Big Data in Oncology Nursing Research: State of the Science
To review the state of oncology nursing science as it pertains to big data. The authors aim to define and characterize big data, describe key considerations for accessing and analyzing big data, provide examples of analyses of big data in oncology nursing science, and highlight ethical consideration...
Gespeichert in:
Veröffentlicht in: | Seminars in oncology nursing 2023-06, Vol.39 (3), p.151428-151428, Article 151428 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 151428 |
---|---|
container_issue | 3 |
container_start_page | 151428 |
container_title | Seminars in oncology nursing |
container_volume | 39 |
creator | Harris, Carolyn S. Pozzar, Rachel A. Conley, Yvette Eicher, Manuela Hammer, Marilyn J. Kober, Kord M. Miaskowski, Christine Colomer-Lahiguera, Sara |
description | To review the state of oncology nursing science as it pertains to big data. The authors aim to define and characterize big data, describe key considerations for accessing and analyzing big data, provide examples of analyses of big data in oncology nursing science, and highlight ethical considerations related to the collection and analysis of big data.
Peer-reviewed articles published by investigators specializing in oncology, nursing, and related disciplines.
Big data is defined as data that are high in volume, velocity, and variety. To date, oncology nurse scientists have used big data to predict patient outcomes from clinician notes, identify distinct symptom phenotypes, and identify predictors of chemotherapy toxicity, among other applications. Although the emergence of big data and advances in computational methods provide new and exciting opportunities to advance oncology nursing science, several challenges are associated with accessing and using big data. Data security, research participant privacy, and the underrepresentation of minoritized individuals in big data are important concerns.
With their unique focus on the interplay between the whole person, the environment, and health, nurses bring an indispensable perspective to the interpretation and application of big data research findings. Given the increasing ubiquity of passive data collection, all nurses should be taught the definition, characteristics, applications, and limitations of big data. Nurses who are trained in big data and advanced computational methods will be poised to contribute to guidelines and policies that preserve the rights of human research participants. |
doi_str_mv | 10.1016/j.soncn.2023.151428 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11225574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0749208123000657</els_id><sourcerecordid>2805031921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-2dad8d21b7c3d975452726f9aa653f437cce25bc7197072d7ecbb635506da85d3</originalsourceid><addsrcrecordid>eNp9kE1PGzEQhq2KqgTaX1Cp8pHLBn-ud1sh1PJRkFCRSHu2vPZs4mhjg72JlH_PwgZULpzmMM_7zuhB6CslU0poebyc5hhsmDLC-JRKKlj1AU1opaqCC1HvoQlRoi4Yqeg-Osh5SQirS1J_QvtckUoKIiboxy8_x-emN9gHfBts7OJ8i_-sU_Zhju8gg0l28R3PetMDji3uF4Bn1kOw8Bl9bE2X4ctuHqJ_lxd_z66Km9vf12c_bworStIXzBlXOUYbZbmrlRSSKVa2tTGl5K3gylpgsrGK1ooo5hTYpim5lKR0ppKOH6LTsfd-3azAWQh9Mp2-T35l0lZH4_XbTfALPY8bTSljUioxNBztGlJ8WEPu9cpnC11nAsR11qwiknBaMzqgfERtijknaF_vUKKfvOulfvaun7zr0fuQ-vb_i6-ZF9EDcDICMIjaeEg6jxKdT2B77aJ_98Ajsd-UNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805031921</pqid></control><display><type>article</type><title>Big Data in Oncology Nursing Research: State of the Science</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Harris, Carolyn S. ; Pozzar, Rachel A. ; Conley, Yvette ; Eicher, Manuela ; Hammer, Marilyn J. ; Kober, Kord M. ; Miaskowski, Christine ; Colomer-Lahiguera, Sara</creator><creatorcontrib>Harris, Carolyn S. ; Pozzar, Rachel A. ; Conley, Yvette ; Eicher, Manuela ; Hammer, Marilyn J. ; Kober, Kord M. ; Miaskowski, Christine ; Colomer-Lahiguera, Sara</creatorcontrib><description>To review the state of oncology nursing science as it pertains to big data. The authors aim to define and characterize big data, describe key considerations for accessing and analyzing big data, provide examples of analyses of big data in oncology nursing science, and highlight ethical considerations related to the collection and analysis of big data.
Peer-reviewed articles published by investigators specializing in oncology, nursing, and related disciplines.
Big data is defined as data that are high in volume, velocity, and variety. To date, oncology nurse scientists have used big data to predict patient outcomes from clinician notes, identify distinct symptom phenotypes, and identify predictors of chemotherapy toxicity, among other applications. Although the emergence of big data and advances in computational methods provide new and exciting opportunities to advance oncology nursing science, several challenges are associated with accessing and using big data. Data security, research participant privacy, and the underrepresentation of minoritized individuals in big data are important concerns.
