Carbon-nanotube field-effect transistors for resolving single-molecule aptamer–ligand binding kinetics
Small molecules such as neurotransmitters are critical for biochemical functions in living systems. While conventional ultraviolet–visible spectroscopy and mass spectrometry lack portability and are unsuitable for time-resolved measurements in situ, techniques such as amperometry and traditional fie...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2024-05, Vol.19 (5), p.660-667 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 667 |
---|---|
container_issue | 5 |
container_start_page | 660 |
container_title | Nature nanotechnology |
container_volume | 19 |
creator | Lee, Yoonhee Buchheim, Jakob Hellenkamp, Björn Lynall, David Yang, Kyungae Young, Erik F. Penkov, Boyan Sia, Samuel Stojanovic, Milan N. Shepard, Kenneth L. |
description | Small molecules such as neurotransmitters are critical for biochemical functions in living systems. While conventional ultraviolet–visible spectroscopy and mass spectrometry lack portability and are unsuitable for time-resolved measurements in situ, techniques such as amperometry and traditional field-effect detection require a large ensemble of molecules to reach detectable signal levels. Here we demonstrate the potential of carbon-nanotube-based single-molecule field-effect transistors (smFETs), which can detect the charge on a single molecule, as a new platform for recognizing and assaying small molecules. smFETs are formed by the covalent attachment of a probe molecule, in our case a DNA aptamer, to a carbon nanotube. Conformation changes on binding are manifest as discrete changes in the nanotube electrical conductance. By monitoring the kinetics of conformational changes in a binding aptamer, we show that smFETs can detect and quantify serotonin at the single-molecule level, providing unique insights into the dynamics of the aptamer–ligand system. In particular, we show the involvement of G-quadruplex formation and the disruption of the native hairpin structure in the conformational changes of the serotonin–aptamer complex. The smFET is a label-free approach to analysing molecular interactions at the single-molecule level with high temporal resolution, providing additional insights into complex biological processes.
Resolving interactions of negligibly charged or neutral small molecules with their binding partners in a label-free manner is challenging. Here the authors present a single-molecule carbon-nanotube biosensor device for capturing aptamer–neurotransmitter kinetics at high temporal resolution, uncovering four-state structural transitions. |
doi_str_mv | 10.1038/s41565-023-01591-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11229667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056951885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-de9f80ba7ef17920ad3e70fb738275bb582c7ba8efea8fe2d2eff0fb80796c903</originalsourceid><addsrcrecordid>eNp9kb1uFDEUhUcIRELgBSjQSDQ0Jv5Zj-0KoRUJSJHSJLVle643Dh57sWcipeMdeEOeBC8blp-CxrZ0Pp97j07XvST4LcFMntYV4QNHmDKECVcE4UfdMREriRhT_PHhLcVR96zWW4w5VXT1tDtikjLGpTzubtam2JxQMinPi4XeB4gjAu_Bzf1cTKqhzrnU3ufSF6g53oW06Ws7IqApR3BLhN5sZzNB-f71Wwwbk8behjTuwM8hwRxcfd498SZWePFwn3TXZx-u1h_RxeX5p_X7C-TaUjMaQXmJrRHgiVAUm5GBwN6KpgpuLZfUCWskeDDSAx1pW7XpEgs1OIXZSfdu77td7ASjg9RCRL0tYTLlXmcT9N9KCjd6k-80IZSqYRDN4c2DQ8lfFqiznkJ1EKNJkJeqqSLDCnOJh4a-_ge9zUtJLZ9mmA-KEyl5o-ieciXXWsAftiFY75rU-yZ1a1L_bFLvcrz6M8fhy6_qGsD2QG1S2kD5Pfs_tj8AYnauHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056951885</pqid></control><display><type>article</type><title>Carbon-nanotube field-effect transistors for resolving single-molecule aptamer–ligand binding kinetics</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Lee, Yoonhee ; Buchheim, Jakob ; Hellenkamp, Björn ; Lynall, David ; Yang, Kyungae ; Young, Erik F. ; Penkov, Boyan ; Sia, Samuel ; Stojanovic, Milan N. ; Shepard, Kenneth L.</creator><creatorcontrib>Lee, Yoonhee ; Buchheim, Jakob ; Hellenkamp, Björn ; Lynall, David ; Yang, Kyungae ; Young, Erik F. ; Penkov, Boyan ; Sia, Samuel ; Stojanovic, Milan N. ; Shepard, Kenneth L.</creatorcontrib><description>Small molecules such as neurotransmitters are critical for biochemical functions in living systems. While conventional ultraviolet–visible spectroscopy and mass spectrometry lack portability and are unsuitable for time-resolved measurements in situ, techniques such as amperometry and traditional field-effect detection require a large ensemble of molecules to reach detectable signal levels. Here we demonstrate the potential of carbon-nanotube-based single-molecule field-effect transistors (smFETs), which can detect the charge on a single molecule, as a new platform for recognizing and assaying small molecules. smFETs are formed by the covalent attachment of a probe molecule, in our case a DNA aptamer, to a carbon nanotube. Conformation changes on binding are manifest as discrete changes in the nanotube electrical conductance. By monitoring the kinetics of conformational changes in a binding aptamer, we show that smFETs can detect and quantify serotonin at the single-molecule level, providing unique insights into the dynamics of the aptamer–ligand system. In particular, we show the involvement of G-quadruplex formation and the disruption of the native hairpin structure in the conformational changes of the serotonin–aptamer complex. The smFET is a label-free approach to analysing molecular interactions at the single-molecule level with high temporal resolution, providing additional insights into complex biological processes.
