Improved efficacy of cisplatin delivery by peanut agglutinin‑modified liposomes in non‑small cell lung cancer
Globally, non‑small cell lung cancer (NSCLC) is a significant threat to human health, and constitutes >80% of lung cancer cases. Cisplatin (CDDP), a commonly used drug in clinical treatment, has been the focus of research aiming to mitigate its potent toxicity through encapsulation within liposom...
Gespeichert in:
Veröffentlicht in: | International journal of molecular medicine 2024-08, Vol.54 (2), p.1, Article 70 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | International journal of molecular medicine |
container_volume | 54 |
creator | Yang, Ben Kou, Rongguan Wang, Hui Wang, Anping Wang, Lili Sun, Sipeng Shi, Mengqi Zhao, Shouzhen Wang, Yubing Wang, Yi Wu, Jingliang Wu, Fei Yang, Fan Qu, Meihua Yu, Wenjing Gao, Zhiqin |
description | Globally, non‑small cell lung cancer (NSCLC) is a significant threat to human health, and constitutes >80% of lung cancer cases. Cisplatin (CDDP), a commonly used drug in clinical treatment, has been the focus of research aiming to mitigate its potent toxicity through encapsulation within liposomes. However, challenges, such as a reduced drug loading efficiency and nonspecific release, have emerged as obstacles. The present study aimed to improve the encapsulation efficiency of CDDP within liposomes by pre‑preparation of CDDP and modifying the liposome surface through the incorporation of peanut agglutinin (PNA) as a ligand [CDDP‑loaded PNA‑modified liposomes (CDDP‑PNA‑Lip)]. This strategy was designed to enhance the delivery of CDDP to tumour tissues, thereby reducing associated side effects. The effect of CDDP‑PNA‑Lip on the proliferation and migration of NSCLC cell lines with high MUC1 expression was elucidated through
studies. Additionally, the capacity of PNA modification to augment the targeted anti‑tumour efficacy of liposomes was assessed through xenograft tumour experiments. The results indicated that in an in vitro uptake assay Rhodamine B (RhB)‑loaded PNA‑modified liposomes were taken up by cells with ~50% higher efficiency compared with free RhB. In addition, CDDP‑PNA‑Lip resulted in a 2.65‑fold enhancement of tumour suppression
compared with free CDDP. These findings suggested that the encapsulation of CDDP within ligand‑modified liposomes may significantly improve its tumour‑targeting capabilities, providing valuable insights for clinical drug development. |
doi_str_mv | 10.3892/ijmm.2024.5394 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11232663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A803518665</galeid><sourcerecordid>A803518665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-7fb43a1c568051f31d899b7437c9435dafcd5de762c20c38d0aa321ed7b8a4713</originalsourceid><addsrcrecordid>eNptUUtrFTEUHkSxtXXrUgKu55rkzCOzklJ8FArdVOguZPIYc8ljmsxcuDv_gn_RX2IGa1UogeRwvgfn5KuqNwTvgA30vd17v6OYNrsWhuZZdUr6gdS0ae6el5rgvoa-7U6qVznvMaZtM7CX1UmRdoChPa3ur_yc4kErpI2xUsgjigZJm2cnFhuQ0s4edDqi8YhmLcK6IDFNbi2YDT-___BRWWOL3Nk55uh1RkUV4oZlL5xDUpfLrWFCUgSp03n1wgiX9euH96z6-unj7eWX-vrm89XlxXUtAchS92ZsQBDZdgy3xABRbBjGvoFeDg20ShipWqX7jkqKJTCFhQBKtOpHJpqewFn14bfvvI5eK6nDkoTjc7JepCOPwvL_kWC_8SkeOCEUaNdBcXj34JDi_arzwvdxTaEMzQEzSqAQ2V_WJJzmNphY3KS3WfILVv6YsK5rC2v3BKscpb2VMWhjS_8pgUwx56TN4-QE8y16vkXPt-j5Fn0RvP1330f6n6zhFxSTreA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082131238</pqid></control><display><type>article</type><title>Improved efficacy of cisplatin delivery by peanut agglutinin‑modified liposomes in non‑small cell lung cancer</title><source>Spandidos Publications Journals</source><source>MEDLINE</source><source>EZB Electronic Journals Library</source><creator>Yang, Ben ; Kou, Rongguan ; Wang, Hui ; Wang, Anping ; Wang, Lili ; Sun, Sipeng ; Shi, Mengqi ; Zhao, Shouzhen ; Wang, Yubing ; Wang, Yi ; Wu, Jingliang ; Wu, Fei ; Yang, Fan ; Qu, Meihua ; Yu, Wenjing ; Gao, Zhiqin</creator><creatorcontrib>Yang, Ben ; Kou, Rongguan ; Wang, Hui ; Wang, Anping ; Wang, Lili ; Sun, Sipeng ; Shi, Mengqi ; Zhao, Shouzhen ; Wang, Yubing ; Wang, Yi ; Wu, Jingliang ; Wu, Fei ; Yang, Fan ; Qu, Meihua ; Yu, Wenjing ; Gao, Zhiqin</creatorcontrib><description>Globally, non‑small cell lung cancer (NSCLC) is a significant threat to human health, and constitutes >80% of lung cancer cases. Cisplatin (CDDP), a commonly used drug in clinical treatment, has been the focus of research aiming to mitigate its potent toxicity through encapsulation within liposomes. However, challenges, such as a reduced drug loading efficiency and nonspecific release, have emerged as obstacles. The present study aimed to improve the encapsulation efficiency of CDDP within liposomes by pre‑preparation of CDDP and modifying the liposome surface through the incorporation of peanut agglutinin (PNA) as a ligand [CDDP‑loaded PNA‑modified liposomes (CDDP‑PNA‑Lip)]. This strategy was designed to enhance the delivery of CDDP to tumour tissues, thereby reducing associated side effects. The effect of CDDP‑PNA‑Lip on the proliferation and migration of NSCLC cell lines with high MUC1 expression was elucidated through
studies. Additionally, the capacity of PNA modification to augment the targeted anti‑tumour efficacy of liposomes was assessed through xenograft tumour experiments. The results indicated that in an in vitro uptake assay Rhodamine B (RhB)‑loaded PNA‑modified liposomes were taken up by cells with ~50% higher efficiency compared with free RhB. In addition, CDDP‑PNA‑Lip resulted in a 2.65‑fold enhancement of tumour suppression
compared with free CDDP. These findings suggested that the encapsulation of CDDP within ligand‑modified liposomes may significantly improve its tumour‑targeting capabilities, providing valuable insights for clinical drug development.</description><identifier>ISSN: 1107-3756</identifier><identifier>EISSN: 1791-244X</identifier><identifier>DOI: 10.3892/ijmm.2024.5394</identifier><identifier>PMID: 38963035</identifier><language>eng</language><publisher>Greece: Spandidos Publications</publisher><subject>Animals ; Antigens ; Antineoplastic Agents - administration & dosage ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Biology ; Cancer therapies ; Carcinoma, Non-Small-Cell Lung - drug therapy ; Carcinoma, Non-Small-Cell Lung - pathology ; Cell Line, Tumor ; Cell Movement - drug effects ; Cell Proliferation - drug effects ; Cisplatin - administration & dosage ; Cisplatin - pharmacology ; Diagnostic reagents industry ; Drug delivery systems ; Drug Delivery Systems - methods ; Drug development ; Ethylenediaminetetraacetic acid ; Female ; Health aspects ; Hemodialysis ; Humans ; Hydration ; Laboratory animals ; Lipids ; Liposomes - chemistry ; Lung cancer ; Lung cancer, Non-small cell ; Lung cancer, Small cell ; Lung Neoplasms - drug therapy ; Lung Neoplasms - pathology ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Peanut Agglutinin - chemistry ; Penicillin ; Toxicity ; Xenograft Model Antitumor Assays</subject><ispartof>International journal of molecular medicine, 2024-08, Vol.54 (2), p.1, Article 70</ispartof><rights>COPYRIGHT 2024 Spandidos Publications</rights><rights>Copyright Spandidos Publications UK Ltd. 2024</rights><rights>Copyright: © 2024 Yang et al. 