With their unique focus on the interplay between the whole person, the environment, and health, nurses bring an indispensable perspective to the interpretation and application of big data research findings. Given the increasing ubiquity of passive data collection, all nurses should be taught the definition, characteristics, applications, and limitations of big data. Nurses who are trained in big data and advanced computational methods will be poised to contribute to guidelines and policies that preserve the rights of human research participants.</description><identifier>ISSN: 0749-2081</identifier><identifier>ISSN: 1878-3449</identifier><identifier>EISSN: 1878-3449</identifier><identifier>DOI: 10.1016/j.soncn.2023.151428</identifier><identifier>PMID: 37085404</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Big Data ; Data science ; Humans ; Malignant neoplasms ; Medical Oncology ; Nursing research ; Nursing Research - methods ; Oncology Nursing ; Research Personnel</subject><ispartof>Seminars in oncology nursing, 2023-06, Vol.39 (3), p.151428-151428, Article 151428</ispartof><rights>2023 The Author(s)</rights><rights>Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-2dad8d21b7c3d975452726f9aa653f437cce25bc7197072d7ecbb635506da85d3</citedby><cites>FETCH-LOGICAL-c460t-2dad8d21b7c3d975452726f9aa653f437cce25bc7197072d7ecbb635506da85d3</cites><orcidid>0000-0003-2390-5198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0749208123000657$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37085404$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harris, Carolyn S.</creatorcontrib><creatorcontrib>Pozzar, Rachel A.</creatorcontrib><creatorcontrib>Conley, Yvette</creatorcontrib><creatorcontrib>Eicher, Manuela</creatorcontrib><creatorcontrib>Hammer, Marilyn J.</creatorcontrib><creatorcontrib>Kober, Kord M.</creatorcontrib><creatorcontrib>Miaskowski, Christine</creatorcontrib><creatorcontrib>Colomer-Lahiguera, Sara</creatorcontrib><title>Big Data in Oncology Nursing Research: State of the Science</title><title>Seminars in oncology nursing</title><addtitle>Semin Oncol Nurs</addtitle><description>To review the state of oncology nursing science as it pertains to big data. The authors aim to define and characterize big data, describe key considerations for accessing and analyzing big data, provide examples of analyses of big data in oncology nursing science, and highlight ethical considerations related to the collection and analysis of big data.
Peer-reviewed articles published by investigators specializing in oncology, nursing, and related disciplines.
Big data is defined as data that are high in volume, velocity, and variety. To date, oncology nurse scientists have used big data to predict patient outcomes from clinician notes, identify distinct symptom phenotypes, and identify predictors of chemotherapy toxicity, among other applications. Although the emergence of big data and advances in computational methods provide new and exciting opportunities to advance oncology nursing science, several challenges are associated with accessing and using big data. Data security, research participant privacy, and the underrepresentation of minoritized individuals in big data are important concerns.
With their unique focus on the interplay between the whole person, the environment, and health, nurses bring an indispensable perspective to the interpretation and application of big data research findings. Given the increasing ubiquity of passive data collection, all nurses should be taught the definition, characteristics, applications, and limitations of big data. Nurses who are trained in big data and advanced computational methods will be poised to contribute to guidelines and policies that preserve the rights of human research participants.</description><subject>Big Data</subject><subject>Data science</subject><subject>Humans</subject><subject>Malignant neoplasms</subject><subject>Medical Oncology</subject><subject>Nursing research</subject><subject>Nursing Research - methods</subject><subject>Oncology Nursing</subject><subject>Research Personnel</subject><issn>0749-2081</issn><issn>1878-3449</issn><issn>1878-3449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PGzEQhq2KqgTaX1Cp8pHLBn-ud1sh1PJRkFCRSHu2vPZs4mhjg72JlH_PwgZULpzmMM_7zuhB6CslU0poebyc5hhsmDLC-JRKKlj1AU1opaqCC1HvoQlRoi4Yqeg-Osh5SQirS1J_QvtckUoKIiboxy8_x-emN9gHfBts7OJ8i_-sU_Zhju8gg0l28R3PetMDji3uF4Bn1kOw8Bl9bE2X4ctuHqJ_lxd_z66Km9vf12c_bworStIXzBlXOUYbZbmrlRSSKVa2tTGl5K3gylpgsrGK1ooo5hTYpim5lKR0ppKOH6LTsfd-3azAWQh9Mp2-T35l0lZH4_XbTfALPY8bTSljUioxNBztGlJ8WEPu9cpnC11nAsR11qwiknBaMzqgfERtijknaF_vUKKfvOulfvaun7zr0fuQ-vb_i6-ZF9EDcDICMIjaeEg6jxKdT2B77aJ_98Ajsd-UNA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Harris, Carolyn S.</creator><creator>Pozzar, Rachel A.</creator><creator>Conley, Yvette</creator><creator>Eicher, Manuela</creator><creator>Hammer, Marilyn J.</creator><creator>Kober, Kord M.