Carbon-nanotube field-effect transistors for resolving single-molecule aptamer–ligand binding kinetics

Small molecules such as neurotransmitters are critical for biochemical functions in living systems. While conventional ultraviolet–visible spectroscopy and mass spectrometry lack portability and are unsuitable for time-resolved measurements in situ, techniques such as amperometry and traditional fie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2024-05, Vol.19 (5), p.660-667
Hauptverfasser: Lee, Yoonhee, Buchheim, Jakob, Hellenkamp, Björn, Lynall, David, Yang, Kyungae, Young, Erik F., Penkov, Boyan, Sia, Samuel, Stojanovic, Milan N., Shepard, Kenneth L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 667
container_issue 5
container_start_page 660
container_title Nature nanotechnology
container_volume 19
creator Lee, Yoonhee
Buchheim, Jakob
Hellenkamp, Björn
Lynall, David
Yang, Kyungae
Young, Erik F.
Penkov, Boyan
Sia, Samuel
Stojanovic, Milan N.
Shepard, Kenneth L.
description Small molecules such as neurotransmitters are critical for biochemical functions in living systems. While conventional ultraviolet–visible spectroscopy and mass spectrometry lack portability and are unsuitable for time-resolved measurements in situ, techniques such as amperometry and traditional field-effect detection require a large ensemble of molecules to reach detectable signal levels. Here we demonstrate the potential of carbon-nanotube-based single-molecule field-effect transistors (smFETs), which can detect the charge on a single molecule, as a new platform for recognizing and assaying small molecules. smFETs are formed by the covalent attachment of a probe molecule, in our case a DNA aptamer, to a carbon nanotube. Conformation changes on binding are manifest as discrete changes in the nanotube electrical conductance. By monitoring the kinetics of conformational changes in a binding aptamer, we show that smFETs can detect and quantify serotonin at the single-molecule level, providing unique insights into the dynamics of the aptamer–ligand system. In particular, we show the involvement of G-quadruplex formation and the disruption of the native hairpin structure in the conformational changes of the serotonin–aptamer complex. The smFET is a label-free approach to analysing molecular interactions at the single-molecule level with high temporal resolution, providing additional insights into complex biological processes. Resolving interactions of negligibly charged or neutral small molecules with their binding partners in a label-free manner is challenging. Here the authors present a single-molecule carbon-nanotube biosensor device for capturing aptamer–neurotransmitter kinetics at high temporal resolution, uncovering four-state structural transitions.
doi_str_mv 10.1038/s41565-023-01591-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11229667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056951885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-de9f80ba7ef17920ad3e70fb738275bb582c7ba8efea8fe2d2eff0fb80796c903</originalsourceid><addsrcrecordid>eNp9kb1uFDEUhUcIRELgBSjQSDQ0Jv5Zj-0KoRUJSJHSJLVle643Dh57sWcipeMdeEOeBC8blp-CxrZ0Pp97j07XvST4LcFMntYV4QNHmDKECVcE4UfdMREriRhT_PHhLcVR96zWW4w5VXT1tDtikjLGpTzubtam2JxQMinPi4XeB4gjAu_Bzf1cTKqhzrnU3ufSF6g53oW06Ws7IqApR3BLhN5sZzNB-f71Wwwbk8behjTuwM8hwRxcfd498SZWePFwn3TXZx-u1h_RxeX5p_X7C-TaUjMaQXmJrRHgiVAUm5GBwN6KpgpuLZfUCWskeDDSAx1pW7XpEgs1OIXZSfdu77td7ASjg9RCRL0tYTLlXmcT9N9KCjd6k-80IZSqYRDN4c2DQ8lfFqiznkJ1EKNJkJeqqSLDCnOJh4a-_ge9zUtJLZ9mmA-KEyl5o-ieciXXWsAftiFY75rU-yZ1a1L_bFLvcrz6M8fhy6_qGsD2QG1S2kD5Pfs_tj8AYnauHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056951885</pqid></control><display><type>article</type><title>Carbon-nanotube field-effect transistors for resolving single-molecule aptamer–ligand binding kinetics</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Lee, Yoonhee ; Buchheim, Jakob ; Hellenkamp, Björn ; Lynall, David ; Yang, Kyungae ; Young, Erik F. ; Penkov, Boyan ; Sia, Samuel ; Stojanovic, Milan N. ; Shepard, Kenneth L.</creator><creatorcontrib>Lee, Yoonhee ; Buchheim, Jakob ; Hellenkamp, Björn ; Lynall, David ; Yang, Kyungae ; Young, Erik F. ; Penkov, Boyan ; Sia, Samuel ; Stojanovic, Milan N. ; Shepard, Kenneth L.