Biomechanical Characterization of Retinal Pigment Epitheliums Derived from hPSCs Using Atomic Force Microscopy

The retinal pigment epithelium (RPE), a multifunctional cell monolayer located at the back of the eye, plays a crucial role in the survival and homeostasis of photoreceptors. Dysfunction or death of RPE cells leads to retinal degeneration and subsequent vision loss, such as in Age-related macular de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cell reviews 2024-07, Vol.20 (5), p.1340-1352
Hauptverfasser: Herardot, Elise, Liboz, Maxime, Lamour, Guillaume, Malo, Michel, Plancheron, Alexandra, Habeler, Walter, Geiger, Camille, Frank, Elie, Campillo, Clément, Monville, Christelle, Ben M’Barek, Karim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1352
container_issue 5
container_start_page 1340
container_title Stem cell reviews
container_volume 20
creator Herardot, Elise
Liboz, Maxime
Lamour, Guillaume
Malo, Michel
Plancheron, Alexandra
Habeler, Walter
Geiger, Camille
Frank, Elie
Campillo, Clément
Monville, Christelle
Ben M’Barek, Karim
description The retinal pigment epithelium (RPE), a multifunctional cell monolayer located at the back of the eye, plays a crucial role in the survival and homeostasis of photoreceptors. Dysfunction or death of RPE cells leads to retinal degeneration and subsequent vision loss, such as in Age-related macular degeneration and some forms of Retinitis Pigmentosa. Therefore, regenerative medicine that aims to replace RPE cells by new cells obtained from the differentiation of human pluripotent stem cells, is the focus of intensive research. However, despite their critical interest in therapy, there is a lack of biomechanical RPE surface description. Such biomechanical properties are tightly related to their functions. Herein, we used atomic force microscopy (AFM) to analyze both the structural and mechanical properties of RPEs obtained from four cell lines and at different stages of epithelial formation. To characterize epitheliums, we used apical markers in immunofluorescence and showed the increase of transepithelial resistance, as well as the ability to secrete cytokines with an apico-basal polarity. Then, we used AFM to scan the apical surface of living or fixed RPE cells. We show that RPE monolayers underwent softening of apical cell center as well as stiffening of cell borders over epithelial formation. We also observed apical protrusions that depend on actin network, suggesting the formation of microvilli at the surface of RPE epitheliums. These RPE cell characteristics are essential for their functions into the retina and AFM studies may improve the characterization of the RPE epithelium suitable for cell therapy. Graphical Abstract
doi_str_mv 10.1007/s12015-024-10717-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11222240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075494740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-c187e031850ee58058f8cac0c269376c7d8d81dacc0f065d3564e568bd891f103</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi0EolXpC7BAltjAInB8ie2s0DC0FGkQFdC15TrOxFUSD3YyUnl6nKYM0AXe2PL5zn8uP0LPCbwhAPJtIhRIWQDlBQFJZMEeoWMqaFUwKuXjw1tUR-g0pRsAoAx4znmKjpgSVDJOjtHw3ofe2dYM3poOr1sTjR1d9D_N6MOAQ4O_utEPOXbpt70bRny282PrOj_1CX_I5N7VuImhx-3lt3XCV8kPW7waQ-8tPg_ROvzZ2xiSDbvbZ-hJY7rkTu_vE3R1fvZ9fVFsvnz8tF5tCssFjIUlSjpgRJXgXKmgVI2yxoLN4zAprKxVrUhtrIUGRFmzUnBXCnVdq4o0BNgJerfo7qbr3tU29x1Np3fR9ybe6mC8_jcy-FZvw14TQvPhs8LrRaF9kHex2uj5D7ioQArYk8y-uq8Ww4_JpVH3PlnXdWZwYUp63jujoFSV0ZcP0JswxbzemZIlr7i8K04Xat5biq45dEBAz_brxX6d7dd39muWk178PfMh5bfZGWALkHJo2Lr4p_Z_ZH8Bf9-6WQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075494740</pqid></control><display><type>article</type><title>Biomechanical Characterization of Retinal Pigment Epitheliums Derived from hPSCs Using Atomic Force Microscopy</title><source>SpringerNature Journals</source><creator>Herardot, Elise ; Liboz, Maxime ; Lamour, Guillaume ; Malo, Michel ; Plancheron, Alexandra ; Habeler, Walter ; Geiger, Camille ; Frank, Elie ; Campillo, Clément ; Monville, Christelle ; Ben M’Barek, Karim</creator><creatorcontrib>Herardot, Elise ; Liboz, Maxime ; Lamour, Guillaume ; Malo, Michel ; Plancheron, Alexandra ; Habeler, Walter ; Geiger, Camille ; Frank, Elie ; Campillo, Clément ; Monville, Christelle ; Ben M’Barek, Karim</creatorcontrib><description>The retinal pigment epithelium (RPE), a multifunctional cell monolayer located at the back of the eye, plays a crucial role in the survival and homeostasis of photoreceptors. Dysfunction or death of RPE cells leads to retinal degeneration and subsequent vision loss, such as in Age-related macular degeneration and