Toward the Scalable, Rapid, Reproducible, and Cost-Effective Synthesis of Personalized Nanomedicines at the Point of Care

Organic nanoparticles are used in nanomedicine, including for cancer treatment and some types of COVID-19 vaccines. Here, we demonstrate the scalable, rapid, reproducible, and cost-effective synthesis of three model organic nanoparticle formulations relevant to nanomedicine applications. We employed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-01, Vol.24 (3), p.920-928
Hauptverfasser: Young, Hamilton, He, Yuxin, Joo, Bryan, Ferguson, Sam, Demko, Amberlynn, Butterfield, Sarah K., Lowe, James, Mjema, Nathan F., Sheth, Vinit, Whitehead, Luke, Ruiz-Echevarria, Maria J., Wilhelm, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 928
container_issue 3
container_start_page 920
container_title Nano letters
container_volume 24
creator Young, Hamilton
He, Yuxin
Joo, Bryan
Ferguson, Sam
Demko, Amberlynn
Butterfield, Sarah K.
Lowe, James
Mjema, Nathan F.
Sheth, Vinit
Whitehead, Luke
Ruiz-Echevarria, Maria J.
Wilhelm, Stefan
description Organic nanoparticles are used in nanomedicine, including for cancer treatment and some types of COVID-19 vaccines. Here, we demonstrate the scalable, rapid, reproducible, and cost-effective synthesis of three model organic nanoparticle formulations relevant to nanomedicine applications. We employed a custom-made, low-cost fluid mixer device constructed from a commercially available three-dimensional printer. We investigated how systematically changing aqueous and organic volumetric flow rate ratios determined liposome, polymer nanoparticle, and solid lipid nanoparticle sizes, size distributions, and payload encapsulation efficiencies. By manipulating inlet volumes, we synthesized organic nanoparticles with encapsulation efficiencies approaching 100% for RNA-based payloads. The synthesized organic nanoparticles were safe and effective at the cell culture level, as demonstrated by various assays. Such cost-effective synthesis approaches could potentially increase the accessibility to clinically relevant organic nanoparticle formulations for personalized nanomedicine applications at the point of care, especially in nonhospital and low-resource settings.
doi_str_mv 10.1021/acs.nanolett.3c04171
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11211002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918197001</sourcerecordid><originalsourceid>FETCH-LOGICAL-a450t-d7de68ec1229b5bf96eaf2e5992a5db3060e6d07669fd567eb35c18e69688bc93</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRCIlsI_QChHDs0ydjZOfEJoVT6kCiooZ2tiT6irrL3YTtHy6_F2tyu4cBrL896bN_MYe8lhwUHwN2jSwqMPE-W8aAwseccfsVPeNlBLpcTj47tfnrBnKd0CgGpaeMpOml5Ax0Gdsu11-IXRVvmGqm8GJxwmOq--4sbZUmgTg52Nu_9Eb6tVSLm-GEcy2d0VxtYXYnKpCmN1RTEFj5P7Tbb6XJytyTrjPKUK8_2Aq-B83kFXGOk5ezLilOjFoZ6x7-8vrlcf68svHz6t3l3WuGwh17azJHsyXAg1tMOoJOEoqC0bYmuHBiSQtNBJqUbbyo6GpjW8J6lk3w9GNWfs7V53Mw_FkSGfI056E90a41YHdPrfjnc3-ke405wLzgFEUXh9UIjh50wp67VLhqYJPYU5aaF4z1UHwAt0uYeaGFKKNB7ncNC72HSJTT_Epg-xFdqrvz0eSQ85FQDsATv6bZhjuXP6v-Yf3lCpyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918197001</pqid></control><display><type>article</type><title>Toward the Scalable, Rapid, Reproducible, and Cost-Effective Synthesis of Personalized Nanomedicines at the Point of Care</title><source>ACS Publications</source><source>MEDLINE</source><creator>Young, Hamilton ; He, Yuxin ; Joo, Bryan ; Ferguson, Sam ; Demko, Amberlynn ; Butterfield, Sarah K. ; Lowe, James ; Mjema, Nathan F. ; Sheth, Vinit ; Whitehead, Luke ; Ruiz-Echevarria, Maria J. ; Wilhelm, Stefan</creator><creatorcontrib>Young, Hamilton ; He, Yuxin ; Joo, Bryan ; Ferguson, Sam ; Demko, Amberlynn ; Butterfield, Sarah K. ; Lowe, James ; Mjema, Nathan F. ; Sheth, Vinit ; Whitehead, Luke ; Ruiz-Echevarria, Maria J. ; Wilhelm, Stefan</creatorcontrib><description>Organic nanoparticles are used in nanomedicine, including for cancer treatment and some types of COVID-19 vaccines. Here, we demonstrate the scalable, rapid, reproducible, and cost-effective synthesis of three model organic nanoparticle formulations relevant to nanomedicine applications. We employed a custom-made, low-cost fluid mixer device constructed from a commercially available three-dimensional printer. We investigated how systematically changing aqueous and organic volumetric flow rate ratios determined liposome, polymer nanoparticle, and solid lipid nanoparticle sizes, size distributions, and payload encapsulation efficiencies. By manipulating inlet volumes, we synthesized organic nanoparticles with encapsulation efficiencies approaching 100% for RNA-based payloads. The synthesized organic nanoparticles were safe and effective at the cell culture level, as demonstrated by various assays. Such cost-effective synthesis approaches could potentially increase the accessibility to clinically relevant organic nanoparticle formulations for personalized nanomedicine applications at the point of care, especially in nonhospital and low-resource settings.