Thermophobic Trehalose Glycopolymers as Smart C‐Type Lectin Receptor Vaccine Adjuvants
Herein, this work reports the first synthetic vaccine adjuvants that attenuate potency in response to small, 1–2 °C changes in temperature about their lower critical solution temperature (LCST). Adjuvant additives significantly increase vaccine efficacy. However, adjuvants also cause inflammatory si...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2023-07, Vol.12 (19), p.e2202918-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 19 |
container_start_page | e2202918 |
container_title | Advanced healthcare materials |
container_volume | 12 |
creator | Hendricksen, Aaron T. Ezzatpour, Shahrzad Pulukuri, Anunay J. Ryan, Austin T. Flanagan, Tatum J. Frantz, William Buchholz, David W. Ortega, Victoria Monreal, Isaac A. Sahler, Julie M. Nielsen, Amy E. Aguilar, Hector C. Mancini, Rock J. |
description | Herein, this work reports the first synthetic vaccine adjuvants that attenuate potency in response to small, 1–2 °C changes in temperature about their lower critical solution temperature (LCST). Adjuvant additives significantly increase vaccine efficacy. However, adjuvants also cause inflammatory side effects, such as pyrexia, which currently limits their use. To address this, a thermophobic vaccine adjuvant engineered to attenuate potency at temperatures correlating to pyrexia is created. Thermophobic adjuvants are synthesized by combining a rationally designed trehalose glycolipid vaccine adjuvant with thermoresponsive poly‐N‐isoporpylacrylamide (NIPAM) via reversible addition fragmentation chain transfer (RAFT) polymerization. The resulting thermophobic adjuvants exhibit LCSTs near 37 °C, and self‐assembled into nanoparticles with temperature‐dependent sizes (90–270 nm). Thermophobic adjuvants activate HEK‐mMINCLE and other innate immune cell lines as well as primary mouse bone marrow derived dendritic cells (BMDCs) and bone marrow derived macrophages (BMDMs). Inflammatory cytokine production is attenuated under conditions mimicking pyrexia (above the LCST) relative to homeostasis (37 °C) or below the LCST. This thermophobic behavior correlated with decreased adjuvant Rg is observed by DLS, as well as glycolipid‐NIPAM shielding interactions are observed by NOESY‐NMR. In vivo, thermophobic adjuvants enhance efficacy of a whole inactivated influenza A/California/04/2009 virus vaccine, by increasing neutralizing antibody titers and CD4+/44+/62L+ lung and lymph node central memory T cells, as well as providing better protection from morbidity after viral challenge relative to unadjuvanted control vaccine. Together, these results demonstrate the first adjuvants with potency regulated by temperature. This work envisions that with further investigation, this approach can enhance vaccine efficacy while maintaining safety.
This work describes the first synthetic thermophobic vaccine adjuvants with activity inversely linked to changes in temperature on the scale of pyrexia. A trehalose glycolipid copolymerized with N‐isopropylacrylamide provides adjuvants that attenuate potency above their lower critical solution temperatures yet are effective vaccine adjuvants in vivo. Modulating adjuvant activity with temperature can overcome inflammatory side effects commonly associated with adjuvants in vaccine formulations. |