some forms of Retinitis Pigmentosa. Therefore, regenerative medicine that aims to replace RPE cells by new cells obtained from the differentiation of human pluripotent stem cells, is the focus of intensive research. However, despite their critical interest in therapy, there is a lack of biomechanical RPE surface description. Such biomechanical properties are tightly related to their functions. Herein, we used atomic force microscopy (AFM) to analyze both the structural and mechanical properties of RPEs obtained from four cell lines and at different stages of epithelial formation. To characterize epitheliums, we used apical markers in immunofluorescence and showed the increase of transepithelial resistance, as well as the ability to secrete cytokines with an apico-basal polarity. Then, we used AFM to scan the apical surface of living or fixed RPE cells. We show that RPE monolayers underwent softening of apical cell center as well as stiffening of cell borders over epithelial formation. We also observed apical protrusions that depend on actin network, suggesting the formation of microvilli at the surface of RPE epitheliums. These RPE cell characteristics are essential for their functions into the retina and AFM studies may improve the characterization of the RPE epithelium suitable for cell therapy. Graphical Abstract</description><identifier>ISSN: 2629-3269</identifier><identifier>ISSN: 2629-3277</identifier><identifier>ISSN: 1550-8943</identifier><identifier>EISSN: 2629-3277</identifier><identifier>DOI: 10.1007/s12015-024-10717-3</identifier><identifier>PMID: 38627341</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Actin ; Age ; Atomic force microscopy ; Biomechanics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Cell Biology ; Cell death ; Cell differentiation ; Cell lines ; Cell therapy ; Chemical Sciences ; Epithelium ; Homeostasis ; Immunofluorescence ; Life Sciences ; Macular degeneration ; Mechanical properties ; Microscopy ; Photoreceptors ; Pluripotency ; Regenerative medicine ; Regenerative Medicine/Tissue Engineering ; Retina ; Retinal degeneration ; Retinal pigment epithelium ; Retinitis pigmentosa ; Stem Cells</subject><ispartof>Stem cell reviews, 2024-07, Vol.20 (5), p.1340-1352</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c460t-c187e031850ee58058f8cac0c269376c7d8d81dacc0f065d3564e568bd891f103</cites><orcidid>0000-0001-7091-6426 ; 0009-0000-8339-513X ; 0000-0003-4698-8643 ; 0000-0003-1256-5140 ; 0000-0002-2556-0325 ; 0000-0002-9331-5532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12015-024-10717-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12015-024-10717-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38627341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04690760$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Herardot, Elise</creatorcontrib><creatorcontrib>Liboz, Maxime</creatorcontrib><creatorcontrib>Lamour, Guillaume</creatorcontrib><creatorcontrib>Malo, Michel</creatorcontrib><creatorcontrib>Plancheron, Alexandra</creatorcontrib><creatorcontrib>Habeler, Walter</creatorcontrib><creatorcontrib>Geiger, Camille</creatorcontrib><creatorcontrib>Frank, Elie</creatorcontrib><creatorcontrib>Campillo, Clément</creatorcontrib><creatorcontrib>Monville, Christelle</creatorcontrib><creatorcontrib>Ben M’Barek, Karim</creatorcontrib><title>Biomechanical Characterization of Retinal Pigment Epitheliums Derived from hPSCs Using Atomic Force Microscopy</title><title>Stem cell reviews</title><addtitle>Stem Cell Rev and Rep</addtitle><addtitle>Stem Cell Rev Rep</addtitle><description>The retinal pigment epithelium (RPE), a multifunctional cell monolayer located at the back of the eye, plays a crucial role in the survival and homeostasis of photoreceptors. Dysfunction or death of RPE cells leads to retinal degeneration and subsequent vision loss, such as in Age-related macular degeneration and some forms of Retinitis Pigmentosa. Therefore, regenerative medicine that aims to replace RPE cells by new cells obtained from the differentiation of human pluripotent stem cells, is the focus of intensive research. However, despite their critical interest in therapy, there is a lack of biomechanical RPE surface description. Such biomechanical properties are tightly related to their functions. Herein, we used atomic force microscopy (AFM) to analyze both the structural and mechanical properties of RPEs obtained from four cell lines and at different stages of epithelial formation. To characterize epitheliums, we used apical markers in immunofluorescence and showed the increase of transepithelial resistance, as well as the ability to secrete