Resolving interactions of negligibly charged or neutral small molecules with their binding partners in a label-free manner is challenging. Here the authors present a single-molecule carbon-nanotube biosensor device for capturing aptamer–neurotransmitter kinetics at high temporal resolution, uncovering four-state structural transitions.</description><identifier>ISSN: 1748-3387</identifier><identifier>ISSN: 1748-3395</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-023-01591-0</identifier><identifier>PMID: 38233588</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/61/350/1057 ; 631/61/350/59 ; 639/638/11/511 ; 639/925/350/1057 ; 639/925/350/59 ; Aptamers ; Aptamers, Nucleotide - chemistry ; Binding ; Biological activity ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensors ; Carbon ; Carbon nanotubes ; Chemistry and Materials Science ; Conformation ; Electrical measurement ; Electrical resistivity ; Field effect transistors ; Kinetics ; Labels ; Ligands ; Mass spectrometry ; Mass spectroscopy ; Materials Science ; Molecular interactions ; Nanotechnology ; Nanotechnology and Microengineering ; Nanotubes, Carbon - chemistry ; Neurotransmitters ; Semiconductor devices ; Serotonin ; Serotonin - chemistry ; Serotonin - metabolism ; Temporal resolution ; Transistors ; Transistors, Electronic</subject><ispartof>Nature nanotechnology, 2024-05, Vol.19 (5), p.660-667</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c382t-de9f80ba7ef17920ad3e70fb738275bb582c7ba8efea8fe2d2eff0fb80796c903</cites><orcidid>0000-0002-8256-0030 ; 0000-0001-7623-1452 ; 0000-0003-0680-7668 ; 0000-0003-0665-6775 ; 0000-0001-5575-4107 ; 0000-0003-0230-3542 ; 0000-0002-7980-1251</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38233588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Yoonhee</creatorcontrib><creatorcontrib>Buchheim, Jakob</creatorcontrib><creatorcontrib>Hellenkamp, Björn</creatorcontrib><creatorcontrib>Lynall, David</creatorcontrib><creatorcontrib>Yang, Kyungae</creatorcontrib><creatorcontrib>Young, Erik F.</creatorcontrib><creatorcontrib>Penkov, Boyan</creatorcontrib><creatorcontrib>Sia, Samuel</creatorcontrib><creatorcontrib>Stojanovic, Milan N.</creatorcontrib><creatorcontrib>Shepard, Kenneth L.</creatorcontrib><title>Carbon-nanotube field-effect transistors for resolving single-molecule aptamer–ligand binding kinetics</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Small molecules such as neurotransmitters are critical for biochemical functions in living systems. While conventional ultraviolet–visible spectroscopy and mass spectrometry lack portability and are unsuitable for time-resolved measurements in situ, techniques such as amperometry and traditional field-effect detection require a large ensemble of molecules to reach detectable signal levels. Here we demonstrate the potential of carbon-nanotube-based single-molecule field-effect transistors (smFETs), which can detect the charge on a single molecule, as a new platform for recognizing and assaying small molecules. smFETs are formed by the covalent attachment of a probe molecule, in our case a DNA aptamer, to a carbon nanotube. Conformation changes on binding are manifest as discrete changes in the nanotube electrical conductance. By monitoring the kinetics of conformational changes in a binding aptamer, we show that smFETs can detect and quantify serotonin at the single-molecule level, providing unique insights into the dynamics of the aptamer–ligand system. In particular, we show the involvement of G-quadruplex formation and the disruption of the native hairpin structure in the conformational changes of the serotonin–aptamer complex. The smFET is a label-free approach to analysing molecular interactions at the single-molecule level with high temporal resolution, providing additional insights into complex biological processes.
