LipidSig 2.0: integrating lipid characteristic insights into advanced lipidomics data analysis

In the field of lipidomics, where the complexity of lipid structures and functions presents significant analytical challenges, LipidSig stands out as the first web-based platform providing integrated, comprehensive analysis for efficient data mining of lipidomic datasets. The upgraded LipidSig 2.0 (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2024-05, Vol.52 (W1), p.W390-W397
Hauptverfasser: Liu, Chia-Hsin, Shen, Pei-Chun, Lin, Wen-Jen, Liu, Hsiu-Cheng, Tsai, Meng-Hsin, Huang, Tzu-Ya, Chen, I-Chieh, Lai, Yo-Liang, Wang, Yu-De, Hung, Mien-Chie, Cheng, Wei-Chung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page W397
container_issue W1
container_start_page W390
container_title Nucleic acids research
container_volume 52
creator Liu, Chia-Hsin
Shen, Pei-Chun
Lin, Wen-Jen
Liu, Hsiu-Cheng
Tsai, Meng-Hsin
Huang, Tzu-Ya
Chen, I-Chieh
Lai, Yo-Liang
Wang, Yu-De
Hung, Mien-Chie
Cheng, Wei-Chung
description In the field of lipidomics, where the complexity of lipid structures and functions presents significant analytical challenges, LipidSig stands out as the first web-based platform providing integrated, comprehensive analysis for efficient data mining of lipidomic datasets. The upgraded LipidSig 2.0 (https://lipidsig.bioinfomics.org/) simplifies the process and empowers researchers to decipher the complex nature of lipids and link lipidomic data to specific characteristics and biological contexts. This tool markedly enhances the efficiency and depth of lipidomic research by autonomously identifying lipid species and assigning 29 comprehensive characteristics upon data entry. LipidSig 2.0 accommodates 24 data processing methods, streamlining diverse lipidomic datasets. The tool's expertise in automating intricate analytical processes, including data preprocessing, lipid ID annotation, differential expression, enrichment analysis, and network analysis, allows researchers to profoundly investigate lipid properties and their biological implications. Additional innovative features, such as the 'Network' function, offer a system biology perspective on lipid interactions, and the 'Multiple Group' analysis aids in examining complex experimental designs. With its comprehensive suite of features for analyzing and visualizing lipid properties, LipidSig 2.0 positions itself as an indispensable tool for advanced lipidomics research, paving the way for new insights into the role of lipids in cellular processes and disease development.
doi_str_mv 10.1093/nar/gkae335
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11223864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051939724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-5a18b2f850820e27dd32f214366fc310f762cb63191c224df8c6b3b4d2b50bc73</originalsourceid><addsrcrecordid>eNpVkUtLw0AURgdRbK2u3EuWgqTOI5lM3IgUX1BwoW4dbmYm6WgedWZa6L83obXo6i6-w3cv9yB0TvCU4Jxdt-Cuqy8wjKUHaEwYp3GSc3qIxpjhNCY4ESN04v0nxiQhaXKMRkxkOBciG6OPuV1a_WqriE7xTWTbYCoHwbZVVA9JpBbgQAXjrA9W9YC31SL4gewi0GtoldFbtmus8pGGABG0UG-89afoqITam7PdnKD3h_u32VM8f3l8nt3NY0UzHOIUiChoKVIsKDY005rRkpKEcV4qRnCZcaoKzkhOFKWJLoXiBSsSTYsUFypjE3S77V2uisZoZdrgoJZLZxtwG9mBlf-T1i5k1a0lIZQywZO-4XLX4LrvlfFBNtYrU9fQmm7lZf9KkrM8owN6tUWV67x3ptzvIVgOSmSvRO6U9PTF39P27K8D9gNfpoon</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051939724</pqid></control><display><type>article</type><title>LipidSig 2.0: integrating lipid characteristic insights into advanced lipidomics data analysis</title><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Chia-Hsin ; Shen, Pei-Chun ; Lin, Wen-Jen ; Liu, Hsiu-Cheng ; Tsai, Meng-Hsin ; Huang, Tzu-Ya ; Chen, I-Chieh ; Lai, Yo-Liang ; Wang, Yu-De ; Hung, Mien-Chie ; Cheng, Wei-Chung</creator><creatorcontrib>Liu, Chia-Hsin ; Shen, Pei-Chun ; Lin, Wen-Jen ; Liu, Hsiu-Cheng ; Tsai, Meng-Hsin ; Huang, Tzu-Ya ; Chen, I-Chieh ; Lai, Yo-Liang ; Wang, Yu-De ; Hung, Mien-Chie ; Cheng, Wei-Chung</creatorcontrib><description>In the field of lipidomics, where the complexity of lipid structures and functions presents significant analytical challenges, LipidSig stands out as the first web-based platform providing integrated, comprehensive analysis for efficient data mining of lipidomic datasets. The upgraded LipidSig 2.0 (https://lipidsig.bioinfomics.org/) simplifies the process and empowers researchers to decipher the complex nature of lipids and link lipidomic data to specific characteristics and biological contexts. This tool markedly enhances the efficiency and depth of