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c331t-7fb43a1c568051f31d899b7437c9435dafcd5de762c20c38d0aa321ed7b8a4713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38963035$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Ben</creatorcontrib><creatorcontrib>Kou, Rongguan</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Wang, Anping</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Sun, Sipeng</creatorcontrib><creatorcontrib>Shi, Mengqi</creatorcontrib><creatorcontrib>Zhao, Shouzhen</creatorcontrib><creatorcontrib>Wang, Yubing</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Wu, Jingliang</creatorcontrib><creatorcontrib>Wu, Fei</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Qu, Meihua</creatorcontrib><creatorcontrib>Yu, Wenjing</creatorcontrib><creatorcontrib>Gao, Zhiqin</creatorcontrib><title>Improved efficacy of cisplatin delivery by peanut agglutinin‑modified liposomes in non‑small cell lung cancer</title><title>International journal of molecular medicine</title><addtitle>Int J Mol Med</addtitle><description>Globally, non‑small cell lung cancer (NSCLC) is a significant threat to human health, and constitutes >80% of lung cancer cases. Cisplatin (CDDP), a commonly used drug in clinical treatment, has been the focus of research aiming to mitigate its potent toxicity through encapsulation within liposomes. However, challenges, such as a reduced drug loading efficiency and nonspecific release, have emerged as obstacles. The present study aimed to improve the encapsulation efficiency of CDDP within liposomes by pre‑preparation of CDDP and modifying the liposome surface through the incorporation of peanut agglutinin (PNA) as a ligand [CDDP‑loaded PNA‑modified liposomes (CDDP‑PNA‑Lip)]. This strategy was designed to enhance the delivery of CDDP to tumour tissues, thereby reducing associated side effects. The effect of CDDP‑PNA‑Lip on the proliferation and migration of NSCLC cell lines with high MUC1 expression was elucidated through
studies. Additionally, the capacity of PNA modification to augment the targeted anti‑tumour efficacy of liposomes was assessed through xenograft tumour experiments. The results indicated that in an in vitro uptake assay Rhodamine B (RhB)‑loaded PNA‑modified liposomes were taken up by cells with ~50% higher efficiency compared with free RhB. In addition, CDDP‑PNA‑Lip resulted in a 2.65‑fold enhancement of tumour suppression
compared with free CDDP. These findings suggested that the encapsulation of CDDP within ligand‑modified liposomes may significantly improve its tumour‑targeting capabilities, providing valuable insights for clinical drug development.</description><subject>Animals</subject><subject>Antigens</subject><subject>Antineoplastic Agents - administration & dosage</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Biology</subject><subject>Cancer therapies</subject><subject>Carcinoma, Non-Small-Cell Lung - drug therapy</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Cisplatin - administration & dosage</subject><subject>Cisplatin - pharmacology</subject><subject>Diagnostic reagents industry</subject><subject>Drug delivery systems</subject><subject>Drug Delivery Systems - methods</subject><subject>Drug development</subject><subject>Ethylenediaminetetraacetic acid</subject><subject>Female</subject><subject>Health aspects</subject><subject>Hemodialysis</subject><subject>Humans</subject><subject>Hydration</subject><subject>Laboratory animals</subject><subject>Lipids</subject><subject>Liposomes - chemistry</subject><subject>Lung cancer</subject><subject>Lung cancer, Non-small cell</subject><subject>Lung cancer, Small cell</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - pathology</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Peanut Agglutinin - chemistry</subject><subject>Penicillin</subject><subject>Toxicity</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1107-3756</issn><issn>1791-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNptUUtrFTEUHkSxtXXrUgKu55rkzCOzklJ8FArdVOguZPIYc8ljmsxcuDv_gn_RX2IGa1UogeRwvgfn5KuqNwTvgA30vd17v6OYNrsWhuZZdUr6gdS0ae6el5rgvoa-7U6qVznvMaZtM7CX1UmRdoChPa3ur_yc4kErpI2xUsgjigZJm2cnFhuQ0s4edDqi8YhmLcK6IDFNbi2YDT-___BRWWOL3Nk55uh1RkUV4oZlL5xDUpfLrWFCUgSp03n1wgiX9euH96z6-unj7eWX-vrm89XlxXUtAchS92ZsQBDZdgy3xABRbBjGvoFeDg20ShipWqX7jkqKJTCFhQBKtOpHJpqewFn14bfvvI5eK6nDkoTjc7JepCOPwvL_kWC_8SkeOCEUaNdBcXj34JDi_arzwvdxTaEMzQEzSqAQ2V_WJJzmNphY3KS3WfILVv6YsK5rC2v3BKscpb2VMWhjS_8pgUwx56TN4-QE8y16vkXPt-j5Fn0RvP1330f6n6zhFxSTreA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Yang, Ben</creator><creator>Kou, Rongguan</creator><creator>Wang, Hui</creator><creator>Wang, Anping</creator><creator>Wang, Lili</creator><creator>Sun, Sipeng</creator><creator>Shi, Mengqi</creator><creator>Zhao, Shouzhen</creator><creator>Wang, Yubing</creator><creator>Wang, Yi</creator><creator>Wu, Jingliang</creator><creator>Wu, Fei</creator><creator>Yang, Fan</creator><creator>Qu, Meihua</creator><creator>Yu, Wenjing</creator><creator>Gao, Zhiqin</creator><general>Spandidos Publications</general><general>Spandidos Publications UK Ltd</general><general>D.A. Spandidos</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20240801</creationdate><title>Improved efficacy of cisplatin delivery by peanut agglutinin‑modified liposomes in non‑small cell lung cancer</title><author>Yang, Ben ; Kou, Rongguan ; Wang, Hui ; Wang, Anping ; Wang, Lili ; Sun, Sipeng ; Shi, Mengqi ; Zhao, Shouzhen ; Wang, Yubing ; Wang, Yi ; Wu, Jingliang ; Wu, Fei ; Yang, Fan ; Qu, Meihua ; Yu, Wenjing ; Gao, Zhiqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-7fb43a1c568051f31d899b7437c9435dafcd5de762c20c38d0aa321ed7b8a4713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Antigens</topic><topic>Antineoplastic Agents - administration & dosage</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Biology</topic><topic>Cancer therapies</topic><topic>Carcinoma, Non-Small-Cell Lung - drug therapy</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Cisplatin - administration & dosage</topic><topic>Cisplatin - pharmacology</topic><topic>Diagnostic reagents industry</topic><topic>Drug delivery systems</topic><topic>Drug Delivery Systems - methods</topic><topic>Drug development</topic><topic>Ethylenediaminetetraacetic acid</topic><topic>Female</topic><topic>Health aspects</topic><topic>Hemodialysis</topic><topic>Humans</topic><topic>Hydration</topic><topic>Laboratory animals</topic><topic>Lipids</topic><topic>Liposomes - chemistry</topic><topic>Lung cancer</topic><topic>Lung cancer, Non-small cell</topic><topic>Lung cancer, Small cell</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - pathology</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Peanut Agglutinin - chemistry</topic><topic>Penicillin</topic><topic>Toxicity</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ben</creatorcontrib><creatorcontrib>Kou, Rongguan</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Wang, Anping</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Sun, Sipeng</creatorcontrib><creatorcontrib>Shi, Mengqi</creatorcontrib><creatorcontrib>Zhao, Shouzhen</creatorcontrib><creatorcontrib>Wang, Yubing</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Wu, Jingliang</creatorcontrib><creatorcontrib>Wu, Fei</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Qu, Meihua</creatorcontrib><creatorcontrib>Yu, Wenjing</creatorcontrib><creatorcontrib>Gao, Zhiqin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ben</au><au>Kou, Rongguan</au><au>Wang, Hui</au><au>Wang, Anping</au><au>Wang, Lili</au><au>Sun, Sipeng</au><au>Shi, Mengqi</au><au>Zhao, Shouzhen</au><au>Wang, Yubing</au><au>Wang, Yi</au><au>Wu, Jingliang</au><au>Wu, Fei</au><au>Yang, Fan</au><au>Qu, Meihua</au><au>Yu, Wenjing</au><au>Gao, Zhiqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved efficacy of cisplatin delivery by peanut agglutinin‑modified liposomes in non‑small cell lung cancer</atitle><jtitle>International journal of molecular medicine</jtitle><addtitle>Int J Mol