Deconstructing depression by machine learning: the POKAL-PSY study

Unipolar depression is a prevalent and disabling condition, often left untreated. In the outpatient setting, general practitioners fail to recognize depression in about 50% of cases mainly due to somatic comorbidities. Given the significant economic, social, and interpersonal impact of depression an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European archives of psychiatry and clinical neuroscience 2024-08, Vol.274 (5), p.1153-1165
Hauptverfasser: Eder, Julia, Pfeiffer, Lisa, Wichert, Sven P., Keeser, Benjamin, Simon, Maria S., Popovic, David, Glocker, Catherine, Brunoni, Andre R., Schneider, Antonius, Gensichen, Jochen, Schmitt, Andrea, Musil, Richard, Falkai, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1165
container_issue 5
container_start_page 1153
container_title European archives of psychiatry and clinical neuroscience
container_volume 274
creator Eder, Julia
Pfeiffer, Lisa
Wichert, Sven P.
Keeser, Benjamin
Simon, Maria S.
Popovic, David
Glocker, Catherine
Brunoni, Andre R.
Schneider, Antonius
Gensichen, Jochen
Schmitt, Andrea
Musil, Richard
Falkai, Peter
description Unipolar depression is a prevalent and disabling condition, often left untreated. In the outpatient setting, general practitioners fail to recognize depression in about 50% of cases mainly due to somatic comorbidities. Given the significant economic, social, and interpersonal impact of depression and its increasing prevalence, there is a need to improve its diagnosis and treatment in outpatient care. Various efforts have been made to isolate individual biological markers for depression to streamline diagnostic and therapeutic approaches. However, the intricate and dynamic interplay between neuroinflammation, metabolic abnormalities, and relevant neurobiological correlates of depression is not yet fully understood. To address this issue, we propose a naturalistic prospective study involving outpatients with unipolar depression, individuals without depression or comorbidities, and healthy controls. In addition to clinical assessments, cardiovascular parameters, metabolic factors, and inflammatory parameters are collected. For analysis we will use conventional statistics as well as machine learning algorithms. We aim to detect relevant participant subgroups by data-driven cluster algorithms and their impact on the subjects’ long-term prognosis. The POKAL-PSY study is a subproject of the research network POKAL (Predictors and Clinical Outcomes in Depressive Disorders; GRK 2621).
doi_str_mv 10.1007/s00406-023-01720-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11226486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902973453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-d03256f73cc0cc6fcb79d257ab0f60d7efd3e96cdec32af8e2e4175fd35f78453</originalsourceid><addsrcrecordid>eNp9kU9PGzEQxS0EIiHtF-CAVuLSy7bjP2uvuSAIbUFFAgl66MlyvLPJoo032LuV8u1rmkCBQ08jzfvNmxk9Qg4pfKYA6ksEECBzYDwHqhjkeoeMqeA8L4Wmu2QMWkBOORcjchDjAwDQgsE-GfESNIVSjMn5BbrOxz4Mrm_8PKtwFTDGpvPZbJ0trVs0HrMWbfBJPsn6BWa3Nz_OrvPbu19Z7Idq_YHs1baN-HFbJ-Tnt6_308v8-ub71TSRTjDZ5xVwVshacefAOVm7mdIVK5SdQS2hUlhXHLV0FTrObF0iQ0FVkbpFrUpR8Ak53fiuhtkSK4e-D7Y1q9AsbVibzjbmreKbhZl3vw2ljElRyuTwaesQuscBY2-WTXTYttZjN0TDNDCteNqV0ON36EM3BJ_-MxyUhLLQlCWKbSgXuhgD1i_XUDBPGZlNRiZlZP5mZHQaOnr9x8vIcygJ4BsgJsnPMfzb_R_bP8dQnKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076085912</pqid></control><display><type>article</type><title>Deconstructing depression by machine learning: the POKAL-PSY study</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Eder, Julia ; Pfeiffer, Lisa ; Wichert, Sven P. ; Keeser, Benjamin ; Simon, Maria S. ; Popovic, David ; Glocker, Catherine ; Brunoni, Andre R. ; Schneider, Antonius ; Gensichen, Jochen ; Schmitt, Andrea ; Musil, Richard ; Falkai, Peter</creator><creatorcontrib>Eder, Julia ; Pfeiffer, Lisa ; Wichert, Sven P. ; Keeser, Benjamin ; Simon, Maria S. ; Popovic, David ; Glocker, Catherine ; Brunoni, Andre R. ; Schneider, Antonius ; Gensichen, Jochen ; Schmitt, Andrea ; Musil, Richard ; Falkai, Peter ; POKAL Group ; for the POKAL Group</creatorcontrib><description>Unipolar depression is a prevalent and disabling condition, often left untreated. In the outpatient setting, general practitioners fail to recognize depression in about 50% of cases mainly due to somatic comorbidities. Given the significant economic, social, and interpersonal impact of depression and its increasing prevalence, there is a need to improve its diagnosis and treatment in outpatient care. Various efforts have been made to isolate individual biological markers for depression to streamline diagnostic and therapeutic approaches. However, the intricate and dynamic interplay between neuroinflammation, metabolic abnormalities, and relevant neurobiological correlates of depression is not yet fully understood. To address this issue, we propose a naturalistic prospective study involving outpatients with unipolar depression, individuals without depression or comorbidities, and healthy controls. In addition to clinical assessments, cardiovascular parameters, metabolic factors, and inflammatory parameters are collected. For analysis we will use conventional statistics as well as machine learning algorithms. We aim to detect relevant participant subgroups by data-driven cluster algorithms and their impact on the subjects’ long-term prognosis. The POKAL-PSY study is a subproject of the research network POKAL (Predictors and Clinical Outcomes in Depressive Disorders; GRK 2621).</description><identifier>ISSN: 0940-1334</identifier><identifier>ISSN: 1433-8491</identifier><identifier>EISSN: 1433-8491</identifier><identifier>DOI: 10.1007/s00406-023-01720-9</identifier><identifier>PMID: 38091084</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Algorithms ; Biomarkers ; Comorbidity ; Depressive Disorder - diagnosis ; Female ; Humans ; Inflammation ; Learning algorithms ; Machine Learning ; Male ; Medicine ; Medicine &amp; Public Health ; Mental depression ; Mental disorders ; Metabolism ; Middle Aged ; Neurosciences ; Original Paper ; Prospective Studies ; Psychiatry ; Statistical analysis</subject><ispartof>European archives of psychiatry and clinical neuroscience, 2024-08, Vol.274 (5), p.1153-1165</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-d03256f73cc0cc6fcb79d257ab0f60d7efd3e96cdec32af8e2e4175fd35f78453</cites><orcidid>0000-0003-1330-804X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00406-023-01720-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00406-023-01720-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38091084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eder, Julia</creatorcontrib><creatorcontrib>Pfeiffer, Lisa</creatorcontrib><creatorcontrib>Wichert, Sven P.</creatorcontrib><creatorcontrib>Keeser, Benjamin</creatorcontrib><creatorcontrib>Simon, Maria S.</creatorcontrib><creatorcontrib>Popovic, David</creatorcontrib><creatorcontrib>Glocker, Catherine</creatorcontrib><creatorcontrib>Brunoni, Andre R.</creatorcontrib><creatorcontrib>Schneider, Antonius</creatorcontrib><creatorcontrib>Gensichen, Jochen</creatorcontrib><creatorcontrib>Schmitt, Andrea</creatorcontrib><creatorcontrib>Musil, Richard</creatorcontrib><creatorcontrib>Falkai, Peter</creatorcontrib><creatorcontrib>POKAL Group</creatorcontrib><creatorcontrib>for the POKAL Group</creatorcontrib><title>Deconstructing depression by machine learning: the POKAL-PSY study</title><title>European archives of psychiatry and clinical neuroscience</title><addtitle>Eur Arch Psychiatry Clin Neurosci</addtitle><addtitle>Eur Arch Psychiatry Clin Neurosci</addtitle><description>Unipolar depression is a prevalent and disabling condition, often left untreated. In the outpatient setting, general practitioners fail to recognize depression in about 50% of cases mainly due to somatic comorbidities. Given the significant economic, social, and interpersonal impact of depression and its increasing prevalence, there is a need to improve its diagnosis and treatment in outpatient care. Various efforts have been made to isolate individual biological