Deconstructing depression by machine learning: the POKAL-PSY study
Unipolar depression is a prevalent and disabling condition, often left untreated. In the outpatient setting, general practitioners fail to recognize depression in about 50% of cases mainly due to somatic comorbidities. Given the significant economic, social, and interpersonal impact of depression an...
Gespeichert in:
Veröffentlicht in: | European archives of psychiatry and clinical neuroscience 2024-08, Vol.274 (5), p.1153-1165 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1165 |
---|---|
container_issue | 5 |
container_start_page | 1153 |
container_title | European archives of psychiatry and clinical neuroscience |
container_volume | 274 |
creator | Eder, Julia Pfeiffer, Lisa Wichert, Sven P. Keeser, Benjamin Simon, Maria S. Popovic, David Glocker, Catherine Brunoni, Andre R. Schneider, Antonius Gensichen, Jochen Schmitt, Andrea Musil, Richard Falkai, Peter |
description | Unipolar depression is a prevalent and disabling condition, often left untreated. In the outpatient setting, general practitioners fail to recognize depression in about 50% of cases mainly due to somatic comorbidities. Given the significant economic, social, and interpersonal impact of depression and its increasing prevalence, there is a need to improve its diagnosis and treatment in outpatient care. Various efforts have been made to isolate individual biological markers for depression to streamline diagnostic and therapeutic approaches. However, the intricate and dynamic interplay between neuroinflammation, metabolic abnormalities, and relevant neurobiological correlates of depression is not yet fully understood. To address this issue, we propose a naturalistic prospective study involving outpatients with unipolar depression, individuals without depression or comorbidities, and healthy controls. In addition to clinical assessments, cardiovascular parameters, metabolic factors, and inflammatory parameters are collected. For analysis we will use conventional statistics as well as machine learning algorithms. We aim to detect relevant participant subgroups by data-driven cluster algorithms and their impact on the subjects’ long-term prognosis. The POKAL-PSY study is a subproject of the research network POKAL (Predictors and Clinical Outcomes in Depressive Disorders; GRK 2621). |
doi_str_mv | 10.1007/s00406-023-01720-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11226486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902973453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-d03256f73cc0cc6fcb79d257ab0f60d7efd3e96cdec32af8e2e4175fd35f78453</originalsourceid><addsrcrecordid>eNp9kU9PGzEQxS0EIiHtF-CAVuLSy7bjP2uvuSAIbUFFAgl66MlyvLPJoo032LuV8u1rmkCBQ08jzfvNmxk9Qg4pfKYA6ksEECBzYDwHqhjkeoeMqeA8L4Wmu2QMWkBOORcjchDjAwDQgsE-GfESNIVSjMn5BbrOxz4Mrm_8PKtwFTDGpvPZbJ0trVs0HrMWbfBJPsn6BWa3Nz_OrvPbu19Z7Idq_YHs1baN-HFbJ-Tnt6_308v8-ub71TSRTjDZ5xVwVshacefAOVm7mdIVK5SdQS2hUlhXHLV0FTrObF0iQ0FVkbpFrUpR8Ak53fiuhtkSK4e-D7Y1q9AsbVibzjbmreKbhZl3vw2ljElRyuTwaesQuscBY2-WTXTYttZjN0TDNDCteNqV0ON36EM3BJ_-MxyUhLLQlCWKbSgXuhgD1i_XUDBPGZlNRiZlZP5mZHQaOnr9x8vIcygJ4BsgJsnPMfzb_R_bP8dQnKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076085912</pqid></control><display><type>article</type><title>Deconstructing depression by machine learning: the POKAL-PSY study</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Eder, Julia ; Pfeiffer, Lisa ; Wichert, Sven P. ; Keeser, Benjamin ; Simon, Maria S. ; Popovic, David ; Glocker, Catherine ; Brunoni, Andre R. ; Schneider, Antonius ; Gensichen, Jochen ; Schmitt, Andrea ; Musil, Richard ; Falkai, Peter</creator><creatorcontrib>Eder, Julia ; Pfeiffer, Lisa ; Wichert, Sven P. ; Keeser, Benjamin ; Simon, Maria S. ; Popovic, David ; Glocker, Catherine ; Brunoni, Andre R. ; Schneider, Antonius ; Gensichen, Jochen ; Schmitt, Andrea ; Musil, Richard ; Falkai, Peter ; POKAL Group ; for the POKAL Group</creatorcontrib><description>Unipolar depression is a prevalent and disabling condition, often left