Resolving interactions of negligibly charged or neutral small molecules with their binding partners in a label-free manner is challenging. Here the authors present a single-molecule carbon-nanotube biosensor device for capturing aptamer–neurotransmitter kinetics at high temporal resolution, uncovering four-state structural transitions.</description><subject>631/61/350/1057</subject><subject>631/61/350/59</subject><subject>639/638/11/511</subject><subject>639/925/350/1057</subject><subject>639/925/350/59</subject><subject>Aptamers</subject><subject>Aptamers, Nucleotide - chemistry</subject><subject>Binding</subject><subject>Biological activity</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Chemistry and Materials Science</subject><subject>Conformation</subject><subject>Electrical measurement</subject><subject>Electrical resistivity</subject><subject>Field effect transistors</subject><subject>Kinetics</subject><subject>Labels</subject><subject>Ligands</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Materials Science</subject><subject>Molecular interactions</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Neurotransmitters</subject><subject>Semiconductor devices</subject><subject>Serotonin</subject><subject>Serotonin - chemistry</subject><subject>Serotonin - metabolism</subject><subject>Temporal resolution</subject><subject>Transistors</subject><subject>Transistors, Electronic</subject><issn>1748-3387</issn><issn>1748-3395</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kb1uFDEUhUcIRELgBSjQSDQ0Jv5Zj-0KoRUJSJHSJLVle643Dh57sWcipeMdeEOeBC8blp-CxrZ0Pp97j07XvST4LcFMntYV4QNHmDKECVcE4UfdMREriRhT_PHhLcVR96zWW4w5VXT1tDtikjLGpTzubtam2JxQMinPi4XeB4gjAu_Bzf1cTKqhzrnU3ufSF6g53oW06Ws7IqApR3BLhN5sZzNB-f71Wwwbk8behjTuwM8hwRxcfd498SZWePFwn3TXZx-u1h_RxeX5p_X7C-TaUjMaQXmJrRHgiVAUm5GBwN6KpgpuLZfUCWskeDDSAx1pW7XpEgs1OIXZSfdu77td7ASjg9RCRL0tYTLlXmcT9N9KCjd6k-80IZSqYRDN4c2DQ8lfFqiznkJ1EKNJkJeqqSLDCnOJh4a-_ge9zUtJLZ9mmA-KEyl5o-ieciXXWsAftiFY75rU-yZ1a1L_bFLvcrz6M8fhy6_qGsD2QG1S2kD5Pfs_tj8AYnauHQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Lee, Yoonhee</creator><creator>Buchheim, Jakob</creator><creator>Hellenkamp, Björn</creator><creator>Lynall, David</creator><creator>Yang, Kyungae</creator><creator>Young, Erik F.</creator><creator>Penkov, Boyan</creator><creator>Sia, Samuel</creator><creator>Stojanovic, Milan N.</creator><creator>Shepard, Kenneth L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8256-0030</orcidid><orcidid>https://orcid.org/0000-0001-7623-1452</orcidid><orcidid>https://orcid.org/0000-0003-0680-7668</orcidid><orcidid>https://orcid.org/0000-0003-0665-6775</orcidid><orcidid>https://orcid.org/0000-0001-5575-4107</orcidid><orcidid>https://orcid.org/0000-0003-0230-3542</orcidid><orcidid>https://orcid.org/0000-0002-7980-1251</orcidid></search><sort><creationdate>20240501</creationdate><title>Carbon-nanotube field-effect transistors for resolving single-molecule aptamer–ligand binding kinetics</title><author>Lee, Yoonhee ; Buchheim, Jakob ; Hellenkamp, Björn ; Lynall, David ; Yang, Kyungae ; Young, Erik F. ; Penkov, Boyan ; Sia, Samuel ; Stojanovic, Milan N. ; Shepard, Kenneth L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-de9f80ba7ef17920ad3e70fb738275bb582c7ba8efea8fe2d2eff0fb80796c903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/61/350/1057</topic><topic>631/61/350/59</topic><topic>639/638/11/511</topic><topic>639/925/350/1057</topic><topic>639/925/350/59</topic><topic>Aptamers</topic><topic>Aptamers, Nucleotide - chemistry</topic><topic>Binding</topic><topic>Biological activity</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Chemistry and Materials Science</topic><topic>Conformation</topic><topic>Electrical measurement</topic><topic>Electrical resistivity</topic><topic>Field effect transistors</topic><topic>Kinetics</topic><topic>Labels</topic><topic>Ligands</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Materials Science</topic><topic>Molecular interactions</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Neurotransmitters</topic><topic>Semiconductor devices</topic><topic>Serotonin</topic><topic>Serotonin - chemistry</topic><topic>Serotonin - metabolism</topic><topic>Temporal resolution</topic><topic>Transistors</topic><topic>Transistors, Electronic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yoonhee</creatorcontrib><creatorcontrib>Buchheim, Jakob</creatorcontrib><creatorcontrib>Hellenkamp, Björn</creatorcontrib><creatorcontrib>Lynall, David</creatorcontrib><creatorcontrib>Yang, Kyungae</creatorcontrib><creatorcontrib>Young, Erik F.