Data-driven imaging geometric recovery of ultrahigh resolution robotic micro-CT for in-vivo and other applications
We introduce an ultrahigh-resolution (50\mu m\) robotic micro-CT design for localized imaging of carotid plaques using robotic arms, cutting-edge detector, and machine learning technologies. To combat geometric error-induced artifacts in interior CT scans, we propose a data-driven geometry estimatio...
Gespeichert in:
Veröffentlicht in: | ArXiv.org 2024-06 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | ArXiv.org |
container_volume | |
creator | Li, Mengzhou Zan, Guibin Yun, Wenbin Uher, Josef Wen, John Wang, Ge |
description | We introduce an ultrahigh-resolution (50\mu m\) robotic micro-CT design for localized imaging of carotid plaques using robotic arms, cutting-edge detector, and machine learning technologies. To combat geometric error-induced artifacts in interior CT scans, we propose a data-driven geometry estimation method that maximizes the consistency between projection data and the reprojection counterparts of a reconstructed volume. Particularly, we use a normalized cross correlation metric to overcome the projection truncation effect. Our approach is validated on a robotic CT scan of a sacrificed mouse and a micro-CT phantom scan, both producing sharper images with finer details than that prior correction. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11230344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3077188991</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1124-c3f4d44f1718efdec62682dd8cbf4b7048590bc76a7aab91820e064c16a21c4d3</originalsourceid><addsrcrecordid>eNpVUMtOwzAQjBCIVqW_gHzkEsmvJs4JofIoUiUu5Rw5tpMYJd5gJ5H69xhRUDntamd2ZnYvkiVljKSCU3p51i-SdQgfGGOa5XSzYdfJgokiL7jYLBP_KEeZam9n45DtZWNdgxoDvRm9VcgbBbPxRwQ1mrrRy9Y2bZwG6KbRgkMeKhgjsbfKQ7o9oBo8si6d7QxIOo1gbI1Hchg6q-T3SrhJrmrZBbM-1VXy_vx02O7S_dvL6_Zhnw6EUJ4qVnPNeU1yIkytjcpoJqjWQlU1r3Ic4xe4UnkmcymrggiKDc64IpmkRHHNVsn9j-4wVb3RyriYvysHH8_0xxKkLf8jzrZlA3MZ7RlmnEeFu5OCh8_JhLHsbVCm66QzMIWS4TyGE0VBIvX23OzP5ffT7AuwqH88</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077188991</pqid></control><display><type>article</type><title>Data-driven imaging geometric recovery of ultrahigh resolution robotic micro-CT for in-vivo and other applications</title><source>Free E- Journals</source><creator>Li, Mengzhou ; Zan, Guibin ; Yun, Wenbin ; Uher, Josef ; Wen, John ; Wang, Ge</creator><creatorcontrib>Li, Mengzhou ; Zan, Guibin ; Yun, Wenbin ; Uher, Josef ; Wen, John ; Wang, Ge</creatorcontrib><description>We introduce an ultrahigh-resolution (50\mu m\) robotic micro-CT design for localized imaging of carotid plaques using robotic arms, cutting-edge detector, and machine learning technologies. To combat geometric error-induced artifacts in interior CT scans, we propose a data-driven geometry estimation method that maximizes the consistency between projection data and the reprojection counterparts of a reconstructed volume. Particularly, we use a normalized cross correlation metric to overcome the projection truncation effect. Our approach is validated on a robotic CT scan of a sacrificed mouse and a micro-CT phantom scan, both producing sharper images with finer details than that prior correction.</description><identifier>ISSN: 2331-8422</identifier><identifier>EISSN: 2331-8422</identifier><identifier>PMID: 38979485</identifier><language>eng</language><publisher>United States: Cornell University</publisher><ispartof>ArXiv.org, 2024-06</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38979485$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Mengzhou</creatorcontrib><creatorcontrib>Zan, Guibin</creatorcontrib><creatorcontrib>Yun, Wenbin</creatorcontrib><creatorcontrib>Uher, Josef</creatorcontrib><creatorcontrib>Wen, John</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><title>Data-driven imaging geometric recovery of ultrahigh resolution robotic micro-CT for in-vivo and other applications</title><title>ArXiv.org</title><addtitle>ArXiv</addtitle><description>We introduce an ultrahigh-resolution (50\mu m\) robotic micro-CT design for localized