Biomechanical Characterization of Retinal Pigment Epitheliums Derived from hPSCs Using Atomic Force Microscopy
The retinal pigment epithelium (RPE), a multifunctional cell monolayer located at the back of the eye, plays a crucial role in the survival and homeostasis of photoreceptors. Dysfunction or death of RPE cells leads to retinal degeneration and subsequent vision loss, such as in Age-related macular de...
Gespeichert in:
Veröffentlicht in: | Stem cell reviews 2024-07, Vol.20 (5), p.1340-1352 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1352 |
---|---|
container_issue | 5 |
container_start_page | 1340 |
container_title | Stem cell reviews |
container_volume | 20 |
creator | Herardot, Elise Liboz, Maxime Lamour, Guillaume Malo, Michel Plancheron, Alexandra Habeler, Walter Geiger, Camille Frank, Elie Campillo, Clément Monville, Christelle Ben M’Barek, Karim |
description | The retinal pigment epithelium (RPE), a multifunctional cell monolayer located at the back of the eye, plays a crucial role in the survival and homeostasis of photoreceptors. Dysfunction or death of RPE cells leads to retinal degeneration and subsequent vision loss, such as in Age-related macular degeneration and some forms of Retinitis Pigmentosa. Therefore, regenerative medicine that aims to replace RPE cells by new cells obtained from the differentiation of human pluripotent stem cells, is the focus of intensive research. However, despite their critical interest in therapy, there is a lack of biomechanical RPE surface description. Such biomechanical properties are tightly related to their functions. Herein, we used atomic force microscopy (AFM) to analyze both the structural and mechanical properties of RPEs obtained from four cell lines and at different stages of epithelial formation. To characterize epitheliums, we used apical markers in immunofluorescence and showed the increase of transepithelial resistance, as well as the ability to secrete cytokines with an apico-basal polarity. Then, we used AFM to scan the apical surface of living or fixed RPE cells. We show that RPE monolayers underwent softening of apical cell center as well as stiffening of cell borders over epithelial formation. We also observed apical protrusions that depend on actin network, suggesting the formation of microvilli at the surface of RPE epitheliums. These RPE cell characteristics are essential for their functions into the retina and AFM studies may improve the characterization of the RPE epithelium suitable for cell therapy.
Graphical Abstract |
doi_str_mv | 10.1007/s12015-024-10717-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11222240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075494740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-c187e031850ee58058f8cac0c269376c7d8d81dacc0f065d3564e568bd891f103</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi0EolXpC7BAltjAInB8ie2s0DC0FGkQFdC15TrOxFUSD3YyUnl6nKYM0AXe2PL5zn8uP0LPCbwhAPJtIhRIWQDlBQFJZMEeoWMqaFUwKuXjw1tUR-g0pRsAoAx4znmKjpgSVDJOjtHw3ofe2dYM3poOr1sTjR1d9D_N6MOAQ4O_utEPOXbpt70bRny282PrOj_1CX_I5N7VuImhx-3lt3XCV8kPW7waQ-8tPg_ROvzZ2xiSDbvbZ-hJY7rkTu_vE3R1fvZ9fVFsvnz8tF5tCssFjIUlSjpgRJXgXKmgVI2yxoLN4zAprKxVrUhtrIUGRFmzUnBXCnVdq4o0BNgJerfo7qbr3tU29x1Np3fR9ybe6mC8_jcy-FZvw14TQvPhs8LrRaF9kHex2uj5D7ioQArYk8y-uq8Ww4_JpVH3PlnXdWZwYUp63jujoFSV0ZcP0JswxbzemZIlr7i8K04Xat5biq45dEBAz_brxX6d7dd39muWk178PfMh5bfZGWALkHJo2Lr4p_Z_ZH8Bf9-6WQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075494740</pqid></control><display><type>article</type><title>Biomechanical Characterization of Retinal Pigment Epitheliums Derived from hPSCs Using Atomic Force Microscopy</title><source>SpringerNature Journals</source><creator>Herardot, Elise ; Liboz, Maxime ; Lamour, Guillaume ; Malo, Michel ; Plancheron, Alexandra ; Habeler, Walter ; Geiger, Camille ; Frank, Elie ; Campillo, Clément ; Monville, Christelle ; Ben M’Barek, Karim</creator><creatorcontrib>Herardot, Elise ; Liboz, Maxime ; Lamour, Guillaume ; Malo, Michel ; Plancheron, Alexandra ; Habeler, Walter ; Geiger, Camille ; Frank, Elie ; Campillo, Clément ; Monville, Christelle ; Ben M’Barek, Karim</creatorcontrib><description>The retinal pigment epithelium (RPE), a multifunctional cell monolayer located at the back of the eye, plays a crucial role in the survival and homeostasis of photoreceptors. Dysfunction or death of RPE cells leads to retinal degeneration and subsequent vision loss, such as in Age-related macular degeneration and some forms of Retinitis Pigmentosa. Therefore, regenerative medicine that aims to replace RPE cells by new cells obtained from the differentiation of human pluripotent stem cells, is the focus of intensive research. However, despite their critical interest in therapy, there is a lack of biomechanical RPE surface description. Such biomechanical properties are tightly related to their functions. Herein, we used atomic force microscopy (AFM) to analyze both the structural and mechanical properties of RPEs obtained from four cell lines and at different stages of epithelial formation. To characterize epitheliums, we used apical markers in immunofluorescence and showed the increase of transepithelial resistance, as well as the ability to secrete cytokines with an apico-basal polarity. Then, we used AFM to scan the apical surface of living or fixed RPE cells. We show that RPE monolayers underwent softening of apical cell center as well as stiffening of cell borders over epithelial formation. We also observed apical protrusions that depend on actin network, suggesting the formation of microvilli at the surface of RPE epitheliums. These RPE cell characteristics are essential for their functions into the retina and AFM studies may improve the characterization of the RPE epithelium suitable for cell therapy.