untreated. In the outpatient setting, general practitioners fail to recognize depression in about 50% of cases mainly due to somatic comorbidities. Given the significant economic, social, and interpersonal impact of depression and its increasing prevalence, there is a need to improve its diagnosis and treatment in outpatient care. Various efforts have been made to isolate individual biological markers for depression to streamline diagnostic and therapeutic approaches. However, the intricate and dynamic interplay between neuroinflammation, metabolic abnormalities, and relevant neurobiological correlates of depression is not yet fully understood. To address this issue, we propose a naturalistic prospective study involving outpatients with unipolar depression, individuals without depression or comorbidities, and healthy controls. In addition to clinical assessments, cardiovascular parameters, metabolic factors, and inflammatory parameters are collected. For analysis we will use conventional statistics as well as machine learning algorithms. We aim to detect relevant participant subgroups by data-driven cluster algorithms and their impact on the subjects’ long-term prognosis. The POKAL-PSY study is a subproject of the research network POKAL (Predictors and Clinical Outcomes in Depressive Disorders; GRK 2621).</description><identifier>ISSN: 0940-1334</identifier><identifier>ISSN: 1433-8491</identifier><identifier>EISSN: 1433-8491</identifier><identifier>DOI: 10.1007/s00406-023-01720-9</identifier><identifier>PMID: 38091084</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Algorithms ; Biomarkers ; Comorbidity ; Depressive Disorder - diagnosis ; Female ; Humans ; Inflammation ; Learning algorithms ; Machine Learning ; Male ; Medicine ; Medicine & Public Health ; Mental depression ; Mental disorders ; Metabolism ; Middle Aged ; Neurosciences ; Original Paper ; Prospective Studies ; Psychiatry ; Statistical analysis</subject><ispartof>European archives of psychiatry and clinical neuroscience, 2024-08, Vol.274 (5), p.1153-1165</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-d03256f73cc0cc6fcb79d257ab0f60d7efd3e96cdec32af8e2e4175fd35f78453</cites><orcidid>0000-0003-1330-804X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00406-023-01720-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00406-023-01720-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38091084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eder, Julia</creatorcontrib><creatorcontrib>Pfeiffer, Lisa</creatorcontrib><creatorcontrib>Wichert, Sven P.</creatorcontrib><creatorcontrib>Keeser, Benjamin</creatorcontrib><creatorcontrib>Simon, Maria S.</creatorcontrib><creatorcontrib>Popovic, David</creatorcontrib><creatorcontrib>Glocker, Catherine</creatorcontrib><creatorcontrib>Brunoni, Andre R.</creatorcontrib><creatorcontrib>Schneider, Antonius</creatorcontrib><creatorcontrib>Gensichen, Jochen</creatorcontrib><creatorcontrib>Schmitt, Andrea</creatorcontrib><creatorcontrib>Musil, Richard</creatorcontrib><creatorcontrib>Falkai, Peter</creatorcontrib><creatorcontrib>POKAL Group</creatorcontrib><creatorcontrib>for the POKAL Group</creatorcontrib><title>Deconstructing depression by machine learning: the POKAL-PSY study</title><title>European archives of psychiatry and clinical neuroscience</title><addtitle>Eur Arch Psychiatry Clin Neurosci</addtitle><addtitle>Eur Arch Psychiatry Clin Neurosci</addtitle><description>Unipolar depression is a prevalent and disabling condition, often left untreated. In the outpatient setting, general practitioners fail to recognize depression in about 50% of cases mainly due to somatic comorbidities. Given the significant economic, social, and interpersonal impact of depression and its increasing prevalence, there is a need to improve its diagnosis and treatment in outpatient care. Various efforts have been made to isolate individual biological markers for depression to streamline diagnostic and therapeutic approaches. However, the intricate and dynamic