imaging of carotid plaques using robotic arms, cutting-edge detector, and machine learning technologies. To combat geometric error-induced artifacts in interior CT scans, we propose a data-driven geometry estimation method that maximizes the consistency between projection data and the reprojection counterparts of a reconstructed volume. Particularly, we use a normalized cross correlation metric to overcome the projection truncation effect. Our approach is validated on a robotic CT scan of a sacrificed mouse and a micro-CT phantom scan, both producing sharper images with finer details than that prior correction.</description><issn>2331-8422</issn><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVUMtOwzAQjBCIVqW_gHzkEsmvJs4JofIoUiUu5Rw5tpMYJd5gJ5H69xhRUDntamd2ZnYvkiVljKSCU3p51i-SdQgfGGOa5XSzYdfJgokiL7jYLBP_KEeZam9n45DtZWNdgxoDvRm9VcgbBbPxRwQ1mrrRy9Y2bZwG6KbRgkMeKhgjsbfKQ7o9oBo8si6d7QxIOo1gbI1Hchg6q-T3SrhJrmrZBbM-1VXy_vx02O7S_dvL6_Zhnw6EUJ4qVnPNeU1yIkytjcpoJqjWQlU1r3Ic4xe4UnkmcymrggiKDc64IpmkRHHNVsn9j-4wVb3RyriYvysHH8_0xxKkLf8jzrZlA3MZ7RlmnEeFu5OCh8_JhLHsbVCm66QzMIWS4TyGE0VBIvX23OzP5ffT7AuwqH88</recordid><startdate>20240626</startdate><enddate>20240626</enddate><creator>Li, Mengzhou</creator><creator>Zan, Guibin</creator><creator>Yun, Wenbin</creator><creator>Uher, Josef</creator><creator>Wen, John</creator><creator>Wang, Ge</creator><general>Cornell University</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240626</creationdate><title>Data-driven imaging geometric recovery of ultrahigh resolution robotic micro-CT for in-vivo and other applications</title><author>Li, Mengzhou ; Zan, Guibin ; Yun, Wenbin ; Uher, Josef ; Wen, John ; Wang, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1124-c3f4d44f1718efdec62682dd8cbf4b7048590bc76a7aab91820e064c16a21c4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Li, Mengzhou</creatorcontrib><creatorcontrib>Zan, Guibin</creatorcontrib><creatorcontrib>Yun, Wenbin</creatorcontrib><creatorcontrib>Uher, Josef</creatorcontrib><creatorcontrib>Wen, John</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ArXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mengzhou</au><au>Zan, Guibin</au><au>Yun, Wenbin</au><au>Uher, Josef</au><au>Wen, John</au><au>Wang, Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven imaging geometric recovery of ultrahigh resolution robotic micro-CT for in-vivo and other applications</atitle><jtitle>ArXiv.org</jtitle><addtitle>ArXiv</addtitle><date>2024-06-26</date><risdate>2024</risdate><issn>2331-8422</issn><eissn>2331-8422</eissn><abstract>We introduce an ultrahigh-resolution (50\mu m\) robotic micro-CT design for localized imaging of carotid plaques using robotic arms, cutting-edge detector, and machine learning technologies. To combat geometric error-induced artifacts in interior CT scans, we propose a data-driven geometry estimation method that maximizes the consistency between projection data and the reprojection counterparts of a reconstructed volume. Particularly, we use a normalized cross correlation metric to overcome the projection truncation effect. Our approach is validated on a robotic CT scan of a sacrificed mouse and a micro-CT phantom scan, both producing sharper images with finer details than that prior correction.</abstract><cop>United States</cop><pub>Cornell University</pub><pmid>38979485</pmid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2331-8422 |
ispartof | ArXiv.org, 2024-06 |
issn | 2331-8422 2331-8422 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11230344 |
source | Free E- Journals |
title | Data-driven imaging geometric recovery of ultrahigh resolution robotic micro-CT for in-vivo and other applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20imaging%20geometric%20recovery%20of%20ultrahigh%20resolution%20robotic%20micro-CT%20for%20in-vivo%20and%20other%20applications&rft.jtitle=ArXiv.org&rft.au=Li,%20Mengzhou&rft.date=2024-06-26&rft.issn=2331-8422&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E3077188991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3077188991&rft_id=info:pmid/38979485&rfr_iscdi=true |