An interactive task-based method for the avoidance of metal artifacts in CBCT

Purpose Intraoperative cone-beam CT imaging enables 3D validation of implant positioning and fracture reduction for orthopedic and trauma surgeries. However, the emergence of metal artifacts, especially in the vicinity of metallic objects, severely degrades the clinical value of the imaging modality...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for computer assisted radiology and surgery 2024-07, Vol.19 (7), p.1399-1407
Hauptverfasser: Rohleder, Maximilian, Thies, Mareike, Riedl, Sophie, Bullert, Benno, Gierse, Jula, Privalov, Maxim, Mandelka, Eric, Vetter, Sven, Maier, Andreas, Kreher, Bjoern
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1407
container_issue 7
container_start_page 1399
container_title International journal for computer assisted radiology and surgery
container_volume 19
creator Rohleder, Maximilian
Thies, Mareike
Riedl, Sophie
Bullert, Benno
Gierse, Jula
Privalov, Maxim
Mandelka, Eric
Vetter, Sven
Maier, Andreas
Kreher, Bjoern
description Purpose Intraoperative cone-beam CT imaging enables 3D validation of implant positioning and fracture reduction for orthopedic and trauma surgeries. However, the emergence of metal artifacts, especially in the vicinity of metallic objects, severely degrades the clinical value of the imaging modality. In previous works, metal artifact avoidance (MAA) methods have been shown to reduce metal artifacts by adapting the scanning trajectory. Yet, these methods fail to translate to clinical practice due to remaining methodological constraints and missing workflow integration. Methods In this work, we propose a method to compute the spatial distribution and calibrated strengths of expected artifacts for a given tilted circular trajectory. By visualizing this as an overlay changing with the C-Arm’s tilt, we enable the clinician to interactively choose an optimal trajectory while factoring in the procedural context and clinical task. We then evaluate this method in a realistic human cadaver study and compare the achieved image quality to acquisitions optimized using global metrics. Results We assess the effectiveness of the compared methods by evaluation of image quality gradings of depicted pedicle screws. We find that both global metrics as well as the proposed visualization of artifact distribution enable a drastic improvement compared to standard non-tilted scans. Furthermore, the novel interactive visualization yields a significant improvement in subjective image quality compared to the state-of-the-art global metrics. Additionally we show that by formulating an imaging task, the proposed method allows to selectively optimize image quality and avoid artifacts in the region of interest. Conclusion We propose a method to spatially resolve predicted artifacts and provide a calibrated measure for artifact strength grading. This interactive MAA method proved practical and effective in reducing metal artifacts in the conducted cadaver study. We believe this study serves as a crucial step toward clinical application of an MAA system to improve image quality and enhance the clinical validation of implant placement.
doi_str_mv 10.1007/s11548-024-03103-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11230992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059257984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-8a09e6c001cedc55f82693e1cb69d4f9ada64f347651c9bc638b1b28817b21003</originalsourceid><addsrcrecordid>eNp9kTtPwzAUhS0EoqXwBxiQR5aAX0nsCZWKl1TEUmbLcZw2JYmL7Vbi3-OSUpWFyZbOOZ-v7wHgEqMbjFB-6zFOGU8QYQmiGNGEHYEh5hlOMkbE8cF9AM68XyLE0pymp2BAec4Rp2gIXscdrLtgnNKh3hgYlP9ICuVNCVsTFraElXUwLAxUG1uXqtMG2mqrqQYqF-oqBn1EwMn9ZHYOTirVeHOxO0fg_fFhNnlOpm9PL5PxNNFU8JBwhYTJNEJYm1KnacVJJqjBushEySqhSpWxirI8S7EWhc4oL3BBOMd5QeLX6Qjc9dzVumgjwnTBqUauXN0q9yWtquVfpasXcm43EmNCkRAkEq53BGc_18YH2dZem6ZRnbFrLylKBUlzwVm0kt6qnfXemWr_DkZyW4Tsi5CxCPlThNyGrg4n3Ed-Nx8NtDf4KHVz4-TSrl0Xt_Yf9hvSg5Ou</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059257984</pqid></control><display><type>article</type><title>An interactive task-based method for the avoidance of metal artifacts in CBCT</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Rohleder, Maximilian ; Thies, Mareike ; Riedl, Sophie ; Bullert, Benno ; Gierse, Jula ; Privalov, Maxim ; Mandelka, Eric ; Vetter, Sven ; Maier, Andreas ; Kreher, Bjoern</creator><creatorcontrib>Rohleder, Maximilian ; Thies, Mareike ; Riedl, Sophie ; Bullert, Benno ; Gierse, Jula ; Privalov, Maxim ; Mandelka, Eric ; Vetter, Sven ; Maier, Andreas ; Kreher, Bjoern</creatorcontrib><description>Purpose Intraoperative cone-beam CT imaging enables 3D validation of implant positioning and fracture reduction for orthopedic and trauma surgeries. However, the emergence of metal artifacts, especially in the