, Mridu, Hoenigl, Martin, Fraley, Stephanie I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e0147623
container_title Journal of clinical microbiology
container_volume 62
creator Goshia, Tyler
Aralar, April
Wiederhold, Nathan
Jenks, Jeffrey D
Mehta, Sanjay R
Karmakar, Aprajita
E S, Monish
Sharma, Ankit
Sun, Haoxiang
Kebadireng, Refilwe
White, P Lewis
Sinha, Mridu
Hoenigl, Martin
Fraley, Stephanie I
description Invasive mold infections (IMIs) are associated with high morbidity, particularly in immunocompromised patients, with mortality rates between 40% and 80%. Early initiation of appropriate antifungal therapy can substantially improve outcomes, yet early diagnosis remains difficult to establish and often requires multidisciplinary teams evaluating clinical and radiological findings plus supportive mycological findings. Universal digital high-resolution melting (U-dHRM) analysis may enable rapid and robust diagnoses of IMI. A universal fungal assay was developed for U-dHRM and used to generate a database of melt curve signatures for 19 clinically relevant fungal pathogens. A machine learning algorithm (ML) was trained to automatically classify these pathogen curves and detect novel melt curves. Performance was assessed on 73 clinical bronchoalveolar lavage samples from patients suspected of IMI. Novel curves were identified by micropipetting U-dHRM reactions and Sanger sequencing amplicons. U-dHRM achieved 97% overall fungal organism identification accuracy and a turnaround time of ~4 hrs. U-dHRM detected pathogenic molds ( , , , and ) in 73% of 30 samples classified as IMI, including mixed infections. Specificity was optimized by requiring the number of pathogenic mold curves detected in a sample to be 8 and a sample volume to be 1 mL, which resulted in 100% specificity in 21 at-risk patients without IMI. U-dHRM showed promise as a separate or combination diagnostic approach to standard mycological tests. U-dHRM's speed, ability to simultaneously identify and quantify clinically relevant mold pathogens in polymicrobial samples, and detect emerging opportunistic pathogens may aid treatment decisions, improving patient outcomes. Improvements in diagnostics for invasive mold infections are urgently needed. This work presents a new molecular detection approach that addresses technical and workflow challenges to provide fast pathogen detection, identification, and quantification that could inform treatment to improve patient outcomes.
doi_str_mv 10.1128/jcm.01476-23
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11237519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050176838</sourcerecordid><originalsourceid>FETCH-LOGICAL-a419t-4eb25c81ca005ff58706b79a5690c60ced9408e63b98d953b24c073d093bf1b03</originalsourceid><addsrcrecordid>eNp1kUFL7DAURoMoOk_duZYuFV71pmnSZCUiPhUENwruQpqmMxnSZEzagffvjY6KLlzdxXc4N7kfQkcYzjCu-PlSD2eA64aVFdlCMwyCl4zB8zaaAQhaYkyaPfQnpSVkrKZ0F-0RzgSlFZ-h5ydv1yYm5YrOzu2Y58LOF2U0KbhptMEXg3Gj9fOiD7EYF6bozGj0exL6YjW5IXgV_xdDcF1hfb_J0gHa6ZVL5vBj7qOnf9ePV7fl_cPN3dXlfalqLMayNm1FNcdaAdC-p7wB1jZCUSZAM9CmEzVww0greCcoaataQ0M6EKTtcQtkH11svKupHUynjR-jcnIV7ZBfJYOy8mfi7ULOw1rm45GGYpENJx-GGF4mk0Y52KSNc8qbMCVJgAJuGCc8o383qI4hpWj6rz0Y3oRc5jbkexuyIhk_3eAqDZVchin6fIrf2OPv__gSf1ZFXgE9XZTd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050176838</pqid></control><display><type>article</type><title>Universal digital high-resolution melting for the detection of pulmonary mold infections</title><source>American Society for Microbiology</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Goshia, Tyler ; Aralar, April ; Wiederhold, Nathan ; Jenks, Jeffrey D ; Mehta, Sanjay R ; Karmakar, Aprajita ; E S, Monish ; Sharma, Ankit ; Sun, Haoxiang ; Kebadireng, Refilwe ; White, P Lewis ; Sinha, Mridu ; Hoenigl, Martin ; Fraley, Stephanie I</creator><contributor>Hanson, Kimberly E.</contributor><creatorcontrib>Goshia, Tyler ; Aralar, April ; Wiederhold, Nathan ; Jenks, Jeffrey D ; Mehta, Sanjay R ; Karmakar, Aprajita ; E S, Monish ; Sharma, Ankit ; Sun, Haoxiang ; Kebadireng, Refilwe ; White, P Lewis ; Sinha, Mridu ; Hoenigl, Martin ; Fraley, Stephanie I ; Hanson, Kimberly E.