doi_str_mv | 10.1002/adhm.202202918 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11212414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793985345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4248-71d39d1ee77cb7a13b3616d3f45473d582cb352ce642208dd3c8acb93fdf9f1f3</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi0EolXplSOyxIXLLvGfxPYJrbbQVlqEVBbEzXLsCckqiYOdFOXGI_QZ-yR1tWWhXLBG8kjzm0_z6UPoJcmWJMvoW-PqbkkzmkoR-QQdU6Logha5enroeXaETmPcZekVOSkkeY6OmEjrQopj9G1bQ-j8UPuysXgboDatj4DP29n6wbdzByFiE_HnzoQRr29_3WznAfAG7Nj0-AosDKMP-KuxtukBr9xuujb9GF-gZ5VpI5w-_Cfoy4f32_XFYvPp_HK92iwsp1wuBHFMOQIghC2FIaxkBSkcq3jOBXO5pLZkObVQ8GRTOsesNLZUrHKVqkjFTtC7ve4wlR04C_0YTKuH0KSDZ-1Nox9P-qbW3_21JoQSyglPCm8eFIL_MUEcdddEC21revBT1FQopmTOeJ7Q1_-gOz-FPvnTVHLKGBNCJmq5p2zwMQaoDteQTN8Hp--D04fg0sKrvz0c8N8xJUDtgZ9NC_N_5PTq7OLjH_E7xsGmfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842333778</pqid></control><display><type>article</type><title>Thermophobic Trehalose Glycopolymers as Smart C‐Type Lectin Receptor Vaccine Adjuvants</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Hendricksen, Aaron T. ; Ezzatpour, Shahrzad ; Pulukuri, Anunay J. ; Ryan, Austin T. ; Flanagan, Tatum J. ; Frantz, William ; Buchholz, David W. ; Ortega, Victoria ; Monreal, Isaac A. ; Sahler, Julie M. ; Nielsen, Amy E. ; Aguilar, Hector C. ; Mancini, Rock J.</creator><creatorcontrib>Hendricksen, Aaron T. ; Ezzatpour, Shahrzad ; Pulukuri, Anunay J. ; Ryan, Austin T. ; Flanagan, Tatum J. ; Frantz, William ; Buchholz, David W. ; Ortega, Victoria ; Monreal, Isaac A. ; Sahler, Julie M. ; Nielsen, Amy E. ; Aguilar, Hector C. ; Mancini, Rock J.</creatorcontrib><description>Herein, this work reports the first synthetic vaccine adjuvants that attenuate potency in response to small, 1–2 °C changes in temperature about their lower critical solution temperature (LCST). Adjuvant additives significantly increase vaccine efficacy. However, adjuvants also cause inflammatory side effects, such as pyrexia, which currently limits their use. To address this, a thermophobic vaccine adjuvant engineered to attenuate potency at temperatures correlating to pyrexia is created. Thermophobic adjuvants are synthesized by combining a rationally designed trehalose glycolipid vaccine adjuvant with thermoresponsive poly‐N‐isoporpylacrylamide (NIPAM) via reversible addition fragmentation chain transfer (RAFT) polymerization. The resulting thermophobic adjuvants exhibit LCSTs near 37 °C, and self‐assembled into nanoparticles with temperature‐dependent sizes (90–270 nm). Thermophobic adjuvants activate HEK‐mMINCLE and other innate immune cell lines as well as primary mouse bone marrow derived dendritic cells (BMDCs) and bone marrow derived macrophages (BMDMs). Inflammatory cytokine production is attenuated under conditions mimicking pyrexia (above the LCST) relative to homeostasis (37 °C) or below the LCST. This thermophobic behavior correlated with decreased adjuvant Rg is observed by DLS, as well as glycolipid‐NIPAM shielding interactions are observed by NOESY‐NMR. In vivo, thermophobic adjuvants enhance efficacy of a whole inactivated influenza A/California/04/2009 virus vaccine, by increasing neutralizing antibody titers and CD4+/44+/62L+ lung and lymph node central memory T cells, as well as providing better protection from morbidity after viral challenge relative to unadjuvanted control vaccine. Together, these results demonstrate the first adjuvants with potency regulated by temperature. This work envisions that with further investigation, this approach can enhance vaccine efficacy while maintaining safety.