</creatorcontrib><description>Small molecules such as neurotransmitters are critical for biochemical functions in living systems. While conventional ultraviolet–visible spectroscopy and mass spectrometry lack portability and are unsuitable for time-resolved measurements in situ, techniques such as amperometry and traditional field-effect detection require a large ensemble of molecules to reach detectable signal levels. Here we demonstrate the potential of carbon-nanotube-based single-molecule field-effect transistors (smFETs), which can detect the charge on a single molecule, as a new platform for recognizing and assaying small molecules. smFETs are formed by the covalent attachment of a probe molecule, in our case a DNA aptamer, to a carbon nanotube. Conformation changes on binding are manifest as discrete changes in the nanotube electrical conductance. By monitoring the kinetics of conformational changes in a binding aptamer, we show that smFETs can detect and quantify serotonin at the single-molecule level, providing unique insights into the dynamics of the aptamer–ligand system. In particular, we show the involvement of G-quadruplex formation and the disruption of the native hairpin structure in the conformational changes of the serotonin–aptamer complex. The smFET is a label-free approach to analysing molecular interactions at the single-molecule level with high temporal resolution, providing additional insights into complex biological processes. Resolving interactions of negligibly charged or neutral small molecules with their binding partners in a label-free manner is challenging. Here the authors present a single-molecule carbon-nanotube biosensor device for capturing aptamer–neurotransmitter kinetics at high temporal resolution, uncovering four-state structural transitions.</description><identifier>ISSN: 1748-3387</identifier><identifier>ISSN: 1748-3395</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-023-01591-0</identifier><identifier>PMID: 38233588</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/61/350/1057 ; 631/61/350/59 ; 639/638/11/511 ; 639/925/350/1057 ; 639/925/350/59 ; Aptamers ; Aptamers, Nucleotide - chemistry ; Binding ; Biological activity ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensors ; Carbon ; Carbon nanotubes ; Chemistry and Materials Science ; Conformation ; Electrical measurement ; Electrical resistivity ; Field effect transistors ; Kinetics ; Labels ; Ligands ; Mass spectrometry ; Mass spectroscopy ; Materials Science ; Molecular interactions ; Nanotechnology ; Nanotechnology and Microengineering ; Nanotubes, Carbon - chemistry ; Neurotransmitters ; Semiconductor devices ; Serotonin ; Serotonin - chemistry ; Serotonin - metabolism ; Temporal resolution ; Transistors ; Transistors, Electronic</subject><ispartof>Nature nanotechnology, 2024-05, Vol.19 (5), p.660-667</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c382t-de9f80ba7ef17920ad3e70fb738275bb582c7ba8efea8fe2d2eff0fb80796c903</cites><orcidid>0000-0002-8256-0030 ; 0000-0001-7623-1452 ; 0000-0003-0680-7668 ; 0000-0003-0665-6775 ; 0000-0001-5575-4107 ; 0000-0003-0230-3542 ; 0000-0002-7980-1251</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38233588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Yoonhee</creatorcontrib><creatorcontrib>Buchheim, Jakob</creatorcontrib><creatorcontrib>Hellenkamp, Björn</creatorcontrib><creatorcontrib>Lynall, David</creatorcontrib><creatorcontrib>Yang, Kyungae</creatorcontrib><creatorcontrib>Young, Erik F.</creatorcontrib><creatorcontrib>Penkov, Boyan</creatorcontrib><creatorcontrib>Sia, Samuel</creatorcontrib><creatorcontrib>Stojanovic, Milan N.</creatorcontrib><creatorcontrib>Shepard, Kenneth L.</creatorcontrib><title>Carbon-nanotube field-effect transistors for resolving single-molecule aptamer–ligand binding kinetics</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Small molecules such as neurotransmitters are critical for biochemical functions in living systems. While conventional ultraviolet–visible spectroscopy and mass spectrometry lack portability and are unsuitable for time-resolved measurements in situ, techniques such as amperometry and traditional field-effect detection require a large ensemble of molecules to reach detectable signal levels. Here we demonstrate the potential of carbon-nanotube-based single-molecule field-effect transistors (smFETs), which can detect the charge on a single molecule, as a new platform for recognizing and assaying small molecules. smFETs are formed by the covalent attachment of a probe molecule, in our case a DNA aptamer, to a carbon nanotube. Conformation changes on binding are manifest as discrete changes in the nanotube electrical conductance. By monitoring the kinetics of conformational changes in a binding aptamer, we show that smFETs can detect and quantify serotonin at the single-molecule level, providing unique insights into the dynamics of the aptamer–ligand system. In particular, we show the involvement of G-quadruplex formation and the disruption of the native hairpin structure in the conformational changes of the serotonin–aptamer complex. The smFET is a label-free approach to analysing molecular interactions at the single-molecule level with high temporal resolution, providing additional insights into complex biological processes. Resolving interactions of negligibly charged or neutral small molecules with their binding partners in a label-free manner is challenging. Here the authors present a single-molecule carbon-nanotube biosensor device for capturing aptamer–neurotransmitter kinetics at high temporal resolution, uncovering four-state structural transitions.