</creatorcontrib><description>Invasive mold infections (IMIs) are associated with high morbidity, particularly in immunocompromised patients, with mortality rates between 40% and 80%. Early initiation of appropriate antifungal therapy can substantially improve outcomes, yet early diagnosis remains difficult to establish and often requires multidisciplinary teams evaluating clinical and radiological findings plus supportive mycological findings. Universal digital high-resolution melting (U-dHRM) analysis may enable rapid and robust diagnoses of IMI. A universal fungal assay was developed for U-dHRM and used to generate a database of melt curve signatures for 19 clinically relevant fungal pathogens. A machine learning algorithm (ML) was trained to automatically classify these pathogen curves and detect novel melt curves. Performance was assessed on 73 clinical bronchoalveolar lavage samples from patients suspected of IMI. Novel curves were identified by micropipetting U-dHRM reactions and Sanger sequencing amplicons. U-dHRM achieved 97% overall fungal organism identification accuracy and a turnaround time of ~4 hrs. U-dHRM detected pathogenic molds ( , , , and ) in 73% of 30 samples classified as IMI, including mixed infections. Specificity was optimized by requiring the number of pathogenic mold curves detected in a sample to be 8 and a sample volume to be 1 mL, which resulted in 100% specificity in 21 at-risk patients without IMI. U-dHRM showed promise as a separate or combination diagnostic approach to standard mycological tests. U-dHRM's speed, ability to simultaneously identify and quantify clinically relevant mold pathogens in polymicrobial samples, and detect emerging opportunistic pathogens may aid treatment decisions, improving patient outcomes. Improvements in diagnostics for invasive mold infections are urgently needed. This work presents a new molecular detection approach that addresses technical and workflow challenges to provide fast pathogen detection, identification, and quantification that could inform treatment to improve patient outcomes.</description><identifier>ISSN: 0095-1137</identifier><identifier>ISSN: 1098-660X</identifier><identifier>EISSN: 1098-660X</identifier><identifier>DOI: 10.1128/jcm.01476-23</identifier><identifier>PMID: 38695528</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Clinical Microbiology ; Mycology</subject><ispartof>Journal of clinical microbiology, 2024-06, Vol.62 (6), p.e0147623</ispartof><rights>Copyright © 2024 Goshia et al.</rights><rights>Copyright © 2024 Goshia et al. 2024 Goshia et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a419t-4eb25c81ca005ff58706b79a5690c60ced9408e63b98d953b24c073d093bf1b03</citedby><cites>FETCH-LOGICAL-a419t-4eb25c81ca005ff58706b79a5690c60ced9408e63b98d953b24c073d093bf1b03</cites><orcidid>0000-0003-1548-4442 ; 0000-0003-3056-4205 ; 0000-0002-1653-2824 ; 0000-0002-2225-5122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.asm.org/doi/pdf/10.1128/jcm.01476-23$$EPDF$$P50$$Gasm2$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.asm.org/doi/full/10.1128/jcm.01476-23$$EHTML$$P50$$Gasm2$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,27901,27902,52726,52727,52728,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38695528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hanson, Kimberly E.</contributor><creatorcontrib>Goshia, Tyler</creatorcontrib><creatorcontrib>Aralar, April</creatorcontrib><creatorcontrib>Wiederhold, Nathan</creatorcontrib><creatorcontrib>Jenks, Jeffrey D</creatorcontrib><creatorcontrib>Mehta, Sanjay R</creatorcontrib><creatorcontrib>Karmakar, Aprajita</creatorcontrib><creatorcontrib>E S, Monish</creatorcontrib><creatorcontrib>Sharma, Ankit</creatorcontrib><creatorcontrib>Sun, Haoxiang</creatorcontrib><creatorcontrib>Kebadireng, Refilwe</creatorcontrib><creatorcontrib>White, P Lewis</creatorcontrib><creatorcontrib>Sinha, Mridu</creatorcontrib><creatorcontrib>Hoenigl, Martin</creatorcontrib><creatorcontrib>Fraley, Stephanie I</creatorcontrib><title>Universal digital high-resolution melting for the detection of pulmonary mold infections</title><title>Journal of clinical microbiology</title><addtitle>J Clin Microbiol</addtitle><addtitle>J Clin Microbiol</addtitle><description>Invasive mold infections (IMIs) are associated with high morbidity, particularly in immunocompromised patients, with mortality rates between 40% and 80%. Early initiation of appropriate antifungal therapy can substantially improve outcomes, yet early diagnosis remains difficult to establish and often requires multidisciplinary teams evaluating clinical and radiological