lipidomic research by autonomously identifying lipid species and assigning 29 comprehensive characteristics upon data entry. LipidSig 2.0 accommodates 24 data processing methods, streamlining diverse lipidomic datasets. The tool's expertise in automating intricate analytical processes, including data preprocessing, lipid ID annotation, differential expression, enrichment analysis, and network analysis, allows researchers to profoundly investigate lipid properties and their biological implications. Additional innovative features, such as the 'Network' function, offer a system biology perspective on lipid interactions, and the 'Multiple Group' analysis aids in examining complex experimental designs. With its comprehensive suite of features for analyzing and visualizing lipid properties, LipidSig 2.0 positions itself as an indispensable tool for advanced lipidomics research, paving the way for new insights into the role of lipids in cellular processes and disease development.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkae335</identifier><identifier>PMID: 38709887</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Web Server Issue</subject><ispartof>Nucleic acids research, 2024-05, Vol.52 (W1), p.W390-W397</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-5a18b2f850820e27dd32f214366fc310f762cb63191c224df8c6b3b4d2b50bc73</cites><orcidid>0000-0002-1229-4857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223864/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223864/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38709887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Chia-Hsin</creatorcontrib><creatorcontrib>Shen, Pei-Chun</creatorcontrib><creatorcontrib>Lin, Wen-Jen</creatorcontrib><creatorcontrib>Liu, Hsiu-Cheng</creatorcontrib><creatorcontrib>Tsai, Meng-Hsin</creatorcontrib><creatorcontrib>Huang, Tzu-Ya</creatorcontrib><creatorcontrib>Chen, I-Chieh</creatorcontrib><creatorcontrib>Lai, Yo-Liang</creatorcontrib><creatorcontrib>Wang, Yu-De</creatorcontrib><creatorcontrib>Hung, Mien-Chie</creatorcontrib><creatorcontrib>Cheng, Wei-Chung</creatorcontrib><title>LipidSig 2.0: integrating lipid characteristic insights into advanced lipidomics data analysis</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>In the field of lipidomics, where the complexity of lipid structures and functions presents significant analytical challenges, LipidSig stands out as the first web-based platform providing integrated, comprehensive analysis for efficient data mining of lipidomic datasets. The upgraded LipidSig 2.0 (https://lipidsig.bioinfomics.org/) simplifies the process and empowers researchers to decipher the complex nature of lipids and link lipidomic data to specific characteristics and biological contexts. This tool markedly enhances the efficiency and depth of lipidomic research by autonomously identifying lipid species and assigning 29 comprehensive characteristics upon data entry. LipidSig 2.0 accommodates 24 data processing methods, streamlining diverse lipidomic datasets. The tool's expertise in automating intricate analytical processes, including data preprocessing, lipid ID annotation, differential expression, enrichment analysis, and network analysis, allows researchers to profoundly investigate lipid properties and their biological implications. Additional innovative features, such as the 'Network' function, offer a system biology perspective on lipid interactions, and the 'Multiple Group' analysis aids in examining complex experimental designs. With its comprehensive suite of features for analyzing and visualizing lipid properties, LipidSig 2.0 positions itself as an indispensable tool for advanced lipidomics research, paving the way for new insights into the role of lipids in cellular processes and disease development.</description><subject>Web Server Issue</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkUtLw0AURgdRbK2u3EuWgqTOI5lM3IgUX1BwoW4dbmYm6WgedWZa6L83obXo6i6-w3cv9yB0TvCU4Jxdt-Cuqy8wjKUHaEwYp3GSc3qIxpjhNCY4ESN04v0nxiQhaXKMRkxkOBciG6OPuV1a_WqriE7xTWTbYCoHwbZVVA9JpBbgQAXjrA9W9YC31SL4gewi0GtoldFbtmus8pGGABG0UG-89afoqITam7PdnKD3h_u32VM8f3l8nt3NY0UzHOIUiChoKVIsKDY005rRkpKEcV4qRnCZcaoKzkhOFKWJLoXiBSsSTYsUFypjE3S77V2uisZoZdrgoJZLZxtwG9mBlf-T1i5k1a0lIZQywZO-4XLX4LrvlfFBNtYrU9fQmm7lZf9KkrM8owN6tUWV67x3ptzvIVgOSmSvRO6U9PTF39P27K8D9gNfpoon</recordid><startdate>20240506</startdate><enddate>20240506</enddate><creator>Liu, Chia-Hsin</creator><creator>Shen, Pei-Chun</creator><creator>Lin, Wen-Jen</creator><creator>Liu, Hsiu-Cheng</creator><creator>Tsai, Meng-Hsin</creator><creator>Huang, Tzu-Ya</creator><creator>Chen, I-Chieh</creator><creator>Lai, Yo-Liang</creator><creator>Wang, Yu-De</creator><creator>Hung, Mien-Chie</creator><creator>Cheng, Wei-Chung</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1229-4857</orcidid></search><sort><creationdate>20240506</creationdate><title>LipidSig 