This work describes the first synthetic thermophobic vaccine adjuvants with activity inversely linked to changes in temperature on the scale of pyrexia. A trehalose glycolipid copolymerized with N‐isopropylacrylamide provides adjuvants that attenuate potency above their lower critical solution temperatures yet are effective vaccine adjuvants in vivo. Modulating adjuvant activity with temperature can overcome inflammatory side effects commonly associated with adjuvants in vaccine formulations.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202202918</identifier><identifier>PMID: 37002787</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Addition polymerization ; Additives ; Adjuvants ; Adjuvants, Immunologic - chemistry ; Adjuvants, Immunologic - pharmacology ; Adjuvants, Vaccine ; Animals ; Antibodies ; Antibodies, Viral ; Attenuation ; Bone marrow ; CD4 antigen ; Cell lines ; Chain transfer ; cord factors ; C‐type lectin receptors ; Dendritic cells ; Effectiveness ; Fever ; Glycolipids - chemistry ; Glycolipids - pharmacology ; Glycopolymers ; Homeostasis ; Immune system ; Immunological memory ; Inflammation ; Influenza A ; Lectins, C-Type - metabolism ; Lymph nodes ; Lymphocytes ; Lymphocytes T ; Macrophages ; Memory cells ; Mice ; MINCLE ; Morbidity ; Nanoparticles ; NMR ; Nuclear magnetic resonance ; Self-assembly ; Side effects ; Temperature ; Temperature dependence ; thermoresponsive polymers ; Trehalose ; Trehalose - chemistry ; Trehalose - pharmacology ; Vaccine efficacy ; Vaccines</subject><ispartof>Advanced healthcare materials, 2023-07, Vol.12 (19), p.e2202918-n/a</ispartof><rights>2023 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4248-71d39d1ee77cb7a13b3616d3f45473d582cb352ce642208dd3c8acb93fdf9f1f3</cites><orcidid>0000-0002-7393-4846 ; 0000-0001-6879-8360 ; 0000-0002-3557-8123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202202918$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202202918$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37002787$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hendricksen, Aaron T.</creatorcontrib><creatorcontrib>Ezzatpour, Shahrzad</creatorcontrib><creatorcontrib>Pulukuri, Anunay J.</creatorcontrib><creatorcontrib>Ryan, Austin T.</creatorcontrib><creatorcontrib>Flanagan, Tatum J.</creatorcontrib><creatorcontrib>Frantz, William</creatorcontrib><creatorcontrib>Buchholz, David W.</creatorcontrib><creatorcontrib>Ortega, Victoria</creatorcontrib><creatorcontrib>Monreal, Isaac A.</creatorcontrib><creatorcontrib>Sahler, Julie M.</creatorcontrib><creatorcontrib>Nielsen, Amy E.</creatorcontrib><creatorcontrib>Aguilar, Hector C.</creatorcontrib><creatorcontrib>Mancini, Rock J.</creatorcontrib><title>Thermophobic Trehalose Glycopolymers as Smart C‐Type Lectin Receptor Vaccine Adjuvants</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Herein, this work reports the first synthetic vaccine adjuvants that attenuate potency in response to small, 1–2 °C changes in temperature about their lower critical solution temperature (LCST). Adjuvant additives significantly increase vaccine efficacy. However, adjuvants also cause inflammatory side effects, such as pyrexia, which currently limits their use. To address this, a thermophobic vaccine adjuvant engineered to attenuate potency at temperatures correlating to pyrexia is created. Thermophobic adjuvants are synthesized by combining a rationally designed trehalose glycolipid vaccine adjuvant with thermoresponsive poly‐N‐isoporpylacrylamide (NIPAM) via reversible addition fragmentation chain transfer (RAFT) polymerization. The resulting thermophobic adjuvants exhibit LCSTs near 37 °C, and self‐assembled into nanoparticles with temperature‐dependent sizes (90–270 nm). Thermophobic adjuvants activate HEK‐mMINCLE and other innate immune cell lines as well as primary mouse bone marrow derived dendritic cells (BMDCs) and bone marrow derived macrophages (BMDMs). Inflammatory cytokine production is attenuated under conditions mimicking pyrexia (above the LCST) relative to homeostasis (37 °C) or below the LCST. This thermophobic behavior correlated with decreased adjuvant Rg is observed by DLS, as well as glycolipid‐NIPAM shielding interactions are observed by NOESY‐NMR. In vivo, thermophobic adjuvants enhance efficacy of a whole inactivated influenza A/California/04/2009 virus vaccine, by increasing neutralizing antibody titers and CD4+/44+/62L+ lung and lymph node central memory T cells, as well as providing better protection from morbidity after viral challenge relative to unadjuvanted control vaccine. Together, these results demonstrate the first adjuvants with potency regulated by temperature. This work envisions that with further investigation, this approach can enhance vaccine efficacy while maintaining safety.