</description><identifier>ISSN: 1530-6984</identifier><identifier>ISSN: 1530-6992</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.3c04171</identifier><identifier>PMID: 38207109</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cost-Benefit Analysis ; COVID-19 Vaccines ; Drug Delivery Systems - methods ; Humans ; Liposomes ; Nanomedicine - methods ; Nanoparticles ; Point-of-Care Systems</subject><ispartof>Nano letters, 2024-01, Vol.24 (3), p.920-928</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a450t-d7de68ec1229b5bf96eaf2e5992a5db3060e6d07669fd567eb35c18e69688bc93</citedby><cites>FETCH-LOGICAL-a450t-d7de68ec1229b5bf96eaf2e5992a5db3060e6d07669fd567eb35c18e69688bc93</cites><orcidid>0000-0003-2167-6221 ; 0000-0001-7133-9982 ; 0000-0003-2249-5780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.3c04171$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.3c04171$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38207109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, Hamilton</creatorcontrib><creatorcontrib>He, Yuxin</creatorcontrib><creatorcontrib>Joo, Bryan</creatorcontrib><creatorcontrib>Ferguson, Sam</creatorcontrib><creatorcontrib>Demko, Amberlynn</creatorcontrib><creatorcontrib>Butterfield, Sarah K.</creatorcontrib><creatorcontrib>Lowe, James</creatorcontrib><creatorcontrib>Mjema, Nathan F.</creatorcontrib><creatorcontrib>Sheth, Vinit</creatorcontrib><creatorcontrib>Whitehead, Luke</creatorcontrib><creatorcontrib>Ruiz-Echevarria, Maria J.</creatorcontrib><creatorcontrib>Wilhelm, Stefan</creatorcontrib><title>Toward the Scalable, Rapid, Reproducible, and Cost-Effective Synthesis of Personalized Nanomedicines at the Point of Care</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Organic nanoparticles are used in nanomedicine, including for cancer treatment and some types of COVID-19 vaccines. Here, we demonstrate the scalable, rapid, reproducible, and cost-effective synthesis of three model organic nanoparticle formulations relevant to nanomedicine applications. We employed a custom-made, low-cost fluid mixer device constructed from a commercially available three-dimensional printer. We investigated how systematically changing aqueous and organic volumetric flow rate ratios determined liposome, polymer nanoparticle, and solid lipid nanoparticle sizes, size distributions, and payload encapsulation efficiencies. By manipulating inlet volumes, we synthesized organic nanoparticles with encapsulation efficiencies approaching 100% for RNA-based payloads. The synthesized organic nanoparticles were safe and effective at the cell culture level, as demonstrated by various assays. Such cost-effective synthesis approaches could potentially increase the accessibility to clinically relevant organic nanoparticle formulations for personalized nanomedicine applications at the point of care, especially in nonhospital and low-resource settings.</description><subject>Cost-Benefit Analysis</subject><subject>COVID-19 Vaccines</subject><subject>Drug Delivery Systems - methods</subject><subject>Humans</subject><subject>Liposomes</subject><subject>Nanomedicine - methods</subject><subject>Nanoparticles</subject><subject>Point-of-Care Systems</subject><issn>1530-6984</issn><issn>1530-6992</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQtRCIlsI_QChHDs0ydjZOfEJoVT6kCiooZ2tiT6irrL3YTtHy6_F2tyu4cBrL896bN_MYe8lhwUHwN2jSwqMPE-W8aAwseccfsVPeNlBLpcTj47tfnrBnKd0CgGpaeMpOml5Ax0Gdsu11-IXRVvmGqm8GJxwmOq--4sbZUmgTg52Nu_9Eb6tVSLm-GEcy2d0VxtYXYnKpCmN1RTEFj5P7Tbb6XJytyTrjPKUK8_2Aq-B83kFXGOk5ezLilOjFoZ6x7-8vrlcf68svHz6t3l3WuGwh17azJHsyXAg1tMOoJOEoqC0bYmuHBiSQtNBJqUbbyo6GpjW8J6lk3w9GNWfs7V53Mw_FkSGfI056E90a41YHdPrfjnc3-ke405wLzgFEUXh9UIjh50wp67VLhqYJPYU5aaF4z1UHwAt0uYeaGFKKNB7ncNC72HSJTT_Epg-xFdqrvz0eSQ85FQDsATv6bZhjuXP6v-Yf3lCpyw</recordid><startdate>20240124</startdate><enddate>20240124</enddate><creator>Young, Hamilton</creator><creator>He, Yuxin</creator><creator>Joo, Bryan</creator><creator>Ferguson, Sam</creator><creator>Demko, Amberlynn</creator><creator>Butterfield, Sarah K.