Graphical Abstract</description><identifier>ISSN: 2629-3269</identifier><identifier>ISSN: 2629-3277</identifier><identifier>ISSN: 1550-8943</identifier><identifier>EISSN: 2629-3277</identifier><identifier>DOI: 10.1007/s12015-024-10717-3</identifier><identifier>PMID: 38627341</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Actin ; Age ; Atomic force microscopy ; Biomechanics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Cell Biology ; Cell death ; Cell differentiation ; Cell lines ; Cell therapy ; Chemical Sciences ; Epithelium ; Homeostasis ; Immunofluorescence ; Life Sciences ; Macular degeneration ; Mechanical properties ; Microscopy ; Photoreceptors ; Pluripotency ; Regenerative medicine ; Regenerative Medicine/Tissue Engineering ; Retina ; Retinal degeneration ; Retinal pigment epithelium ; Retinitis pigmentosa ; Stem Cells</subject><ispartof>Stem cell reviews, 2024-07, Vol.20 (5), p.1340-1352</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c460t-c187e031850ee58058f8cac0c269376c7d8d81dacc0f065d3564e568bd891f103</cites><orcidid>0000-0001-7091-6426 ; 0009-0000-8339-513X ; 0000-0003-4698-8643 ; 0000-0003-1256-5140 ; 0000-0002-2556-0325 ; 0000-0002-9331-5532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12015-024-10717-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12015-024-10717-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38627341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04690760$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Herardot, Elise</creatorcontrib><creatorcontrib>Liboz, Maxime</creatorcontrib><creatorcontrib>Lamour, Guillaume</creatorcontrib><creatorcontrib>Malo, Michel</creatorcontrib><creatorcontrib>Plancheron, Alexandra</creatorcontrib><creatorcontrib>Habeler, Walter</creatorcontrib><creatorcontrib>Geiger, Camille</creatorcontrib><creatorcontrib>Frank, Elie</creatorcontrib><creatorcontrib>Campillo, Clément</creatorcontrib><creatorcontrib>Monville, Christelle</creatorcontrib><creatorcontrib>Ben M’Barek, Karim</creatorcontrib><title>Biomechanical Characterization of Retinal Pigment Epitheliums Derived from hPSCs Using Atomic Force Microscopy</title><title>Stem cell reviews</title><addtitle>Stem Cell Rev and Rep</addtitle><addtitle>Stem Cell Rev Rep</addtitle><description>The retinal pigment epithelium (RPE), a multifunctional cell monolayer located at the back of the eye, plays a crucial role in the survival and homeostasis of photoreceptors. Dysfunction or death of RPE cells leads to retinal degeneration and subsequent vision loss, such as in Age-related macular degeneration and some forms of Retinitis Pigmentosa. Therefore, regenerative medicine that aims to replace RPE cells by new cells obtained from the differentiation of human pluripotent stem cells, is the focus of intensive research. However, despite their critical interest in therapy, there is a lack of biomechanical RPE surface description. Such biomechanical properties are tightly related to their functions. Herein, we used atomic force microscopy (AFM) to analyze both the structural and mechanical properties of RPEs obtained from four cell lines and at different stages of epithelial formation. To characterize epitheliums, we used apical markers in immunofluorescence and showed the increase of transepithelial resistance, as well as the ability to secrete cytokines with an apico-basal polarity. Then, we used AFM to scan the apical surface of living or fixed RPE cells. We show that RPE monolayers underwent softening of apical cell center as well as stiffening of cell borders over epithelial formation. We also observed apical protrusions that depend on actin network, suggesting the formation of microvilli at the surface of RPE epitheliums. These RPE cell characteristics are essential for their functions into the retina and AFM studies may improve the characterization of the RPE epithelium suitable for cell therapy.