vicinity of metallic objects, severely degrades the clinical value of the imaging modality. In previous works, metal artifact avoidance (MAA) methods have been shown to reduce metal artifacts by adapting the scanning trajectory. Yet, these methods fail to translate to clinical practice due to remaining methodological constraints and missing workflow integration. Methods In this work, we propose a method to compute the spatial distribution and calibrated strengths of expected artifacts for a given tilted circular trajectory. By visualizing this as an overlay changing with the C-Arm’s tilt, we enable the clinician to interactively choose an optimal trajectory while factoring in the procedural context and clinical task. We then evaluate this method in a realistic human cadaver study and compare the achieved image quality to acquisitions optimized using global metrics. Results We assess the effectiveness of the compared methods by evaluation of image quality gradings of depicted pedicle screws. We find that both global metrics as well as the proposed visualization of artifact distribution enable a drastic improvement compared to standard non-tilted scans. Furthermore, the novel interactive visualization yields a significant improvement in subjective image quality compared to the state-of-the-art global metrics. Additionally we show that by formulating an imaging task, the proposed method allows to selectively optimize image quality and avoid artifacts in the region of interest. Conclusion We propose a method to spatially resolve predicted artifacts and provide a calibrated measure for artifact strength grading. This interactive MAA method proved practical and effective in reducing metal artifacts in the conducted cadaver study. We believe this study serves as a crucial step toward clinical application of an MAA system to improve image quality and enhance the clinical validation of implant placement.</description><identifier>ISSN: 1861-6429</identifier><identifier>ISSN: 1861-6410</identifier><identifier>EISSN: 1861-6429</identifier><identifier>DOI: 10.1007/s11548-024-03103-4</identifier><identifier>PMID: 38780830</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Cadaver ; Computer Imaging ; Computer Science ; Cone-Beam Computed Tomography - methods ; Health Informatics ; Humans ; Imaging ; Imaging, Three-Dimensional - methods ; Medicine ; Medicine &amp; Public Health ; Metals ; Original ; Original Article ; Pattern Recognition and Graphics ; Pedicle Screws ; Radiology ; Surgery ; Vision</subject><ispartof>International journal for computer assisted radiology and surgery, 2024-07, Vol.19 (7), p.1399-1407</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c398t-8a09e6c001cedc55f82693e1cb69d4f9ada64f347651c9bc638b1b28817b21003</cites><orcidid>0009-0003-3539-4839 ; 0000-0002-1758-9056 ; 0000-0002-7337-2783 ; 0009-0009-4656-5705 ; 0000-0001-5360-2054 ; 0009-0004-2911-3444 ; 0000-0002-9550-5284 ; 0000-0002-1364-4337 ; 0000-0002-3955-0339 ; 0000-0001-8024-9276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11548-024-03103-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11548-024-03103-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38780830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rohleder, Maximilian</creatorcontrib><creatorcontrib>Thies, Mareike</creatorcontrib><creatorcontrib>Riedl, Sophie</creatorcontrib><creatorcontrib>Bullert, Benno</creatorcontrib><creatorcontrib>Gierse, Jula</creatorcontrib><creatorcontrib>Privalov, Maxim</creatorcontrib><creatorcontrib>Mandelka, Eric</creatorcontrib><creatorcontrib>Vetter, Sven</creatorcontrib><creatorcontrib>Maier, Andreas</creatorcontrib><creatorcontrib>Kreher, Bjoern</creatorcontrib><title>An interactive task-based method for the avoidance of metal artifacts in CBCT</title><title>International journal for computer assisted radiology and surgery</title><addtitle>Int J CARS</addtitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><description>Purpose Intraoperative cone-beam CT imaging enables 3D validation of implant positioning and fracture reduction for orthopedic and trauma surgeries. However, the emergence of metal artifacts, especially in the vicinity of metallic objects, severely degrades the clinical value of the imaging modality. In previous works, metal artifact avoidance (MAA) methods have been shown to reduce metal artifacts by adapting the scanning trajectory. Yet, these methods fail to translate to clinical practice due to remaining methodological constraints and missing workflow integration. Methods In this work, we propose a method to compute the spatial distribution and calibrated strengths of expected artifacts for a given tilted circular trajectory. By visualizing this as an overlay changing with the C-Arm’s tilt, we enable the clinician to interactively