markers for depression to streamline diagnostic and therapeutic approaches. However, the intricate and dynamic interplay between neuroinflammation, metabolic abnormalities, and relevant neurobiological correlates of depression is not yet fully understood. To address this issue, we propose a naturalistic prospective study involving outpatients with unipolar depression, individuals without depression or comorbidities, and healthy controls. In addition to clinical assessments, cardiovascular parameters, metabolic factors, and inflammatory parameters are collected. For analysis we will use conventional statistics as well as machine learning algorithms. We aim to detect relevant participant subgroups by data-driven cluster algorithms and their impact on the subjects’ long-term prognosis. The POKAL-PSY study is a subproject of the research network POKAL (Predictors and Clinical Outcomes in Depressive Disorders; GRK 2621).</description><subject>Adult</subject><subject>Algorithms</subject><subject>Biomarkers</subject><subject>Comorbidity</subject><subject>Depressive Disorder - diagnosis</subject><subject>Female</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mental depression</subject><subject>Mental disorders</subject><subject>Metabolism</subject><subject>Middle Aged</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Prospective Studies</subject><subject>Psychiatry</subject><subject>Statistical analysis</subject><issn>0940-1334</issn><issn>1433-8491</issn><issn>1433-8491</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU9PGzEQxS0EIiHtF-CAVuLSy7bjP2uvuSAIbUFFAgl66MlyvLPJoo032LuV8u1rmkCBQ08jzfvNmxk9Qg4pfKYA6ksEECBzYDwHqhjkeoeMqeA8L4Wmu2QMWkBOORcjchDjAwDQgsE-GfESNIVSjMn5BbrOxz4Mrm_8PKtwFTDGpvPZbJ0trVs0HrMWbfBJPsn6BWa3Nz_OrvPbu19Z7Idq_YHs1baN-HFbJ-Tnt6_308v8-ub71TSRTjDZ5xVwVshacefAOVm7mdIVK5SdQS2hUlhXHLV0FTrObF0iQ0FVkbpFrUpR8Ak53fiuhtkSK4e-D7Y1q9AsbVibzjbmreKbhZl3vw2ljElRyuTwaesQuscBY2-WTXTYttZjN0TDNDCteNqV0ON36EM3BJ_-MxyUhLLQlCWKbSgXuhgD1i_XUDBPGZlNRiZlZP5mZHQaOnr9x8vIcygJ4BsgJsnPMfzb_R_bP8dQnKg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Eder, Julia</creator><creator>Pfeiffer, Lisa</creator><creator>Wichert, Sven P.</creator><creator>Keeser, Benjamin</creator><creator>Simon, Maria S.</creator><creator>Popovic, David</creator><creator>Glocker, Catherine</creator><creator>Brunoni, Andre R.</creator><creator>Schneider, Antonius</creator><creator>Gensichen, Jochen</creator><creator>Schmitt, Andrea</creator><creator>Musil, Richard</creator><creator>Falkai, Peter</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1330-804X</orcidid></search><sort><creationdate>20240801</creationdate><title>Deconstructing depression by machine learning: the POKAL-PSY study</title><author>Eder, Julia ; Pfeiffer, Lisa ; Wichert, Sven P. ; Keeser, Benjamin ; Simon, Maria S. ; Popovic, David ; Glocker, Catherine ; Brunoni, Andre R. ; Schneider, Antonius ; Gensichen, Jochen ; Schmitt, Andrea ; Musil, Richard ; Falkai, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-d03256f73cc0cc6fcb79d257ab0f60d7efd3e96cdec32af8e2e4175fd35f78453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Biomarkers</topic><topic>Comorbidity</topic><topic>Depressive Disorder - diagnosis</topic><topic>Female</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mental depression</topic><topic>Mental disorders</topic><topic>Metabolism</topic><topic>Middle Aged</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Prospective Studies</topic><topic>Psychiatry</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eder, Julia</creatorcontrib><creatorcontrib>Pfeiffer, Lisa</creatorcontrib><creatorcontrib>Wichert, Sven P.</creatorcontrib><creatorcontrib>Keeser, Benjamin</creatorcontrib><creatorcontrib>Simon, Maria S.</creatorcontrib><creatorcontrib>Popovic, David</creatorcontrib><creatorcontrib>Glocker, Catherine</creatorcontrib><creatorcontrib>Brunoni, Andre R.