Graphical Abstract</description><subject>Actin</subject><subject>Age</subject><subject>Atomic force microscopy</subject><subject>Biomechanics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Cell Biology</subject><subject>Cell death</subject><subject>Cell differentiation</subject><subject>Cell lines</subject><subject>Cell therapy</subject><subject>Chemical Sciences</subject><subject>Epithelium</subject><subject>Homeostasis</subject><subject>Immunofluorescence</subject><subject>Life Sciences</subject><subject>Macular degeneration</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Photoreceptors</subject><subject>Pluripotency</subject><subject>Regenerative medicine</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Retina</subject><subject>Retinal degeneration</subject><subject>Retinal pigment epithelium</subject><subject>Retinitis pigmentosa</subject><subject>Stem Cells</subject><issn>2629-3269</issn><issn>2629-3277</issn><issn>1550-8943</issn><issn>2629-3277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kctu1DAUhi0EolXpC7BAltjAInB8ie2s0DC0FGkQFdC15TrOxFUSD3YyUnl6nKYM0AXe2PL5zn8uP0LPCbwhAPJtIhRIWQDlBQFJZMEeoWMqaFUwKuXjw1tUR-g0pRsAoAx4znmKjpgSVDJOjtHw3ofe2dYM3poOr1sTjR1d9D_N6MOAQ4O_utEPOXbpt70bRny282PrOj_1CX_I5N7VuImhx-3lt3XCV8kPW7waQ-8tPg_ROvzZ2xiSDbvbZ-hJY7rkTu_vE3R1fvZ9fVFsvnz8tF5tCssFjIUlSjpgRJXgXKmgVI2yxoLN4zAprKxVrUhtrIUGRFmzUnBXCnVdq4o0BNgJerfo7qbr3tU29x1Np3fR9ybe6mC8_jcy-FZvw14TQvPhs8LrRaF9kHex2uj5D7ioQArYk8y-uq8Ww4_JpVH3PlnXdWZwYUp63jujoFSV0ZcP0JswxbzemZIlr7i8K04Xat5biq45dEBAz_brxX6d7dd39muWk178PfMh5bfZGWALkHJo2Lr4p_Z_ZH8Bf9-6WQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Herardot, Elise</creator><creator>Liboz, Maxime</creator><creator>Lamour, Guillaume</creator><creator>Malo, Michel</creator><creator>Plancheron, Alexandra</creator><creator>Habeler, Walter</creator><creator>Geiger, Camille</creator><creator>Frank, Elie</creator><creator>Campillo, Clément</creator><creator>Monville, Christelle</creator><creator>Ben M’Barek, Karim</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Humana Press</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7091-6426</orcidid><orcidid>https://orcid.org/0009-0000-8339-513X</orcidid><orcidid>https://orcid.org/0000-0003-4698-8643</orcidid><orcidid>https://orcid.org/0000-0003-1256-5140</orcidid><orcidid>https://orcid.org/0000-0002-2556-0325</orcidid><orcidid>https://orcid.org/0000-0002-9331-5532</orcidid></search><sort><creationdate>20240701</creationdate><title>Biomechanical Characterization of Retinal Pigment Epitheliums Derived from hPSCs Using Atomic Force Microscopy</title><author>Herardot, Elise ; Liboz, Maxime ; Lamour, Guillaume ; Malo, Michel ; Plancheron, Alexandra ; Habeler, Walter ; Geiger, Camille ; Frank, Elie ; Campillo, Clément ; Monville, Christelle ; Ben M’Barek, Karim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-c187e031850ee58058f8cac0c269376c7d8d81dacc0f065d3564e568bd891f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actin</topic><topic>Age</topic><topic>Atomic force microscopy</topic><topic>Biomechanics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Cell Biology</topic><topic>Cell death</topic><topic>Cell differentiation</topic><topic>Cell lines</topic><topic>Cell therapy</topic><topic>Chemical Sciences</topic><topic>Epithelium</topic><topic>Homeostasis</topic><topic>Immunofluorescence</topic><topic>Life Sciences</topic><topic>Macular degeneration</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Photoreceptors</topic><topic>Pluripotency</topic><topic>Regenerative medicine</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Retina</topic><topic>Retinal degeneration</topic><topic>Retinal pigment epithelium</topic><topic>Retinitis pigmentosa</topic><topic>Stem Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herardot, Elise</creatorcontrib><creatorcontrib>Liboz, Maxime</creatorcontrib><creatorcontrib>Lamour, Guillaume</creatorcontrib><creatorcontrib>Malo, Michel</creatorcontrib><creatorcontrib>Plancheron, Alexandra</creatorcontrib><creatorcontrib>Habeler, Walter</creatorcontrib><creatorcontrib>Geiger, Camille</creatorcontrib><creatorcontrib>Frank, Elie</creatorcontrib><creatorcontrib>Campillo, Clément</creatorcontrib><creatorcontrib>Monville, Christelle</creatorcontrib><creatorcontrib>Ben M’Barek, Karim</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Stem cell reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herardot, Elise</au><au>Liboz, Maxime</au><au>Lamour, Guillaume</au><au>Malo, Michel</au><au>Plancheron, Alexandra</au><au>Habeler, Walter</au><au>Geiger, Camille</au><au>Frank, Elie</au><au>Campillo, Clément</au><au>Monville, Christelle</au><au>Ben M’Barek, Karim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomechanical Characterization of Retinal Pigment Epitheliums Derived from hPSCs Using Atomic Force Microscopy</atitle><jtitle>Stem cell reviews</jtitle><stitle>Stem Cell Rev and Rep</stitle><addtitle>Stem Cell Rev Rep</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>20</volume><issue>5</issue><spage>1340</spage><epage>1352</epage><pages>1340-1352</pages><issn>2629-3269</issn><issn>2629-3277</issn><issn>1550-8943</issn><eissn>2629-3277</eissn><abstract>The retinal pigment epithelium (RPE), a multifunctional cell monolayer located at the back of the eye, plays a crucial role in the survival and homeostasis of photoreceptors. Dysfunction or death of RPE cells leads to retinal degeneration and subsequent vision loss, such as in Age-related macular degeneration and some forms of Retinitis Pigmentosa. Therefore, regenerative medicine that aims to replace RPE cells by new cells obtained from the differentiation of human pluripotent stem cells, is the focus of intensive research. However, despite their critical interest in therapy, there is a lack of biomechanical RPE surface description. Such biomechanical properties are tightly related to their functions. Herein, we used atomic force microscopy (AFM) to analyze both the structural and mechanical properties of RPEs obtained from four cell lines and at different stages of epithelial formation. To characterize epitheliums, we used apical markers in immunofluorescence and showed the increase of transepithelial resistance, as well as the ability to secrete cytokines with an apico-basal polarity. Then, we used AFM to scan the apical surface of living or fixed RPE cells. We show that RPE monolayers underwent softening of apical cell center as well as stiffening of cell borders over epithelial formation. We also observed apical protrusions that depend on actin network, suggesting the formation of microvilli at the surface of RPE epitheliums. These RPE cell characteristics are essential for their functions into the retina and AFM studies may improve the characterization of the RPE epithelium suitable for cell therapy.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><pmid>38627341</pmid><doi>10.1007/s12015-024-10717-3</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7091-6426</orcidid><orcidid>https://orcid.org/0009-0000-8339-513X</orcidid><orcidid>https://orcid.org/0000-0003-4698-8643</orcidid><orcidid>https://orcid.org/0000-0003-1256-5140</orcidid><orcidid>https://orcid.org/0000-0002-2556-0325</orcidid><orcidid>https://orcid.org/0000-0002-9331-5532</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2629-3269 |
ispartof | Stem cell reviews, 2024-07, Vol.20 (5), p.1340-1352 |
issn | 2629-3269 2629-3277 1550-8943 2629-3277 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11222240 |
source | SpringerNature Journals |
subjects | Actin Age Atomic force microscopy Biomechanics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Cell Biology Cell death Cell differentiation Cell lines Cell therapy Chemical Sciences Epithelium Homeostasis Immunofluorescence Life Sciences Macular degeneration Mechanical properties Microscopy Photoreceptors Pluripotency Regenerative medicine Regenerative Medicine/Tissue Engineering Retina Retinal degeneration Retinal pigment epithelium Retinitis pigmentosa Stem Cells |
title | Biomechanical Characterization of Retinal Pigment Epitheliums Derived from hPSCs Using Atomic Force Microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T11%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomechanical%20Characterization%20of%20Retinal%20Pigment%20Epitheliums%20Derived%20from%20hPSCs%20Using%20Atomic%20Force%20Microscopy&rft.jtitle=Stem%20cell%20reviews&rft.au=Herardot,%20Elise&rft.date=2024-07-01&rft.volume=20&rft.issue=5&rft.spage=1340&rft.epage=1352&rft.pages=1340-1352&rft.issn=2629-3269&rft.eissn=2629-3277&rft_id=info:doi/10.1007/s12015-024-10717-3&rft_dat=%3Cproquest_pubme%3E3075494740%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075494740&rft_id=info:pmid/38627341&rfr_iscdi=true |