</creator><creator>Miaskowski, Christine</creator><creator>Colomer-Lahiguera, Sara</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2390-5198</orcidid></search><sort><creationdate>20230601</creationdate><title>Big Data in Oncology Nursing Research: State of the Science</title><author>Harris, Carolyn S. ; Pozzar, Rachel A. ; Conley, Yvette ; Eicher, Manuela ; Hammer, Marilyn J. ; Kober, Kord M. ; Miaskowski, Christine ; Colomer-Lahiguera, Sara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-2dad8d21b7c3d975452726f9aa653f437cce25bc7197072d7ecbb635506da85d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Big Data</topic><topic>Data science</topic><topic>Humans</topic><topic>Malignant neoplasms</topic><topic>Medical Oncology</topic><topic>Nursing research</topic><topic>Nursing Research - methods</topic><topic>Oncology Nursing</topic><topic>Research Personnel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harris, Carolyn S.</creatorcontrib><creatorcontrib>Pozzar, Rachel A.</creatorcontrib><creatorcontrib>Conley, Yvette</creatorcontrib><creatorcontrib>Eicher, Manuela</creatorcontrib><creatorcontrib>Hammer, Marilyn J.</creatorcontrib><creatorcontrib>Kober, Kord M.</creatorcontrib><creatorcontrib>Miaskowski, Christine</creatorcontrib><creatorcontrib>Colomer-Lahiguera, Sara</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Seminars in oncology nursing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harris, Carolyn S.</au><au>Pozzar, Rachel A.</au><au>Conley, Yvette</au><au>Eicher, Manuela</au><au>Hammer, Marilyn J.</au><au>Kober, Kord M.</au><au>Miaskowski, Christine</au><au>Colomer-Lahiguera, Sara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Big Data in Oncology Nursing Research: State of the Science</atitle><jtitle>Seminars in oncology nursing</jtitle><addtitle>Semin Oncol Nurs</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>39</volume><issue>3</issue><spage>151428</spage><epage>151428</epage><pages>151428-151428</pages><artnum>151428</artnum><issn>0749-2081</issn><issn>1878-3449</issn><eissn>1878-3449</eissn><abstract>To review the state of oncology nursing science as it pertains to big data. The authors aim to define and characterize big data, describe key considerations for accessing and analyzing big data, provide examples of analyses of big data in oncology nursing science, and highlight ethical considerations related to the collection and analysis of big data.
Peer-reviewed articles published by investigators specializing in oncology, nursing, and related disciplines.
Big data is defined as data that are high in volume, velocity, and variety. To date, oncology nurse scientists have used big data to predict patient outcomes from clinician notes, identify distinct symptom phenotypes, and identify predictors of chemotherapy toxicity, among other applications. Although the emergence of big data and advances in computational methods provide new and exciting opportunities to advance oncology nursing science, several challenges are associated with accessing and using big data. Data security, research participant privacy, and the underrepresentation of minoritized individuals in big data are important concerns.
With their unique focus on the interplay between the whole person, the environment, and health, nurses bring an indispensable perspective to the interpretation and application of big data research findings. Given the increasing ubiquity of passive data collection, all nurses should be taught the definition, characteristics, applications, and limitations of big data. Nurses who are trained in big data and advanced computational methods will be poised to contribute to guidelines and policies that preserve the rights of human research participants.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37085404</pmid><doi>10.1016/j.soncn.2023.151428</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2390-5198</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-2081 |
ispartof | Seminars in oncology nursing, 2023-06, Vol.39 (3), p.151428-151428, Article 151428 |
issn | 0749-2081 1878-3449 1878-3449 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11225574 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Big Data Data science Humans Malignant neoplasms Medical Oncology Nursing research Nursing Research - methods Oncology Nursing Research Personnel |
title | Big Data in Oncology Nursing Research: State of the Science |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A55%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Big%20Data%20in%20Oncology%20Nursing%20Research:%20State%20of%20the%20Science&rft.jtitle=Seminars%20in%20oncology%20nursing&rft.au=Harris,%20Carolyn%20S.&rft.date=2023-06-01&rft.volume=39&rft.issue=3&rft.spage=151428&rft.epage=151428&rft.pages=151428-151428&rft.artnum=151428&rft.issn=0749-2081&rft.eissn=1878-3449&rft_id=info:doi/10.1016/j.soncn.2023.151428&rft_dat=%3Cproquest_pubme%3E2805031921%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805031921&rft_id=info:pmid/37085404&rft_els_id=S0749208123000657&rfr_iscdi=true |