choose an optimal trajectory while factoring in the procedural context and clinical task. We then evaluate this method in a realistic human cadaver study and compare the achieved image quality to acquisitions optimized using global metrics. Results We assess the effectiveness of the compared methods by evaluation of image quality gradings of depicted pedicle screws. We find that both global metrics as well as the proposed visualization of artifact distribution enable a drastic improvement compared to standard non-tilted scans. Furthermore, the novel interactive visualization yields a significant improvement in subjective image quality compared to the state-of-the-art global metrics. Additionally we show that by formulating an imaging task, the proposed method allows to selectively optimize image quality and avoid artifacts in the region of interest. Conclusion We propose a method to spatially resolve predicted artifacts and provide a calibrated measure for artifact strength grading. This interactive MAA method proved practical and effective in reducing metal artifacts in the conducted cadaver study. We believe this study serves as a crucial step toward clinical application of an MAA system to improve image quality and enhance the clinical validation of implant placement.</description><subject>Cadaver</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Cone-Beam Computed Tomography - methods</subject><subject>Health Informatics</subject><subject>Humans</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metals</subject><subject>Original</subject><subject>Original Article</subject><subject>Pattern Recognition and Graphics</subject><subject>Pedicle Screws</subject><subject>Radiology</subject><subject>Surgery</subject><subject>Vision</subject><issn>1861-6429</issn><issn>1861-6410</issn><issn>1861-6429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kTtPwzAUhS0EoqXwBxiQR5aAX0nsCZWKl1TEUmbLcZw2JYmL7Vbi3-OSUpWFyZbOOZ-v7wHgEqMbjFB-6zFOGU8QYQmiGNGEHYEh5hlOMkbE8cF9AM68XyLE0pymp2BAec4Rp2gIXscdrLtgnNKh3hgYlP9ICuVNCVsTFraElXUwLAxUG1uXqtMG2mqrqQYqF-oqBn1EwMn9ZHYOTirVeHOxO0fg_fFhNnlOpm9PL5PxNNFU8JBwhYTJNEJYm1KnacVJJqjBushEySqhSpWxirI8S7EWhc4oL3BBOMd5QeLX6Qjc9dzVumgjwnTBqUauXN0q9yWtquVfpasXcm43EmNCkRAkEq53BGc_18YH2dZem6ZRnbFrLylKBUlzwVm0kt6qnfXemWr_DkZyW4Tsi5CxCPlThNyGrg4n3Ed-Nx8NtDf4KHVz4-TSrl0Xt_Yf9hvSg5Ou</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Rohleder, Maximilian</creator><creator>Thies, Mareike</creator><creator>Riedl, Sophie</creator><creator>Bullert, Benno</creator><creator>Gierse, Jula</creator><creator>Privalov, Maxim</creator><creator>Mandelka, Eric</creator><creator>Vetter, Sven</creator><creator>Maier, Andreas</creator><creator>Kreher, Bjoern</creator><general>Springer International Publishing</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0003-3539-4839</orcidid><orcidid>https://orcid.org/0000-0002-1758-9056</orcidid><orcidid>https://orcid.org/0000-0002-7337-2783</orcidid><orcidid>https://orcid.org/0009-0009-4656-5705</orcidid><orcidid>https://orcid.org/0000-0001-5360-2054</orcidid><orcidid>https://orcid.org/0009-0004-2911-3444</orcidid><orcidid>https://orcid.org/0000-0002-9550-5284</orcidid><orcidid>https://orcid.org/0000-0002-1364-4337</orcidid><orcidid>https://orcid.org/0000-0002-3955-0339</orcidid><orcidid>https://orcid.org/0000-0001-8024-9276</orcidid></search><sort><creationdate>20240701</creationdate><title>An interactive task-based method for the avoidance of metal artifacts in CBCT</title><author>Rohleder, Maximilian ; Thies, Mareike ; Riedl, Sophie ; Bullert, Benno ; Gierse, Jula ; Privalov, Maxim ; Mandelka, Eric ; Vetter, Sven ; Maier, Andreas ; Kreher, Bjoern</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-8a09e6c001cedc55f82693e1cb69d4f9ada64f347651c9bc638b1b28817b21003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cadaver</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Cone-Beam Computed Tomography - methods</topic><topic>Health Informatics</topic><topic>Humans</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metals</topic><topic>Original</topic><topic>Original Article</topic><topic>Pattern Recognition and Graphics</topic><topic>Pedicle Screws</topic><topic>Radiology</topic><topic>Surgery</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohleder, Maximilian</creatorcontrib><creatorcontrib>Thies, Mareike</creatorcontrib><creatorcontrib>Riedl, Sophie</creatorcontrib><creatorcontrib>Bullert, Benno</creatorcontrib><creatorcontrib>Gierse, Jula</creatorcontrib><creatorcontrib>Privalov, Maxim</creatorcontrib><creatorcontrib>Mandelka, Eric</creatorcontrib><creatorcontrib>Vetter, Sven</creatorcontrib><creatorcontrib>Maier, Andreas</creatorcontrib><creatorcontrib>Kreher, Bjoern</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal for computer assisted radiology and surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohleder, Maximilian</au><au>Thies, Mareike</au><au>Riedl, Sophie</au><au>Bullert, Benno</au><au>Gierse, Jula</au><au>Privalov, Maxim</au><au>Mandelka, Eric</au><au>Vetter, Sven</au><au>Maier, Andreas</au><au>Kreher, Bjoern</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An interactive task-based method for the avoidance of metal artifacts in CBCT</atitle><jtitle>International journal for computer assisted radiology and surgery</jtitle><stitle>Int J CARS</stitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>19</volume><issue>7</issue><spage>1399</spage><epage>1407</epage><pages>1399-1407</pages><issn>1861-6429</issn><issn>1861-6410</issn><eissn>1861-6429</eissn><abstract>Purpose Intraoperative cone-beam CT imaging enables 3D validation of implant positioning and fracture reduction for orthopedic and trauma surgeries. However, the emergence of metal artifacts, especially in the vicinity of metallic objects, severely degrades the clinical value of the imaging modality. In previous works, metal artifact avoidance (MAA) methods have been shown to reduce metal artifacts by adapting the scanning trajectory. Yet, these methods fail to translate to clinical practice due to remaining methodological constraints and missing workflow integration. Methods In this work, we propose a method to compute the spatial distribution and calibrated strengths of expected artifacts for a given tilted circular trajectory. By visualizing this as an overlay changing with the C-Arm’s tilt, we enable the clinician to interactively choose an optimal trajectory while factoring in the procedural context and clinical task. We then evaluate this method in a realistic human cadaver study and compare the achieved image quality to acquisitions optimized using global metrics. Results We assess the effectiveness of the compared methods by evaluation of image quality gradings of depicted pedicle screws. We find that both global metrics as well as the proposed visualization of artifact distribution enable a drastic improvement compared to standard non-tilted scans. Furthermore, the novel interactive visualization yields a significant improvement in subjective image quality compared to the state-of-the-art global metrics. Additionally we show that by formulating an imaging task, the proposed method allows to selectively optimize image quality and avoid artifacts in the region of interest. Conclusion We propose a method to spatially resolve predicted artifacts and provide a calibrated measure for artifact strength grading. This interactive MAA method proved practical and effective in reducing metal artifacts in the conducted cadaver study. We believe this study serves as a crucial step toward clinical application of an MAA system to improve image quality and enhance the clinical validation of implant placement.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>38780830</pmid><doi>10.1007/s11548-024-03103-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0003-3539-4839</orcidid><orcidid>https://orcid.org/0000-0002-1758-9056</orcidid><orcidid>https://orcid.org/0000-0002-7337-2783</orcidid><orcidid>https://orcid.org/0009-0009-4656-5705</orcidid><orcidid>https://orcid.org/0000-0001-5360-2054</orcidid><orcidid>https://orcid.org/0009-0004-2911-3444</orcidid><orcidid>https://orcid.org/0000-0002-9550-5284</orcidid><orcidid>https://orcid.org/0000-0002-1364-4337</orcidid><orcidid>https://orcid.org/0000-0002-3955-0339</orcidid><orcidid>https://orcid.org/0000-0001-8024-9276</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1861-6429
ispartof International journal for computer assisted radiology and surgery, 2024-07, Vol.19 (7), p.1399-1407
issn 1861-6429
1861-6410
1861-6429
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11230992
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Cadaver
Computer Imaging
Computer Science
Cone-Beam Computed Tomography - methods
Health Informatics
Humans
Imaging
Imaging, Three-Dimensional - methods
Medicine
Medicine & Public Health
Metals
Original
Original Article
Pattern Recognition and Graphics
Pedicle Screws
Radiology
Surgery
Vision
title An interactive task-based method for the avoidance of metal artifacts in CBCT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20interactive%20task-based%20method%20for%20the%20avoidance%20of%20metal%20artifacts%20in%20CBCT&rft.jtitle=International%20journal%20for%20computer%20assisted%20radiology%20and%20surgery&rft.au=Rohleder,%20Maximilian&rft.date=2024-07-01&rft.volume=19&rft.issue=7&rft.spage=1399&rft.epage=1407&rft.pages=1399-1407&rft.issn=1861-6429&rft.eissn=1861-6429&rft_id=info:doi/10.1007/s11548-024-03103-4&rft_dat=%3Cproquest_pubme%3E3059257984%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059257984&rft_id=info:pmid/38780830&rfr_iscdi=true