This work describes the first synthetic thermophobic vaccine adjuvants with activity inversely linked to changes in temperature on the scale of pyrexia. A trehalose glycolipid copolymerized with N‐isopropylacrylamide provides adjuvants that attenuate potency above their lower critical solution temperatures yet are effective vaccine adjuvants in vivo. Modulating adjuvant activity with temperature can overcome inflammatory side effects commonly associated with adjuvants in vaccine formulations.</description><subject>Addition polymerization</subject><subject>Additives</subject><subject>Adjuvants</subject><subject>Adjuvants, Immunologic - chemistry</subject><subject>Adjuvants, Immunologic - pharmacology</subject><subject>Adjuvants, Vaccine</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antibodies, Viral</subject><subject>Attenuation</subject><subject>Bone marrow</subject><subject>CD4 antigen</subject><subject>Cell lines</subject><subject>Chain transfer</subject><subject>cord factors</subject><subject>C‐type lectin receptors</subject><subject>Dendritic cells</subject><subject>Effectiveness</subject><subject>Fever</subject><subject>Glycolipids - chemistry</subject><subject>Glycolipids - pharmacology</subject><subject>Glycopolymers</subject><subject>Homeostasis</subject><subject>Immune system</subject><subject>Immunological memory</subject><subject>Inflammation</subject><subject>Influenza A</subject><subject>Lectins, C-Type - metabolism</subject><subject>Lymph nodes</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Macrophages</subject><subject>Memory cells</subject><subject>Mice</subject><subject>MINCLE</subject><subject>Morbidity</subject><subject>Nanoparticles</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Self-assembly</subject><subject>Side effects</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>thermoresponsive polymers</subject><subject>Trehalose</subject><subject>Trehalose - chemistry</subject><subject>Trehalose - pharmacology</subject><subject>Vaccine efficacy</subject><subject>Vaccines</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQxi0EolXplSOyxIXLLvGfxPYJrbbQVlqEVBbEzXLsCckqiYOdFOXGI_QZ-yR1tWWhXLBG8kjzm0_z6UPoJcmWJMvoW-PqbkkzmkoR-QQdU6Logha5enroeXaETmPcZekVOSkkeY6OmEjrQopj9G1bQ-j8UPuysXgboDatj4DP29n6wbdzByFiE_HnzoQRr29_3WznAfAG7Nj0-AosDKMP-KuxtukBr9xuujb9GF-gZ5VpI5w-_Cfoy4f32_XFYvPp_HK92iwsp1wuBHFMOQIghC2FIaxkBSkcq3jOBXO5pLZkObVQ8GRTOsesNLZUrHKVqkjFTtC7ve4wlR04C_0YTKuH0KSDZ-1Nox9P-qbW3_21JoQSyglPCm8eFIL_MUEcdddEC21revBT1FQopmTOeJ7Q1_-gOz-FPvnTVHLKGBNCJmq5p2zwMQaoDteQTN8Hp--D04fg0sKrvz0c8N8xJUDtgZ9NC_N_5PTq7OLjH_E7xsGmfQ</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Hendricksen, Aaron T.</creator><creator>Ezzatpour, Shahrzad</creator><creator>Pulukuri, Anunay J.</creator><creator>Ryan, Austin T.</creator><creator>Flanagan, Tatum J.</creator><creator>Frantz, William</creator><creator>Buchholz, David W.</creator><creator>Ortega, Victoria</creator><creator>Monreal, Isaac A.</creator><creator>Sahler, Julie M.</creator><creator>Nielsen, Amy E.</creator><creator>Aguilar, Hector C.</creator><creator>Mancini, Rock J.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7393-4846</orcidid><orcidid>https://orcid.org/0000-0001-6879-8360</orcidid><orcidid>https://orcid.org/0000-0002-3557-8123</orcidid></search><sort><creationdate>20230701</creationdate><title>Thermophobic Trehalose Glycopolymers as Smart C‐Type Lectin Receptor Vaccine Adjuvants</title><author>Hendricksen, Aaron T. ; Ezzatpour, Shahrzad ; Pulukuri, Anunay J. ; Ryan, Austin T. ; Flanagan, Tatum J. ; Frantz, William ; Buchholz, David W. ; Ortega, Victoria ; Monreal, Isaac A. ; Sahler, Julie M. ; Nielsen, Amy E. ; Aguilar, Hector