cytokines with an apico-basal polarity. Then, we used AFM to scan the apical surface of living or fixed RPE cells. We show that RPE monolayers underwent softening of apical cell center as well as stiffening of cell borders over epithelial formation. We also observed apical protrusions that depend on actin network, suggesting the formation of microvilli at the surface of RPE epitheliums. These RPE cell characteristics are essential for their functions into the retina and AFM studies may improve the characterization of the RPE epithelium suitable for cell therapy. Graphical Abstract</description><subject>Actin</subject><subject>Age</subject><subject>Atomic force microscopy</subject><subject>Biomechanics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Cell Biology</subject><subject>Cell death</subject><subject>Cell differentiation</subject><subject>Cell lines</subject><subject>Cell therapy</subject><subject>Chemical Sciences</subject><subject>Epithelium</subject><subject>Homeostasis</subject><subject>Immunofluorescence</subject><subject>Life Sciences</subject><subject>Macular degeneration</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Photoreceptors</subject><subject>Pluripotency</subject><subject>Regenerative medicine</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Retina</subject><subject>Retinal degeneration</subject><subject>Retinal pigment epithelium</subject><subject>Retinitis pigmentosa</subject><subject>Stem Cells</subject><issn>2629-3269</issn><issn>2629-3277</issn><issn>1550-8943</issn><issn>2629-3277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kctu1DAUhi0EolXpC7BAltjAInB8ie2s0DC0FGkQFdC15TrOxFUSD3YyUnl6nKYM0AXe2PL5zn8uP0LPCbwhAPJtIhRIWQDlBQFJZMEeoWMqaFUwKuXjw1tUR-g0pRsAoAx4znmKjpgSVDJOjtHw3ofe2dYM3poOr1sTjR1d9D_N6MOAQ4O_utEPOXbpt70bRny282PrOj_1CX_I5N7VuImhx-3lt3XCV8kPW7waQ-8tPg_ROvzZ2xiSDbvbZ-hJY7rkTu_vE3R1fvZ9fVFsvnz8tF5tCssFjIUlSjpgRJXgXKmgVI2yxoLN4zAprKxVrUhtrIUGRFmzUnBXCnVdq4o0BNgJerfo7qbr3tU29x1Np3fR9ybe6mC8_jcy-FZvw14TQvPhs8LrRaF9kHex2uj5D7ioQArYk8y-uq8Ww4_JpVH3PlnXdWZwYUp63jujoFSV0ZcP0JswxbzemZIlr7i8K04Xat5biq45dEBAz_brxX6d7dd39muWk178PfMh5bfZGWALkHJo2Lr4p_Z_ZH8Bf9-6WQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Herardot, Elise</creator><creator>Liboz, Maxime</creator><creator>Lamour, Guillaume</creator><creator>Malo, Michel</creator><creator>Plancheron, Alexandra</creator><creator>Habeler, Walter</creator><creator>Geiger, Camille</creator><creator>Frank, Elie</creator><creator>Campillo, Clément</creator><creator>Monville, Christelle</creator><creator>Ben M’Barek, Karim</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Humana Press</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7091-6426</orcidid><orcidid>https://orcid.org/0009-0000-8339-513X</orcidid><orcidid>https://orcid.org/0000-0003-4698-8643</orcidid><orcidid>https://orcid.org/0000-0003-1256-5140</orcidid><orcidid>https://orcid.org/0000-0002-2556-0325</orcidid><orcidid>https://orcid.org/0000-0002-9331-5532</orcidid></search><sort><creationdate>20240701</creationdate><title>Biomechanical Characterization of Retinal Pigment Epitheliums Derived from hPSCs Using Atomic Force Microscopy</title><author>Herardot, Elise ; Liboz, Maxime ; Lamour, Guillaume ; Malo, Michel ; Plancheron, Alexandra ; Habeler, Walter ; Geiger, Camille ; Frank, Elie ; Campillo, Clément ; Monville, Christelle ; Ben M’Barek, Karim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-c187e031850ee58058f8cac0c269376c7d8d81dacc0f065d3564e568bd891f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actin</topic><topic>Age</topic><topic>Atomic force microscopy</topic><topic>Biomechanics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Cell Biology</topic><topic>Cell death</topic><topic>Cell differentiation</topic><topic>Cell lines</topic><topic>Cell therapy</topic><topic>Chemical Sciences</topic><topic>Epithelium</topic><topic>Homeostasis</topic><topic>Immunofluorescence</topic><topic>Life Sciences</topic><topic>Macular degeneration</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Photoreceptors</topic><topic>Pluripotency</topic><topic>Regenerative medicine</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Retina</topic><topic>Retinal degeneration</topic><topic>Retinal pigment epithelium</topic><topic>Retinitis pigmentosa</topic><topic>Stem Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herardot, Elise</creatorcontrib><creatorcontrib>Liboz, Maxime</creatorcontrib><creatorcontrib>Lamour, Guillaume</creatorcontrib><creatorcontrib>Malo, Michel</creatorcontrib><creatorcontrib>Plancheron, Alexandra</creatorcontrib><creatorcontrib>Habeler, Walter</creatorcontrib><creatorcontrib>Geiger, Camille</creatorcontrib><creatorcontrib>Frank, Elie</creatorcontrib><creatorcontrib>Campillo, Clément</creatorcontrib><creatorcontrib>Monville, Christelle</creatorcontrib><creatorcontrib>Ben