Imputation Server PGS: an automated approach to calculate polygenic risk scores on imputation servers

Polygenic scores (PGS) enable the prediction of genetic predisposition for a wide range of traits and diseases by calculating the weighted sum of allele dosages for genetic variants associated with the trait or disease in question. Present approaches for calculating PGS from genotypes are often inef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2024-07, Vol.52 (W1), p.W70-W77
Hauptverfasser: Forer, Lukas, Taliun, Daniel, LeFaive, Jonathon, Smith, Albert V, Boughton, Andrew P, Coassin, Stefan, Lamina, Claudia, Kronenberg, Florian, Fuchsberger, Christian, Schönherr, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page W77
container_issue W1
container_start_page W70
container_title Nucleic acids research
container_volume 52
creator Forer, Lukas
Taliun, Daniel
LeFaive, Jonathon
Smith, Albert V
Boughton, Andrew P
Coassin, Stefan
Lamina, Claudia
Kronenberg, Florian
Fuchsberger, Christian
Schönherr, Sebastian
description Polygenic scores (PGS) enable the prediction of genetic predisposition for a wide range of traits and diseases by calculating the weighted sum of allele dosages for genetic variants associated with the trait or disease in question. Present approaches for calculating PGS from genotypes are often inefficient and labor-intensive, limiting transferability into clinical applications. Here, we present 'Imputation Server PGS', an extension of the Michigan Imputation Server designed to automate a standardized calculation of polygenic scores based on imputed genotypes. This extends the widely used Michigan Imputation Server with new functionality, bringing the simplicity and efficiency of modern imputation to the PGS field. The service currently supports over 4489 published polygenic scores from publicly available repositories and provides extensive quality control, including ancestry estimation to report population stratification. An interactive report empowers users to screen and compare thousands of scores in a fast and intuitive way. Imputation Server PGS provides a user-friendly web service, facilitating the application of polygenic scores to a wide range of genetic studies and is freely available at https://imputationserver.sph.umich.edu.
doi_str_mv 10.1093/nar/gkae331
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11223871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051939730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-d68ac647ecc1a58e7128e6135b6daa8fc3e353ecb723ba3151d444f8778b9fa73</originalsourceid><addsrcrecordid>eNpVkc9L3UAQx5ei1KftqfeyR6FEdzJJdtNLkUf9AYKC9rxMNpNnapJNdxPB_75RX62eBma-fGaYjxBfQB2BKvF4oHC8uSdGhA9iBVikSVYW6Y5YKVR5Aioze2I_xt9KQQZ59lHsodGqNLpcCb7ox3miqfWDvOHwwEFen918lzRImiff08S1pHEMntydnLx01Lm5W9py9N3jhofWydDGexmdDxzlwmn_I-MzMn4Suw11kT9v64H4dfrzdn2eXF6dXaxPLhOHJp2SujDkikyzc0C5YQ2p4QIwr4qayDQOGXNkV-kUK0LIoc6yrDFam6psSOOB-PHCHeeq59rxMAXq7BjansKj9dTa95OhvbMb_2AB0nR5CiyEwy0h-D8zx8n2bXTcdTSwn6NdPgollhrVEv32EnXBxxi4ed0Dyj6ZsYsZuzWzpL--Pe01-08F_gUnho4J</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051939730</pqid></control><display><type>article</type><title>Imputation Server PGS: an automated approach to calculate polygenic risk scores on imputation servers</title><source>PubMed Central (Open Access)</source><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Open</source><creator>Forer, Lukas ; Taliun, Daniel ; LeFaive, Jonathon ; Smith, Albert V ; Boughton, Andrew P ; Coassin, Stefan ; Lamina, Claudia ; Kronenberg, Florian ; Fuchsberger, Christian ; Schönherr, Sebastian</creator><creatorcontrib>Forer, Lukas ; Taliun, Daniel ; LeFaive, Jonathon ; Smith, Albert V ; Boughton, Andrew P ; Coassin, Stefan ; Lamina, Claudia ; Kronenberg, Florian ; Fuchsberger, Christian ; Schönherr, Sebastian</creatorcontrib><description>Polygenic scores (PGS) enable the prediction of genetic predisposition for a wide range of traits and diseases by calculating the weighted sum of allele dosages for genetic variants associated with the trait or disease in question. Present approaches for calculating PGS from genotypes are often inefficient and labor-intensive, limiting transferability into clinical applications. Here, we present 'Imputation Server PGS', an extension of the Michigan Imputation Server designed to automate a standardized calculation of polygenic scores based on imputed genotypes. This extends the widely used Michigan Imputation Server with new functionality, bringing the simplicity and efficiency of modern imputation to the PGS field. The service currently supports over 4489 published polygenic scores from publicly available repositories and provides extensive quality control, including ancestry estimation to report population stratification. An interactive report empowers users to screen and compare thousands of scores in a fast and intuitive way. Imputation Server PGS provides a user-friendly web service, facilitating the application of polygenic scores to a wide range of genetic studies and is freely available at https://imputationserver.sph.umich.edu.