findings plus supportive mycological findings. Universal digital high-resolution melting (U-dHRM) analysis may enable rapid and robust diagnoses of IMI. A universal fungal assay was developed for U-dHRM and used to generate a database of melt curve signatures for 19 clinically relevant fungal pathogens. A machine learning algorithm (ML) was trained to automatically classify these pathogen curves and detect novel melt curves. Performance was assessed on 73 clinical bronchoalveolar lavage samples from patients suspected of IMI. Novel curves were identified by micropipetting U-dHRM reactions and Sanger sequencing amplicons. U-dHRM achieved 97% overall fungal organism identification accuracy and a turnaround time of ~4 hrs. U-dHRM detected pathogenic molds ( , , , and ) in 73% of 30 samples classified as IMI, including mixed infections. Specificity was optimized by requiring the number of pathogenic mold curves detected in a sample to be 8 and a sample volume to be 1 mL, which resulted in 100% specificity in 21 at-risk patients without IMI. U-dHRM showed promise as a separate or combination diagnostic approach to standard mycological tests. U-dHRM's speed, ability to simultaneously identify and quantify clinically relevant mold pathogens in polymicrobial samples, and detect emerging opportunistic pathogens may aid treatment decisions, improving patient outcomes. Improvements in diagnostics for invasive mold infections are urgently needed. This work presents a new molecular detection approach that addresses technical and workflow challenges to provide fast pathogen detection, identification, and quantification that could inform treatment to improve patient outcomes.</description><subject>Clinical Microbiology</subject><subject>Mycology</subject><issn>0095-1137</issn><issn>1098-660X</issn><issn>1098-660X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kUFL7DAURoMoOk_duZYuFV71pmnSZCUiPhUENwruQpqmMxnSZEzagffvjY6KLlzdxXc4N7kfQkcYzjCu-PlSD2eA64aVFdlCMwyCl4zB8zaaAQhaYkyaPfQnpSVkrKZ0F-0RzgSlFZ-h5ydv1yYm5YrOzu2Y58LOF2U0KbhptMEXg3Gj9fOiD7EYF6bozGj0exL6YjW5IXgV_xdDcF1hfb_J0gHa6ZVL5vBj7qOnf9ePV7fl_cPN3dXlfalqLMayNm1FNcdaAdC-p7wB1jZCUSZAM9CmEzVww0greCcoaataQ0M6EKTtcQtkH11svKupHUynjR-jcnIV7ZBfJYOy8mfi7ULOw1rm45GGYpENJx-GGF4mk0Y52KSNc8qbMCVJgAJuGCc8o383qI4hpWj6rz0Y3oRc5jbkexuyIhk_3eAqDZVchin6fIrf2OPv__gSf1ZFXgE9XZTd</recordid><startdate>20240612</startdate><enddate>20240612</enddate><creator>Goshia, Tyler</creator><creator>Aralar, April</creator><creator>Wiederhold, Nathan</creator><creator>Jenks, Jeffrey D</creator><creator>Mehta, Sanjay R</creator><creator>Karmakar, Aprajita</creator><creator>E S, Monish</creator><creator>Sharma, Ankit</creator><creator>Sun, Haoxiang</creator><creator>Kebadireng, Refilwe</creator><creator>White, P Lewis</creator><creator>Sinha, Mridu</creator><creator>Hoenigl, Martin</creator><creator>Fraley, Stephanie I</creator><general>American Society for Microbiology</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1548-4442</orcidid><orcidid>https://orcid.org/0000-0003-3056-4205</orcidid><orcidid>https://orcid.org/0000-0002-1653-2824</orcidid><orcidid>https://orcid.org/0000-0002-2225-5122</orcidid></search><sort><creationdate>20240612</creationdate><title>Universal digital high-resolution melting for the detection of pulmonary mold infections</title><author>Goshia, Tyler ; Aralar, April ; Wiederhold, Nathan ; Jenks, Jeffrey D ; Mehta, Sanjay R ; Karmakar, Aprajita ; E S, Monish ; Sharma, Ankit ; Sun, Haoxiang ; Kebadireng, Refilwe ; White, P Lewis ; Sinha, Mridu ; Hoenigl, Martin ; Fraley, Stephanie I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a419t-4eb25c81ca005ff58706b79a5690c60ced9408e63b98d953b24c073d093bf1b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Clinical Microbiology</topic><topic>Mycology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goshia, Tyler</creatorcontrib><creatorcontrib>Aralar, April</creatorcontrib><creatorcontrib>Wiederhold, Nathan</creatorcontrib><creatorcontrib>Jenks, Jeffrey D</creatorcontrib><creatorcontrib>Mehta, Sanjay R</creatorcontrib><creatorcontrib>Karmakar, Aprajita</creatorcontrib><creatorcontrib>E S, Monish</creatorcontrib><creatorcontrib>Sharma, Ankit</creatorcontrib><creatorcontrib>Sun, Haoxiang</creatorcontrib><creatorcontrib>Kebadireng, Refilwe</creatorcontrib><creatorcontrib>White, P