C. ; Mancini, Rock J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4248-71d39d1ee77cb7a13b3616d3f45473d582cb352ce642208dd3c8acb93fdf9f1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Addition polymerization</topic><topic>Additives</topic><topic>Adjuvants</topic><topic>Adjuvants, Immunologic - chemistry</topic><topic>Adjuvants, Immunologic - pharmacology</topic><topic>Adjuvants, Vaccine</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antibodies, Viral</topic><topic>Attenuation</topic><topic>Bone marrow</topic><topic>CD4 antigen</topic><topic>Cell lines</topic><topic>Chain transfer</topic><topic>cord factors</topic><topic>C‐type lectin receptors</topic><topic>Dendritic cells</topic><topic>Effectiveness</topic><topic>Fever</topic><topic>Glycolipids - chemistry</topic><topic>Glycolipids - pharmacology</topic><topic>Glycopolymers</topic><topic>Homeostasis</topic><topic>Immune system</topic><topic>Immunological memory</topic><topic>Inflammation</topic><topic>Influenza A</topic><topic>Lectins, C-Type - metabolism</topic><topic>Lymph nodes</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Macrophages</topic><topic>Memory cells</topic><topic>Mice</topic><topic>MINCLE</topic><topic>Morbidity</topic><topic>Nanoparticles</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Self-assembly</topic><topic>Side effects</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>thermoresponsive polymers</topic><topic>Trehalose</topic><topic>Trehalose - chemistry</topic><topic>Trehalose - pharmacology</topic><topic>Vaccine efficacy</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendricksen, Aaron T.</creatorcontrib><creatorcontrib>Ezzatpour, Shahrzad</creatorcontrib><creatorcontrib>Pulukuri, Anunay J.</creatorcontrib><creatorcontrib>Ryan, Austin T.</creatorcontrib><creatorcontrib>Flanagan, Tatum J.</creatorcontrib><creatorcontrib>Frantz, William</creatorcontrib><creatorcontrib>Buchholz, David W.</creatorcontrib><creatorcontrib>Ortega, Victoria</creatorcontrib><creatorcontrib>Monreal, Isaac A.</creatorcontrib><creatorcontrib>Sahler, Julie M.</creatorcontrib><creatorcontrib>Nielsen, Amy E.</creatorcontrib><creatorcontrib>Aguilar, Hector C.</creatorcontrib><creatorcontrib>Mancini, Rock J.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hendricksen, Aaron T.</au><au>Ezzatpour, Shahrzad</au><au>Pulukuri, Anunay J.</au><au>Ryan, Austin T.</au><au>Flanagan, Tatum J.</au><au>Frantz, William</au><au>Buchholz, David W.</au><au>Ortega, Victoria</au><au>Monreal, Isaac A.</au><au>Sahler, Julie M.</au><au>Nielsen, Amy E.</au><au>Aguilar, Hector C.</au><au>Mancini, Rock J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermophobic Trehalose Glycopolymers as Smart C‐Type Lectin Receptor Vaccine Adjuvants</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>12</volume><issue>19</issue><spage>e2202918</spage><epage>n/a</epage><pages>e2202918-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>Herein, this work reports the first synthetic vaccine adjuvants that attenuate potency in response to small, 1–2 °C changes in temperature about their lower critical solution temperature (LCST). Adjuvant additives significantly increase vaccine efficacy. However, adjuvants also cause inflammatory side effects, such as pyrexia, which currently limits their use. To address this, a thermophobic vaccine adjuvant engineered to attenuate potency at temperatures correlating to pyrexia is created. Thermophobic adjuvants are synthesized by combining a rationally designed trehalose glycolipid vaccine adjuvant with thermoresponsive poly‐N‐isoporpylacrylamide (NIPAM) via reversible addition fragmentation chain transfer (RAFT) polymerization. The resulting