2.0: integrating lipid characteristic insights into advanced lipidomics data analysis</title><author>Liu, Chia-Hsin ; Shen, Pei-Chun ; Lin, Wen-Jen ; Liu, Hsiu-Cheng ; Tsai, Meng-Hsin ; Huang, Tzu-Ya ; Chen, I-Chieh ; Lai, Yo-Liang ; Wang, Yu-De ; Hung, Mien-Chie ; Cheng, Wei-Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-5a18b2f850820e27dd32f214366fc310f762cb63191c224df8c6b3b4d2b50bc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Web Server Issue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chia-Hsin</creatorcontrib><creatorcontrib>Shen, Pei-Chun</creatorcontrib><creatorcontrib>Lin, Wen-Jen</creatorcontrib><creatorcontrib>Liu, Hsiu-Cheng</creatorcontrib><creatorcontrib>Tsai, Meng-Hsin</creatorcontrib><creatorcontrib>Huang, Tzu-Ya</creatorcontrib><creatorcontrib>Chen, I-Chieh</creatorcontrib><creatorcontrib>Lai, Yo-Liang</creatorcontrib><creatorcontrib>Wang, Yu-De</creatorcontrib><creatorcontrib>Hung, Mien-Chie</creatorcontrib><creatorcontrib>Cheng, Wei-Chung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chia-Hsin</au><au>Shen, Pei-Chun</au><au>Lin, Wen-Jen</au><au>Liu, Hsiu-Cheng</au><au>Tsai, Meng-Hsin</au><au>Huang, Tzu-Ya</au><au>Chen, I-Chieh</au><au>Lai, Yo-Liang</au><au>Wang, Yu-De</au><au>Hung, Mien-Chie</au><au>Cheng, Wei-Chung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LipidSig 2.0: integrating lipid characteristic insights into advanced lipidomics data analysis</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2024-05-06</date><risdate>2024</risdate><volume>52</volume><issue>W1</issue><spage>W390</spage><epage>W397</epage><pages>W390-W397</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>In the field of lipidomics, where the complexity of lipid structures and functions presents significant analytical challenges, LipidSig stands out as the first web-based platform providing integrated, comprehensive analysis for efficient data mining of lipidomic datasets. The upgraded LipidSig 2.0 (https://lipidsig.bioinfomics.org/) simplifies the process and empowers researchers to decipher the complex nature of lipids and link lipidomic data to specific characteristics and biological contexts. This tool markedly enhances the efficiency and depth of lipidomic research by autonomously identifying lipid species and assigning 29 comprehensive characteristics upon data entry. LipidSig 2.0 accommodates 24 data processing methods, streamlining diverse lipidomic datasets. The tool's expertise in automating intricate analytical processes, including data preprocessing, lipid ID annotation, differential expression, enrichment analysis, and network analysis, allows researchers to profoundly investigate lipid properties and their biological implications. Additional innovative features, such as the 'Network' function, offer a system biology perspective on lipid interactions, and the 'Multiple Group' analysis aids in examining complex experimental designs. With its comprehensive suite of features for analyzing and visualizing lipid properties, LipidSig 2.0 positions itself as an indispensable tool for advanced lipidomics research, paving the way for new insights into the role of lipids in cellular processes and disease development.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38709887</pmid><doi>10.1093/nar/gkae335</doi><orcidid>https://orcid.org/0000-0002-1229-4857</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2024-05, Vol.52 (W1), p.W390-W397
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11223864
source DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Web Server Issue
title LipidSig 2.0: integrating lipid characteristic insights into advanced lipidomics data analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LipidSig%202.0:%20integrating%20lipid%20characteristic%20insights%20into%20advanced%20lipidomics%20data%20analysis&rft.jtitle=Nucleic%20acids%20research&rft.au=Liu,%20Chia-Hsin&rft.date=2024-05-06&rft.volume=52&rft.issue=W1&rft.spage=W390&rft.epage=W397&rft.pages=W390-W397&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkae335&rft_dat=%3Cproquest_pubme%3E3051939724%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051939724&rft_id=info:pmid/38709887&rfr_iscdi=true