</description><subject>631/61/350/1057</subject><subject>631/61/350/59</subject><subject>639/638/11/511</subject><subject>639/925/350/1057</subject><subject>639/925/350/59</subject><subject>Aptamers</subject><subject>Aptamers, Nucleotide - chemistry</subject><subject>Binding</subject><subject>Biological activity</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Chemistry and Materials Science</subject><subject>Conformation</subject><subject>Electrical measurement</subject><subject>Electrical resistivity</subject><subject>Field effect transistors</subject><subject>Kinetics</subject><subject>Labels</subject><subject>Ligands</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Materials Science</subject><subject>Molecular interactions</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Neurotransmitters</subject><subject>Semiconductor devices</subject><subject>Serotonin</subject><subject>Serotonin - chemistry</subject><subject>Serotonin - metabolism</subject><subject>Temporal resolution</subject><subject>Transistors</subject><subject>Transistors, Electronic</subject><issn>1748-3387</issn><issn>1748-3395</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kb1uFDEUhUcIRELgBSjQSDQ0Jv5Zj-0KoRUJSJHSJLVle643Dh57sWcipeMdeEOeBC8blp-CxrZ0Pp97j07XvST4LcFMntYV4QNHmDKECVcE4UfdMREriRhT_PHhLcVR96zWW4w5VXT1tDtikjLGpTzubtam2JxQMinPi4XeB4gjAu_Bzf1cTKqhzrnU3ufSF6g53oW06Ws7IqApR3BLhN5sZzNB-f71Wwwbk8behjTuwM8hwRxcfd498SZWePFwn3TXZx-u1h_RxeX5p_X7C-TaUjMaQXmJrRHgiVAUm5GBwN6KpgpuLZfUCWskeDDSAx1pW7XpEgs1OIXZSfdu77td7ASjg9RCRL0tYTLlXmcT9N9KCjd6k-80IZSqYRDN4c2DQ8lfFqiznkJ1EKNJkJeqqSLDCnOJh4a-_ge9zUtJLZ9mmA-KEyl5o-ieciXXWsAftiFY75rU-yZ1a1L_bFLvcrz6M8fhy6_qGsD2QG1S2kD5Pfs_tj8AYnauHQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Lee, Yoonhee</creator><creator>Buchheim, Jakob</creator><creator>Hellenkamp, Björn</creator><creator>Lynall, David</creator><creator>Yang, Kyungae</creator><creator>Young, Erik F.</creator><creator>Penkov, Boyan</creator><creator>Sia, Samuel</creator><creator>Stojanovic, Milan N.</creator><creator>Shepard, Kenneth L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8256-0030</orcidid><orcidid>https://orcid.org/0000-0001-7623-1452</orcidid><orcidid>https://orcid.org/0000-0003-0680-7668</orcidid><orcidid>https://orcid.org/0000-0003-0665-6775</orcidid><orcidid>https://orcid.org/0000-0001-5575-4107</orcidid><orcidid>https://orcid.org/0000-0003-0230-3542</orcidid><orcidid>https://orcid.org/0000-0002-7980-1251</orcidid></search><sort><creationdate>20240501</creationdate><title>Carbon-nanotube field-effect transistors for resolving single-molecule aptamer–ligand binding kinetics</title><author>Lee, Yoonhee ; Buchheim, Jakob ; Hellenkamp, Björn ; Lynall, David ; Yang, Kyungae ; Young, Erik F. ; Penkov, Boyan ; Sia, Samuel ; Stojanovic, Milan N. ; Shepard, Kenneth L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-de9f80ba7ef17920ad3e70fb738275bb582c7ba8efea8fe2d2eff0fb80796c903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/61/350/1057</topic><topic>631/61/350/59</topic><topic>639/638/11/511</topic><topic>639/925/350/1057</topic><topic>639/925/350/59</topic><topic>Aptamers</topic><topic>Aptamers, Nucleotide - chemistry</topic><topic>Binding</topic><topic>Biological activity</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Chemistry and Materials Science</topic><topic>Conformation</topic><topic>Electrical measurement</topic><topic>Electrical resistivity</topic><topic>Field effect transistors</topic><topic>Kinetics</topic><topic>Labels</topic><topic>Ligands</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Materials Science</topic><topic>Molecular interactions</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Neurotransmitters</topic><topic>Semiconductor devices</topic><topic>Serotonin</topic><topic>Serotonin - chemistry</topic><topic>Serotonin - metabolism</topic><topic>Temporal resolution</topic><topic>Transistors</topic><topic>Transistors, Electronic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yoonhee</creatorcontrib><creatorcontrib>Buchheim, Jakob</creatorcontrib><creatorcontrib>Hellenkamp, Björn</creatorcontrib><creatorcontrib>Lynall, David</creatorcontrib><creatorcontrib>Yang, Kyungae</creatorcontrib><creatorcontrib>Young, Erik F.