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkae331</identifier><identifier>PMID: 38709879</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Alleles ; Genetic Predisposition to Disease ; Genetic Risk Score ; Genome-Wide Association Study - methods ; Genotype ; Humans ; Internet ; Multifactorial Inheritance - genetics ; Polymorphism, Single Nucleotide ; Software ; Web Server Issue</subject><ispartof>Nucleic acids research, 2024-07, Vol.52 (W1), p.W70-W77</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-d68ac647ecc1a58e7128e6135b6daa8fc3e353ecb723ba3151d444f8778b9fa73</citedby><cites>FETCH-LOGICAL-c382t-d68ac647ecc1a58e7128e6135b6daa8fc3e353ecb723ba3151d444f8778b9fa73</cites><orcidid>0000-0003-2229-1120 ; 0000-0003-2139-7329 ; 0000-0001-5909-9226 ; 0000-0003-3668-6086 ; 0000-0002-5398-5806 ; 0000-0001-5677-8979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223871/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223871/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38709879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Forer, Lukas</creatorcontrib><creatorcontrib>Taliun, Daniel</creatorcontrib><creatorcontrib>LeFaive, Jonathon</creatorcontrib><creatorcontrib>Smith, Albert V</creatorcontrib><creatorcontrib>Boughton, Andrew P</creatorcontrib><creatorcontrib>Coassin, Stefan</creatorcontrib><creatorcontrib>Lamina, Claudia</creatorcontrib><creatorcontrib>Kronenberg, Florian</creatorcontrib><creatorcontrib>Fuchsberger, Christian</creatorcontrib><creatorcontrib>Schönherr, Sebastian</creatorcontrib><title>Imputation Server PGS: an automated approach to calculate polygenic risk scores on imputation servers</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Polygenic scores (PGS) enable the prediction of genetic predisposition for a wide range of traits and diseases by calculating the weighted sum of allele dosages for genetic variants associated with the trait or disease in question. Present approaches for calculating PGS from genotypes are often inefficient and labor-intensive, limiting transferability into clinical applications. Here, we present 'Imputation Server PGS', an extension of the Michigan Imputation Server designed to automate a standardized calculation of polygenic scores based on imputed genotypes. This extends the widely used Michigan Imputation Server with new functionality, bringing the simplicity and efficiency of modern imputation to the PGS field. The service currently supports over 4489 published polygenic scores from publicly available repositories and provides extensive quality control, including ancestry estimation to report population stratification. An interactive report empowers users to screen and compare thousands of scores in a fast and intuitive way. Imputation Server PGS provides a user-friendly web service, facilitating the application of polygenic scores to a wide range of genetic studies and is freely available at https://imputationserver.sph.umich.edu.</description><subject>Alleles</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic Risk Score</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genotype</subject><subject>Humans</subject><subject>Internet</subject><subject>Multifactorial Inheritance - genetics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Software</subject><subject>Web Server Issue</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc9L3UAQx5ei1KftqfeyR6FEdzJJdtNLkUf9AYKC9rxMNpNnapJNdxPB_75RX62eBma-fGaYjxBfQB2BKvF4oHC8uSdGhA9iBVikSVYW6Y5YKVR5Aioze2I_xt9KQQZ59lHsodGqNLpcCb7ox3miqfWDvOHwwEFen918lzRImiff08S1pHEMntydnLx01Lm5W9py9N3jhofWydDGexmdDxzlwmn_I-MzMn4Suw11kT9v64H4dfrzdn2eXF6dXaxPLhOHJp2SujDkikyzc0C5YQ2p4QIwr4qayDQOGXNkV-kUK0LIoc6yrDFam6psSOOB-PHCHeeq59rxMAXq7BjansKj9dTa95OhvbMb_2AB0nR5CiyEwy0h-D8zx8n2bXTcdTSwn6NdPgollhrVEv32EnXBxxi4ed0Dyj6ZsYsZuzWzpL--Pe01-08F_gUnho4J</recordid><startdate>20240705</startdate><enddate>20240705</enddate><creator>Forer, Lukas</creator><creator>Taliun, Daniel</creator><creator>LeFaive, Jonathon</creator><creator>Smith, Albert V</creator><creator>Boughton, Andrew P</creator><creator>Coassin, Stefan</creator><creator>Lamina, Claudia</creator><creator>Kronenberg, Florian</creator><creator>Fuchsberger, Christian</creator><creator>Schönherr, Sebastian</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2229-1120</orcidid><orcidid>https://orcid.org/0000-0003-2139-7329</orcidid><orcidid>https://orcid.org/0000-0001-5909-9226</orcidid><orcidid>https://orcid.org/0000-0003-3668-6086</orcidid><orcidid>https://orcid.org/0000-0002-5398-5806</orcidid><orcidid>https://orcid.org/0000-0001-5677-8979</orcidid></search><sort><creationdate>20240705</creationdate><title>Imputation