thermophobic adjuvants exhibit LCSTs near 37 °C, and self‐assembled into nanoparticles with temperature‐dependent sizes (90–270 nm). Thermophobic adjuvants activate HEK‐mMINCLE and other innate immune cell lines as well as primary mouse bone marrow derived dendritic cells (BMDCs) and bone marrow derived macrophages (BMDMs). Inflammatory cytokine production is attenuated under conditions mimicking pyrexia (above the LCST) relative to homeostasis (37 °C) or below the LCST. This thermophobic behavior correlated with decreased adjuvant Rg is observed by DLS, as well as glycolipid‐NIPAM shielding interactions are observed by NOESY‐NMR. In vivo, thermophobic adjuvants enhance efficacy of a whole inactivated influenza A/California/04/2009 virus vaccine, by increasing neutralizing antibody titers and CD4+/44+/62L+ lung and lymph node central memory T cells, as well as providing better protection from morbidity after viral challenge relative to unadjuvanted control vaccine. Together, these results demonstrate the first adjuvants with potency regulated by temperature. This work envisions that with further investigation, this approach can enhance vaccine efficacy while maintaining safety.
This work describes the first synthetic thermophobic vaccine adjuvants with activity inversely linked to changes in temperature on the scale of pyrexia. A trehalose glycolipid copolymerized with N‐isopropylacrylamide provides adjuvants that attenuate potency above their lower critical solution temperatures yet are effective vaccine adjuvants in vivo. Modulating adjuvant activity with temperature can overcome inflammatory side effects commonly associated with adjuvants in vaccine formulations.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37002787</pmid><doi>10.1002/adhm.202202918</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7393-4846</orcidid><orcidid>https://orcid.org/0000-0001-6879-8360</orcidid><orcidid>https://orcid.org/0000-0002-3557-8123</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2023-07, Vol.12 (19), p.e2202918-n/a |
issn | 2192-2640 2192-2659 2192-2659 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11212414 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Addition polymerization Additives Adjuvants Adjuvants, Immunologic - chemistry Adjuvants, Immunologic - pharmacology Adjuvants, Vaccine Animals Antibodies Antibodies, Viral Attenuation Bone marrow CD4 antigen Cell lines Chain transfer cord factors C‐type lectin receptors Dendritic cells Effectiveness Fever Glycolipids - chemistry Glycolipids - pharmacology Glycopolymers Homeostasis Immune system Immunological memory Inflammation Influenza A Lectins, C-Type - metabolism Lymph nodes Lymphocytes Lymphocytes T Macrophages Memory cells Mice MINCLE Morbidity Nanoparticles NMR Nuclear magnetic resonance Self-assembly Side effects Temperature Temperature dependence thermoresponsive polymers Trehalose Trehalose - chemistry Trehalose - pharmacology Vaccine efficacy Vaccines |
title | Thermophobic Trehalose Glycopolymers as Smart C‐Type Lectin Receptor Vaccine Adjuvants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A32%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermophobic%20Trehalose%20Glycopolymers%20as%20Smart%20C%E2%80%90Type%20Lectin%20Receptor%20Vaccine%20Adjuvants&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Hendricksen,%20Aaron%20T.&rft.date=2023-07-01&rft.volume=12&rft.issue=19&rft.spage=e2202918&rft.epage=n/a&rft.pages=e2202918-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202202918&rft_dat=%3Cproquest_pubme%3E2793985345%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842333778&rft_id=info:pmid/37002787&rfr_iscdi=true |