Med</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>54</volume><issue>2</issue><spage>1</spage><pages>1-</pages><artnum>70</artnum><issn>1107-3756</issn><eissn>1791-244X</eissn><abstract>Globally, non‑small cell lung cancer (NSCLC) is a significant threat to human health, and constitutes >80% of lung cancer cases. Cisplatin (CDDP), a commonly used drug in clinical treatment, has been the focus of research aiming to mitigate its potent toxicity through encapsulation within liposomes. However, challenges, such as a reduced drug loading efficiency and nonspecific release, have emerged as obstacles. The present study aimed to improve the encapsulation efficiency of CDDP within liposomes by pre‑preparation of CDDP and modifying the liposome surface through the incorporation of peanut agglutinin (PNA) as a ligand [CDDP‑loaded PNA‑modified liposomes (CDDP‑PNA‑Lip)]. This strategy was designed to enhance the delivery of CDDP to tumour tissues, thereby reducing associated side effects. The effect of CDDP‑PNA‑Lip on the proliferation and migration of NSCLC cell lines with high MUC1 expression was elucidated through
studies. Additionally, the capacity of PNA modification to augment the targeted anti‑tumour efficacy of liposomes was assessed through xenograft tumour experiments. The results indicated that in an in vitro uptake assay Rhodamine B (RhB)‑loaded PNA‑modified liposomes were taken up by cells with ~50% higher efficiency compared with free RhB. In addition, CDDP‑PNA‑Lip resulted in a 2.65‑fold enhancement of tumour suppression
compared with free CDDP. These findings suggested that the encapsulation of CDDP within ligand‑modified liposomes may significantly improve its tumour‑targeting capabilities, providing valuable insights for clinical drug development.</abstract><cop>Greece</cop><pub>Spandidos Publications</pub><pmid>38963035</pmid><doi>10.3892/ijmm.2024.5394</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1107-3756 |
ispartof | International journal of molecular medicine, 2024-08, Vol.54 (2), p.1, Article 70 |
issn | 1107-3756 1791-244X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11232663 |
source | Spandidos Publications Journals; MEDLINE; EZB Electronic Journals Library |
subjects | Animals Antigens Antineoplastic Agents - administration & dosage Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Biology Cancer therapies Carcinoma, Non-Small-Cell Lung - drug therapy Carcinoma, Non-Small-Cell Lung - pathology Cell Line, Tumor Cell Movement - drug effects Cell Proliferation - drug effects Cisplatin - administration & dosage Cisplatin - pharmacology Diagnostic reagents industry Drug delivery systems Drug Delivery Systems - methods Drug development Ethylenediaminetetraacetic acid Female Health aspects Hemodialysis Humans Hydration Laboratory animals Lipids Liposomes - chemistry Lung cancer Lung cancer, Non-small cell Lung cancer, Small cell Lung Neoplasms - drug therapy Lung Neoplasms - pathology Mice Mice, Inbred BALB C Mice, Nude Peanut Agglutinin - chemistry Penicillin Toxicity Xenograft Model Antitumor Assays |
title | Improved efficacy of cisplatin delivery by peanut agglutinin‑modified liposomes in non‑small cell lung cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A14%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20efficacy%20of%20cisplatin%20delivery%20by%20peanut%20agglutinin%E2%80%91modified%20liposomes%20in%20non%E2%80%91small%20cell%20lung%20cancer&rft.jtitle=International%20journal%20of%20molecular%20medicine&rft.au=Yang,%20Ben&rft.date=2024-08-01&rft.volume=54&rft.issue=2&rft.spage=1&rft.pages=1-&rft.artnum=70&rft.issn=1107-3756&rft.eissn=1791-244X&rft_id=info:doi/10.3892/ijmm.2024.5394&rft_dat=%3Cgale_pubme%3EA803518665%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082131238&rft_id=info:pmid/38963035&rft_galeid=A803518665&rfr_iscdi=true |