M’Barek, Karim</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Stem cell reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herardot, Elise</au><au>Liboz, Maxime</au><au>Lamour, Guillaume</au><au>Malo, Michel</au><au>Plancheron, Alexandra</au><au>Habeler, Walter</au><au>Geiger, Camille</au><au>Frank, Elie</au><au>Campillo, Clément</au><au>Monville, Christelle</au><au>Ben M’Barek, Karim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomechanical Characterization of Retinal Pigment Epitheliums Derived from hPSCs Using Atomic Force Microscopy</atitle><jtitle>Stem cell reviews</jtitle><stitle>Stem Cell Rev and Rep</stitle><addtitle>Stem Cell Rev Rep</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>20</volume><issue>5</issue><spage>1340</spage><epage>1352</epage><pages>1340-1352</pages><issn>2629-3269</issn><issn>2629-3277</issn><issn>1550-8943</issn><eissn>2629-3277</eissn><abstract>The retinal pigment epithelium (RPE), a multifunctional cell monolayer located at the back of the eye, plays a crucial role in the survival and homeostasis of photoreceptors. Dysfunction or death of RPE cells leads to retinal degeneration and subsequent vision loss, such as in Age-related macular degeneration and some forms of Retinitis Pigmentosa. Therefore, regenerative medicine that aims to replace RPE cells by new cells obtained from the differentiation of human pluripotent stem cells, is the focus of intensive research. However, despite their critical interest in therapy, there is a lack of biomechanical RPE surface description. Such biomechanical properties are tightly related to their functions. Herein, we used atomic force microscopy (AFM) to analyze both the structural and mechanical properties of RPEs obtained from four cell lines and at different stages of epithelial formation. To characterize epitheliums, we used apical markers in immunofluorescence and showed the increase of transepithelial resistance, as well as the ability to secrete cytokines with an apico-basal polarity. Then, we used AFM to scan the apical surface of living or fixed RPE cells. We show that RPE monolayers underwent softening of apical cell center as well as stiffening of cell borders over epithelial formation. We also observed apical protrusions that depend on actin network, suggesting the formation of microvilli at the surface of RPE epitheliums. These RPE cell characteristics are essential for their functions into the retina and AFM studies may improve the characterization of the RPE epithelium suitable for cell therapy. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><pmid>38627341</pmid><doi>10.1007/s12015-024-10717-3</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7091-6426</orcidid><orcidid>https://orcid.org/0009-0000-8339-513X</orcidid><orcidid>https://orcid.org/0000-0003-4698-8643</orcidid><orcidid>https://orcid.org/0000-0003-1256-5140</orcidid><orcidid>https://orcid.org/0000-0002-2556-0325</orcidid><orcidid>https://orcid.org/0000-0002-9331-5532</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2629-3269
ispartof Stem cell reviews, 2024-07, Vol.20 (5), p.1340-1352
issn 2629-3269
2629-3277
1550-8943
2629-3277
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11222240
source SpringerNature Journals
subjects Actin
Age
Atomic force microscopy
Biomechanics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Cell Biology
Cell death
Cell differentiation
Cell lines
Cell therapy
Chemical Sciences
Epithelium
Homeostasis
Immunofluorescence
Life Sciences
Macular degeneration
Mechanical properties
Microscopy
Photoreceptors
Pluripotency
Regenerative medicine
Regenerative Medicine/Tissue Engineering
Retina
Retinal degeneration
Retinal pigment epithelium
Retinitis pigmentosa
Stem Cells
title Biomechanical Characterization of Retinal Pigment Epitheliums Derived from hPSCs Using Atomic Force Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T11%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomechanical%20Characterization%20of%20Retinal%20Pigment%20Epitheliums%20Derived%20from%20hPSCs%20Using%20Atomic%20Force%20Microscopy&rft.jtitle=Stem%20cell%20reviews&rft.au=Herardot,%20Elise&rft.date=2024-07-01&rft.volume=20&rft.issue=5&rft.spage=1340&rft.epage=1352&rft.pages=1340-1352&rft.issn=2629-3269&rft.eissn=2629-3277&rft_id=info:doi/10.1007/s12015-024-10717-3&rft_dat=%3Cproquest_pubme%3E3075494740%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075494740&rft_id=info:pmid/38627341&rfr_iscdi=true