interplay between neuroinflammation, metabolic abnormalities, and relevant neurobiological correlates of depression is not yet fully understood. To address this issue, we propose a naturalistic prospective study involving outpatients with unipolar depression, individuals without depression or comorbidities, and healthy controls. In addition to clinical assessments, cardiovascular parameters, metabolic factors, and inflammatory parameters are collected. For analysis we will use conventional statistics as well as machine learning algorithms. We aim to detect relevant participant subgroups by data-driven cluster algorithms and their impact on the subjects’ long-term prognosis. The POKAL-PSY study is a subproject of the research network POKAL (Predictors and Clinical Outcomes in Depressive Disorders; GRK 2621).</description><subject>Adult</subject><subject>Algorithms</subject><subject>Biomarkers</subject><subject>Comorbidity</subject><subject>Depressive Disorder - diagnosis</subject><subject>Female</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mental depression</subject><subject>Mental disorders</subject><subject>Metabolism</subject><subject>Middle Aged</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Prospective Studies</subject><subject>Psychiatry</subject><subject>Statistical analysis</subject><issn>0940-1334</issn><issn>1433-8491</issn><issn>1433-8491</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU9PGzEQxS0EIiHtF-CAVuLSy7bjP2uvuSAIbUFFAgl66MlyvLPJoo032LuV8u1rmkCBQ08jzfvNmxk9Qg4pfKYA6ksEECBzYDwHqhjkeoeMqeA8L4Wmu2QMWkBOORcjchDjAwDQgsE-GfESNIVSjMn5BbrOxz4Mrm_8PKtwFTDGpvPZbJ0trVs0HrMWbfBJPsn6BWa3Nz_OrvPbu19Z7Idq_YHs1baN-HFbJ-Tnt6_308v8-ub71TSRTjDZ5xVwVshacefAOVm7mdIVK5SdQS2hUlhXHLV0FTrObF0iQ0FVkbpFrUpR8Ak53fiuhtkSK4e-D7Y1q9AsbVibzjbmreKbhZl3vw2ljElRyuTwaesQuscBY2-WTXTYttZjN0TDNDCteNqV0ON36EM3BJ_-MxyUhLLQlCWKbSgXuhgD1i_XUDBPGZlNRiZlZP5mZHQaOnr9x8vIcygJ4BsgJsnPMfzb_R_bP8dQnKg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Eder, Julia</creator><creator>Pfeiffer, Lisa</creator><creator>Wichert, Sven P.</creator><creator>Keeser, Benjamin</creator><creator>Simon, Maria S.</creator><creator>Popovic, David</creator><creator>Glocker, Catherine</creator><creator>Brunoni, Andre R.</creator><creator>Schneider, Antonius</creator><creator>Gensichen, Jochen</creator><creator>Schmitt, Andrea</creator><creator>Musil, Richard</creator><creator>Falkai, Peter</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1330-804X</orcidid></search><sort><creationdate>20240801</creationdate><title>Deconstructing depression by machine learning: the POKAL-PSY study</title><author>Eder, Julia ; Pfeiffer, Lisa ; Wichert, Sven P. ; Keeser, Benjamin ; Simon, Maria S. ; Popovic, David ; Glocker, Catherine ; Brunoni, Andre R. ; Schneider, Antonius ; Gensichen, Jochen ; Schmitt, Andrea ; Musil, Richard ; Falkai, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-d03256f73cc0cc6fcb79d257ab0f60d7efd3e96cdec32af8e2e4175fd35f78453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Biomarkers</topic><topic>Comorbidity</topic><topic>Depressive Disorder - diagnosis</topic><topic>Female</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mental depression</topic><topic>Mental disorders</topic><topic>Metabolism</topic><topic>Middle Aged</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Prospective Studies</topic><topic>Psychiatry</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eder, Julia</creatorcontrib><creatorcontrib>Pfeiffer, Lisa</creatorcontrib><creatorcontrib>Wichert, Sven P.</creatorcontrib><creatorcontrib>Keeser, Benjamin</creatorcontrib><creatorcontrib>Simon, Maria S.</creatorcontrib><creatorcontrib>Popovic, David</creatorcontrib><creatorcontrib>Glocker, Catherine</creatorcontrib><creatorcontrib>Brunoni, Andre R.