Server PGS: an automated approach to calculate polygenic risk scores on imputation servers</title><author>Forer, Lukas ; Taliun, Daniel ; LeFaive, Jonathon ; Smith, Albert V ; Boughton, Andrew P ; Coassin, Stefan ; Lamina, Claudia ; Kronenberg, Florian ; Fuchsberger, Christian ; Schönherr, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-d68ac647ecc1a58e7128e6135b6daa8fc3e353ecb723ba3151d444f8778b9fa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alleles</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic Risk Score</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genotype</topic><topic>Humans</topic><topic>Internet</topic><topic>Multifactorial Inheritance - genetics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Software</topic><topic>Web Server Issue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forer, Lukas</creatorcontrib><creatorcontrib>Taliun, Daniel</creatorcontrib><creatorcontrib>LeFaive, Jonathon</creatorcontrib><creatorcontrib>Smith, Albert V</creatorcontrib><creatorcontrib>Boughton, Andrew P</creatorcontrib><creatorcontrib>Coassin, Stefan</creatorcontrib><creatorcontrib>Lamina, Claudia</creatorcontrib><creatorcontrib>Kronenberg, Florian</creatorcontrib><creatorcontrib>Fuchsberger, Christian</creatorcontrib><creatorcontrib>Schönherr, Sebastian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forer, Lukas</au><au>Taliun, Daniel</au><au>LeFaive, Jonathon</au><au>Smith, Albert V</au><au>Boughton, Andrew P</au><au>Coassin, Stefan</au><au>Lamina, Claudia</au><au>Kronenberg, Florian</au><au>Fuchsberger, Christian</au><au>Schönherr, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imputation Server PGS: an automated approach to calculate polygenic risk scores on imputation servers</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2024-07-05</date><risdate>2024</risdate><volume>52</volume><issue>W1</issue><spage>W70</spage><epage>W77</epage><pages>W70-W77</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>Polygenic scores (PGS) enable the prediction of genetic predisposition for a wide range of traits and diseases by calculating the weighted sum of allele dosages for genetic variants associated with the trait or disease in question. Present approaches for calculating PGS from genotypes are often inefficient and labor-intensive, limiting transferability into clinical applications. Here, we present 'Imputation Server PGS', an extension of the Michigan Imputation Server designed to automate a standardized calculation of polygenic scores based on imputed genotypes. This extends the widely used Michigan Imputation Server with new functionality, bringing the simplicity and efficiency of modern imputation to the PGS field. The service currently supports over 4489 published polygenic scores from publicly available repositories and provides extensive quality control, including ancestry estimation to report population stratification. An interactive report empowers users to screen and compare thousands of scores in a fast and intuitive way. Imputation Server PGS provides a user-friendly web service, facilitating the application of polygenic scores to a wide range of genetic studies and is freely available at https://imputationserver.sph.umich.edu.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38709879</pmid><doi>10.1093/nar/gkae331</doi><orcidid>https://orcid.org/0000-0003-2229-1120</orcidid><orcidid>https://orcid.org/0000-0003-2139-7329</orcidid><orcidid>https://orcid.org/0000-0001-5909-9226</orcidid><orcidid>https://orcid.org/0000-0003-3668-6086</orcidid><orcidid>https://orcid.org/0000-0002-5398-5806</orcidid><orcidid>https://orcid.org/0000-0001-5677-8979</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2024-07, Vol.52 (W1), p.W70-W77
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11223871
source PubMed Central (Open Access); MEDLINE; Full-Text Journals in Chemistry (Open access); DOAJ Directory of Open Access Journals; Oxford Open
subjects Alleles
Genetic Predisposition to Disease
Genetic Risk Score
Genome-Wide Association Study - methods
Genotype
Humans
Internet
Multifactorial Inheritance - genetics
Polymorphism, Single Nucleotide
Software
Web Server Issue
title Imputation Server PGS: an automated approach to calculate polygenic risk scores on imputation servers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imputation%20Server%20PGS:%20an%20automated%20approach%20to%20calculate%20polygenic%20risk%20scores%20on%20imputation%20servers&rft.jtitle=Nucleic%20acids%20research&rft.au=Forer,%20Lukas&rft.date=2024-07-05&rft.volume=52&rft.issue=W1&rft.spage=W70&rft.epage=W77&rft.pages=W70-W77&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkae331&rft_dat=%3Cproquest_pubme%3E3051939730%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051939730&rft_id=info:pmid/38709879&rfr_iscdi=true