Lewis</creatorcontrib><creatorcontrib>Sinha, Mridu</creatorcontrib><creatorcontrib>Hoenigl, Martin</creatorcontrib><creatorcontrib>Fraley, Stephanie I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goshia, Tyler</au><au>Aralar, April</au><au>Wiederhold, Nathan</au><au>Jenks, Jeffrey D</au><au>Mehta, Sanjay R</au><au>Karmakar, Aprajita</au><au>E S, Monish</au><au>Sharma, Ankit</au><au>Sun, Haoxiang</au><au>Kebadireng, Refilwe</au><au>White, P Lewis</au><au>Sinha, Mridu</au><au>Hoenigl, Martin</au><au>Fraley, Stephanie I</au><au>Hanson, Kimberly E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal digital high-resolution melting for the detection of pulmonary mold infections</atitle><jtitle>Journal of clinical microbiology</jtitle><stitle>J Clin Microbiol</stitle><addtitle>J Clin Microbiol</addtitle><date>2024-06-12</date><risdate>2024</risdate><volume>62</volume><issue>6</issue><spage>e0147623</spage><pages>e0147623-</pages><issn>0095-1137</issn><issn>1098-660X</issn><eissn>1098-660X</eissn><abstract>Invasive mold infections (IMIs) are associated with high morbidity, particularly in immunocompromised patients, with mortality rates between 40% and 80%. Early initiation of appropriate antifungal therapy can substantially improve outcomes, yet early diagnosis remains difficult to establish and often requires multidisciplinary teams evaluating clinical and radiological findings plus supportive mycological findings. Universal digital high-resolution melting (U-dHRM) analysis may enable rapid and robust diagnoses of IMI. A universal fungal assay was developed for U-dHRM and used to generate a database of melt curve signatures for 19 clinically relevant fungal pathogens. A machine learning algorithm (ML) was trained to automatically classify these pathogen curves and detect novel melt curves. Performance was assessed on 73 clinical bronchoalveolar lavage samples from patients suspected of IMI. Novel curves were identified by micropipetting U-dHRM reactions and Sanger sequencing amplicons. U-dHRM achieved 97% overall fungal organism identification accuracy and a turnaround time of ~4 hrs. U-dHRM detected pathogenic molds ( , , , and ) in 73% of 30 samples classified as IMI, including mixed infections. Specificity was optimized by requiring the number of pathogenic mold curves detected in a sample to be 8 and a sample volume to be 1 mL, which resulted in 100% specificity in 21 at-risk patients without IMI. U-dHRM showed promise as a separate or combination diagnostic approach to standard mycological tests. U-dHRM's speed, ability to simultaneously identify and quantify clinically relevant mold pathogens in polymicrobial samples, and detect emerging opportunistic pathogens may aid treatment decisions, improving patient outcomes. Improvements in diagnostics for invasive mold infections are urgently needed. This work presents a new molecular detection approach that addresses technical and workflow challenges to provide fast pathogen detection, identification, and quantification that could inform treatment to improve patient outcomes.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>38695528</pmid><doi>10.1128/jcm.01476-23</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1548-4442</orcidid><orcidid>https://orcid.org/0000-0003-3056-4205</orcidid><orcidid>https://orcid.org/0000-0002-1653-2824</orcidid><orcidid>https://orcid.org/0000-0002-2225-5122</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0095-1137
ispartof Journal of clinical microbiology, 2024-06, Vol.62 (6), p.e0147623
issn 0095-1137
1098-660X
1098-660X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11237519
source American Society for Microbiology; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Clinical Microbiology
Mycology
title Universal digital high-resolution melting for the detection of pulmonary mold infections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A06%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20digital%20high-resolution%20melting%20for%20the%20detection%20of%20pulmonary%20mold%20infections&rft.jtitle=Journal%20of%20clinical%20microbiology&rft.au=Goshia,%20Tyler&rft.date=2024-06-12&rft.volume=62&rft.issue=6&rft.spage=e0147623&rft.pages=e0147623-&rft.issn=0095-1137&rft.eissn=1098-660X&rft_id=info:doi/10.1128/jcm.01476-23&rft_dat=%3Cproquest_pubme%3E3050176838%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050176838&rft_id=info:pmid/38695528&rfr_iscdi=true