</creatorcontrib><creatorcontrib>Penkov, Boyan</creatorcontrib><creatorcontrib>Sia, Samuel</creatorcontrib><creatorcontrib>Stojanovic, Milan N.</creatorcontrib><creatorcontrib>Shepard, Kenneth L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Yoonhee</au><au>Buchheim, Jakob</au><au>Hellenkamp, Björn</au><au>Lynall, David</au><au>Yang, Kyungae</au><au>Young, Erik F.</au><au>Penkov, Boyan</au><au>Sia, Samuel</au><au>Stojanovic, Milan N.</au><au>Shepard, Kenneth L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon-nanotube field-effect transistors for resolving single-molecule aptamer–ligand binding kinetics</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>19</volume><issue>5</issue><spage>660</spage><epage>667</epage><pages>660-667</pages><issn>1748-3387</issn><issn>1748-3395</issn><eissn>1748-3395</eissn><abstract>Small molecules such as neurotransmitters are critical for biochemical functions in living systems. While conventional ultraviolet–visible spectroscopy and mass spectrometry lack portability and are unsuitable for time-resolved measurements in situ, techniques such as amperometry and traditional field-effect detection require a large ensemble of molecules to reach detectable signal levels. Here we demonstrate the potential of carbon-nanotube-based single-molecule field-effect transistors (smFETs), which can detect the charge on a single molecule, as a new platform for recognizing and assaying small molecules. smFETs are formed by the covalent attachment of a probe molecule, in our case a DNA aptamer, to a carbon nanotube. Conformation changes on binding are manifest as discrete changes in the nanotube electrical conductance. By monitoring the kinetics of conformational changes in a binding aptamer, we show that smFETs can detect and quantify serotonin at the single-molecule level, providing unique insights into the dynamics of the aptamer–ligand system. In particular, we show the involvement of G-quadruplex formation and the disruption of the native hairpin structure in the conformational changes of the serotonin–aptamer complex. The smFET is a label-free approach to analysing molecular interactions at the single-molecule level with high temporal resolution, providing additional insights into complex biological processes. Resolving interactions of negligibly charged or neutral small molecules with their binding partners in a label-free manner is challenging. Here the authors present a single-molecule carbon-nanotube biosensor device for capturing aptamer–neurotransmitter kinetics at high temporal resolution, uncovering four-state structural transitions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38233588</pmid><doi>10.1038/s41565-023-01591-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8256-0030</orcidid><orcidid>https://orcid.org/0000-0001-7623-1452</orcidid><orcidid>https://orcid.org/0000-0003-0680-7668</orcidid><orcidid>https://orcid.org/0000-0003-0665-6775</orcidid><orcidid>https://orcid.org/0000-0001-5575-4107</orcidid><orcidid>https://orcid.org/0000-0003-0230-3542</orcidid><orcidid>https://orcid.org/0000-0002-7980-1251</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2024-05, Vol.19 (5), p.660-667
issn 1748-3387
1748-3395
1748-3395
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11229667
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/61/350/1057
631/61/350/59
639/638/11/511
639/925/350/1057
639/925/350/59
Aptamers
Aptamers, Nucleotide - chemistry
Binding
Biological activity
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Biosensors
Carbon
Carbon nanotubes
Chemistry and Materials Science
Conformation
Electrical measurement
Electrical resistivity
Field effect transistors
Kinetics
Labels
Ligands
Mass spectrometry
Mass spectroscopy
Materials Science
Molecular interactions
Nanotechnology
Nanotechnology and Microengineering
Nanotubes, Carbon - chemistry
Neurotransmitters
Semiconductor devices
Serotonin
Serotonin - chemistry
Serotonin - metabolism
Temporal resolution
Transistors
Transistors, Electronic
title Carbon-nanotube field-effect transistors for resolving single-molecule aptamer–ligand binding kinetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon-nanotube%20field-effect%20transistors%20for%20resolving%20single-molecule%20aptamer%E2%80%93ligand%20binding%20kinetics&rft.jtitle=Nature%20nanotechnology&rft.au=Lee,%20Yoonhee&rft.date=2024-05-01&rft.volume=19&rft.issue=5&rft.spage=660&rft.epage=667&rft.pages=660-667&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-023-01591-0&rft_dat=%3Cproquest_pubme%3E3056951885%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056951885&rft_id=info:pmid/38233588&rfr_iscdi=true