</creatorcontrib><creatorcontrib>Penkov, Boyan</creatorcontrib><creatorcontrib>Sia, Samuel</creatorcontrib><creatorcontrib>Stojanovic, Milan N.</creatorcontrib><creatorcontrib>Shepard, Kenneth L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Yoonhee</au><au>Buchheim, Jakob</au><au>Hellenkamp, Björn</au><au>Lynall, David</au><au>Yang, Kyungae</au><au>Young, Erik F.</au><au>Penkov, Boyan</au><au>Sia, Samuel</au><au>Stojanovic, Milan N.</au><au>Shepard, Kenneth L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon-nanotube field-effect transistors for resolving single-molecule aptamer–ligand binding kinetics</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>19</volume><issue>5</issue><spage>660</spage><epage>667</epage><pages>660-667</pages><issn>1748-3387</issn><issn>1748-3395</issn><eissn>1748-3395</eissn><abstract>Small molecules such as neurotransmitters are critical for biochemical functions in living systems. While conventional ultraviolet–visible spectroscopy and mass spectrometry lack portability and are unsuitable for time-resolved measurements in situ, techniques such as amperometry and traditional field-effect detection require a large ensemble of molecules to reach detectable signal levels. Here we demonstrate the potential of carbon-nanotube-based single-molecule field-effect transistors (smFETs), which can detect the charge on a single molecule, as a new platform for recognizing and assaying small molecules. smFETs are formed by the covalent attachment of a probe molecule, in our case a DNA aptamer, to a carbon nanotube. Conformation changes on binding are manifest as discrete changes in the nanotube electrical conductance. By monitoring the kinetics of conformational changes in a binding aptamer, we show that smFETs can detect and quantify serotonin at the single-molecule level, providing unique insights into the dynamics of the aptamer–ligand system. In particular, we show the involvement of G-quadruplex formation and the disruption of the native hairpin structure in the conformational changes of the serotonin–aptamer complex. The smFET is a label-free approach to analysing molecular interactions at the single-molecule level with high temporal resolution, providing additional insights into complex biological processes.
Resolving interactions of negligibly charged or neutral small molecules with their binding partners in a label-free manner is challenging. Here the authors present a single-molecule carbon-nanotube biosensor device for capturing aptamer–neurotransmitter kinetics at high temporal resolution, uncovering four-state structural transitions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38233588</pmid><doi>10.1038/s41565-023-01591-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8256-0030</orcidid><orcidid>https://orcid.org/0000-0001-7623-1452</orcidid><orcidid>https://orcid.org/0000-0003-0680-7668</orcidid><orcidid>https://orcid.org/0000-0003-0665-6775</orcidid><orcidid>https://orcid.org/0000-0001-5575-4107</orcidid><orcidid>https://orcid.org/0000-0003-0230-3542</orcidid><orcidid>https://orcid.org/0000-0002-7980-1251</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2024-05, Vol.19 (5), p.660-667 |
issn | 1748-3387 1748-3395 1748-3395 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11229667 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 631/61/350/1057 631/61/350/59 639/638/11/511 639/925/350/1057 639/925/350/59 Aptamers Aptamers, Nucleotide - chemistry Binding Biological activity Biosensing Techniques - instrumentation Biosensing Techniques - methods Biosensors Carbon Carbon nanotubes Chemistry and Materials Science Conformation Electrical measurement Electrical resistivity Field effect transistors Kinetics Labels Ligands Mass spectrometry Mass spectroscopy Materials Science Molecular interactions Nanotechnology Nanotechnology and Microengineering Nanotubes, Carbon - chemistry Neurotransmitters Semiconductor devices Serotonin Serotonin - chemistry Serotonin - metabolism Temporal resolution Transistors Transistors, Electronic |
title | Carbon-nanotube field-effect transistors for resolving single-molecule aptamer–ligand binding kinetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon-nanotube%20field-effect%20transistors%20for%20resolving%20single-molecule%20aptamer%E2%80%93ligand%20binding%20kinetics&rft.jtitle=Nature%20nanotechnology&rft.au=Lee,%20Yoonhee&rft.date=2024-05-01&rft.volume=19&rft.issue=5&rft.spage=660&rft.epage=667&rft.pages=660-667&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-023-01591-0&rft_dat=%3Cproquest_pubme%3E3056951885%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056951885&rft_id=info:pmid/38233588&rfr_iscdi=true |