</creatorcontrib><creatorcontrib>Schneider, Antonius</creatorcontrib><creatorcontrib>Gensichen, Jochen</creatorcontrib><creatorcontrib>Schmitt, Andrea</creatorcontrib><creatorcontrib>Musil, Richard</creatorcontrib><creatorcontrib>Falkai, Peter</creatorcontrib><creatorcontrib>POKAL Group</creatorcontrib><creatorcontrib>for the POKAL Group</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European archives of psychiatry and clinical neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eder, Julia</au><au>Pfeiffer, Lisa</au><au>Wichert, Sven P.</au><au>Keeser, Benjamin</au><au>Simon, Maria S.</au><au>Popovic, David</au><au>Glocker, Catherine</au><au>Brunoni, Andre R.</au><au>Schneider, Antonius</au><au>Gensichen, Jochen</au><au>Schmitt, Andrea</au><au>Musil, Richard</au><au>Falkai, Peter</au><aucorp>POKAL Group</aucorp><aucorp>for the POKAL Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deconstructing depression by machine learning: the POKAL-PSY study</atitle><jtitle>European archives of psychiatry and clinical neuroscience</jtitle><stitle>Eur Arch Psychiatry Clin Neurosci</stitle><addtitle>Eur Arch Psychiatry Clin Neurosci</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>274</volume><issue>5</issue><spage>1153</spage><epage>1165</epage><pages>1153-1165</pages><issn>0940-1334</issn><issn>1433-8491</issn><eissn>1433-8491</eissn><abstract>Unipolar depression is a prevalent and disabling condition, often left untreated. In the outpatient setting, general practitioners fail to recognize depression in about 50% of cases mainly due to somatic comorbidities. Given the significant economic, social, and interpersonal impact of depression and its increasing prevalence, there is a need to improve its diagnosis and treatment in outpatient care. Various efforts have been made to isolate individual biological markers for depression to streamline diagnostic and therapeutic approaches. However, the intricate and dynamic interplay between neuroinflammation, metabolic abnormalities, and relevant neurobiological correlates of depression is not yet fully understood. To address this issue, we propose a naturalistic prospective study involving outpatients with unipolar depression, individuals without depression or comorbidities, and healthy controls. In addition to clinical assessments, cardiovascular parameters, metabolic factors, and inflammatory parameters are collected. For analysis we will use conventional statistics as well as machine learning algorithms. We aim to detect relevant participant subgroups by data-driven cluster algorithms and their impact on the subjects’ long-term prognosis. The POKAL-PSY study is a subproject of the research network POKAL (Predictors and Clinical Outcomes in Depressive Disorders; GRK 2621).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38091084</pmid><doi>10.1007/s00406-023-01720-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1330-804X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0940-1334
ispartof European archives of psychiatry and clinical neuroscience, 2024-08, Vol.274 (5), p.1153-1165
issn 0940-1334
1433-8491
1433-8491
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11226486
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Adult
Algorithms
Biomarkers
Comorbidity
Depressive Disorder - diagnosis
Female
Humans
Inflammation
Learning algorithms
Machine Learning
Male
Medicine
Medicine & Public Health
Mental depression
Mental disorders
Metabolism
Middle Aged
Neurosciences
Original Paper
Prospective Studies
Psychiatry
Statistical analysis
title Deconstructing depression by machine learning: the POKAL-PSY study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A03%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deconstructing%20depression%20by%20machine%20learning:%20the%20POKAL-PSY%20study&rft.jtitle=European%20archives%20of%20psychiatry%20and%20clinical%20neuroscience&rft.au=Eder,%20Julia&rft.aucorp=POKAL%20Group&rft.date=2024-08-01&rft.volume=274&rft.issue=5&rft.spage=1153&rft.epage=1165&rft.pages=1153-1165&rft.issn=0940-1334&rft.eissn=1433-8491&rft_id=info:doi/10.1007/s00406-023-01720-9&rft_dat=%3Cproquest_pubme%3E2902973453%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076085912&rft_id=info:pmid/38091084&rfr_iscdi=true