</creatorcontrib><creatorcontrib>Schneider, Antonius</creatorcontrib><creatorcontrib>Gensichen, Jochen</creatorcontrib><creatorcontrib>Schmitt, Andrea</creatorcontrib><creatorcontrib>Musil, Richard</creatorcontrib><creatorcontrib>Falkai, Peter</creatorcontrib><creatorcontrib>POKAL Group</creatorcontrib><creatorcontrib>for the POKAL Group</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European archives of psychiatry and clinical neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eder, Julia</au><au>Pfeiffer, Lisa</au><au>Wichert, Sven P.</au><au>Keeser, Benjamin</au><au>Simon, Maria S.</au><au>Popovic, David</au><au>Glocker, Catherine</au><au>Brunoni, Andre R.</au><au>Schneider, Antonius</au><au>Gensichen, Jochen</au><au>Schmitt, Andrea</au><au>Musil, Richard</au><au>Falkai, Peter</au><aucorp>POKAL Group</aucorp><aucorp>for the POKAL Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deconstructing depression by machine learning: the POKAL-PSY study</atitle><jtitle>European archives of psychiatry and clinical neuroscience</jtitle><stitle>Eur Arch Psychiatry Clin Neurosci</stitle><addtitle>Eur Arch Psychiatry Clin Neurosci</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>274</volume><issue>5</issue><spage>1153</spage><epage>1165</epage><pages>1153-1165</pages><issn>0940-1334</issn><issn>1433-8491</issn><eissn>1433-8491</eissn><abstract>Unipolar depression is a prevalent and disabling condition, often left untreated. In the outpatient setting, general practitioners fail to recognize depression in about 50% of cases mainly due to somatic comorbidities. Given the significant economic, social, and interpersonal impact of depression and its increasing prevalence, there is a need to improve its diagnosis and treatment in outpatient care. Various efforts have been made to isolate individual biological markers for depression to streamline diagnostic and therapeutic approaches. However, the intricate and dynamic interplay between neuroinflammation, metabolic abnormalities, and relevant neurobiological correlates of depression is not yet fully understood. To address this issue, we propose a naturalistic prospective study involving outpatients with unipolar depression, individuals without depression or comorbidities, and healthy controls. In addition to clinical assessments, cardiovascular parameters, metabolic factors, and inflammatory parameters are collected. For analysis we will use conventional statistics as well as machine learning algorithms. We aim to detect relevant participant subgroups by data-driven cluster algorithms and their impact on the subjects’ long-term prognosis. The POKAL-PSY study is a subproject of the research network POKAL (Predictors and Clinical Outcomes in Depressive Disorders; GRK 2621).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38091084</pmid><doi>10.1007/s00406-023-01720-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1330-804X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0940-1334 |
ispartof | European archives of psychiatry and clinical neuroscience, 2024-08, Vol.274 (5), p.1153-1165 |
issn | 0940-1334 1433-8491 1433-8491 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11226486 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Adult Algorithms Biomarkers Comorbidity Depressive Disorder - diagnosis Female Humans Inflammation Learning algorithms Machine Learning Male Medicine Medicine & Public Health Mental depression Mental disorders Metabolism Middle Aged Neurosciences Original Paper Prospective Studies Psychiatry Statistical analysis |
title | Deconstructing depression by machine learning: the POKAL-PSY study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A03%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deconstructing%20depression%20by%20machine%20learning:%20the%20POKAL-PSY%20study&rft.jtitle=European%20archives%20of%20psychiatry%20and%20clinical%20neuroscience&rft.au=Eder,%20Julia&rft.aucorp=POKAL%20Group&rft.date=2024-08-01&rft.volume=274&rft.issue=5&rft.spage=1153&rft.epage=1165&rft.pages=1153-1165&rft.issn=0940-1334&rft.eissn=1433-8491&rft_id=info:doi/10.1007/s00406-023-01720-9&rft_dat=%3Cproquest_pubme%3E2902973453%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076085912&rft_id=info:pmid/38091084&rfr_iscdi=true |