</creator><creator>Lowe, James</creator><creator>Mjema, Nathan F.</creator><creator>Sheth, Vinit</creator><creator>Whitehead, Luke</creator><creator>Ruiz-Echevarria, Maria J.</creator><creator>Wilhelm, Stefan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2167-6221</orcidid><orcidid>https://orcid.org/0000-0001-7133-9982</orcidid><orcidid>https://orcid.org/0000-0003-2249-5780</orcidid></search><sort><creationdate>20240124</creationdate><title>Toward the Scalable, Rapid, Reproducible, and Cost-Effective Synthesis of Personalized Nanomedicines at the Point of Care</title><author>Young, Hamilton ; He, Yuxin ; Joo, Bryan ; Ferguson, Sam ; Demko, Amberlynn ; Butterfield, Sarah K. ; Lowe, James ; Mjema, Nathan F. ; Sheth, Vinit ; Whitehead, Luke ; Ruiz-Echevarria, Maria J. ; Wilhelm, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a450t-d7de68ec1229b5bf96eaf2e5992a5db3060e6d07669fd567eb35c18e69688bc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cost-Benefit Analysis</topic><topic>COVID-19 Vaccines</topic><topic>Drug Delivery Systems - methods</topic><topic>Humans</topic><topic>Liposomes</topic><topic>Nanomedicine - methods</topic><topic>Nanoparticles</topic><topic>Point-of-Care Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Hamilton</creatorcontrib><creatorcontrib>He, Yuxin</creatorcontrib><creatorcontrib>Joo, Bryan</creatorcontrib><creatorcontrib>Ferguson, Sam</creatorcontrib><creatorcontrib>Demko, Amberlynn</creatorcontrib><creatorcontrib>Butterfield, Sarah K.</creatorcontrib><creatorcontrib>Lowe, James</creatorcontrib><creatorcontrib>Mjema, Nathan F.</creatorcontrib><creatorcontrib>Sheth, Vinit</creatorcontrib><creatorcontrib>Whitehead, Luke</creatorcontrib><creatorcontrib>Ruiz-Echevarria, Maria J.</creatorcontrib><creatorcontrib>Wilhelm, Stefan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Hamilton</au><au>He, Yuxin</au><au>Joo, Bryan</au><au>Ferguson, Sam</au><au>Demko, Amberlynn</au><au>Butterfield, Sarah K.</au><au>Lowe, James</au><au>Mjema, Nathan F.</au><au>Sheth, Vinit</au><au>Whitehead, Luke</au><au>Ruiz-Echevarria, Maria J.</au><au>Wilhelm, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward the Scalable, Rapid, Reproducible, and Cost-Effective Synthesis of Personalized Nanomedicines at the Point of Care</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-01-24</date><risdate>2024</risdate><volume>24</volume><issue>3</issue><spage>920</spage><epage>928</epage><pages>920-928</pages><issn>1530-6984</issn><issn>1530-6992</issn><eissn>1530-6992</eissn><abstract>Organic nanoparticles are used in nanomedicine, including for cancer treatment and some types of COVID-19 vaccines. Here, we demonstrate the scalable, rapid, reproducible, and cost-effective synthesis of three model organic nanoparticle formulations relevant to nanomedicine applications. We employed a custom-made, low-cost fluid mixer device constructed from a commercially available three-dimensional printer. We investigated how systematically changing aqueous and organic volumetric flow rate ratios determined liposome, polymer nanoparticle, and solid lipid nanoparticle sizes, size distributions, and payload encapsulation efficiencies. By manipulating inlet volumes, we synthesized organic nanoparticles with encapsulation efficiencies approaching 100% for RNA-based payloads. The synthesized organic nanoparticles were safe and effective at the cell culture level, as demonstrated by various assays. Such cost-effective synthesis approaches could potentially increase the accessibility to clinically relevant organic nanoparticle formulations for personalized nanomedicine applications at the point of care, especially in nonhospital and low-resource settings.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38207109</pmid><doi>10.1021/acs.nanolett.3c04171</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2167-6221</orcidid><orcidid>https://orcid.org/0000-0001-7133-9982</orcidid><orcidid>https://orcid.org/0000-0003-2249-5780</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2024-01, Vol.24 (3), p.920-928
issn 1530-6984
1530-6992
1530-6992
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11211002
source ACS Publications; MEDLINE
subjects Cost-Benefit Analysis
COVID-19 Vaccines
Drug Delivery Systems - methods
Humans
Liposomes
Nanomedicine - methods
Nanoparticles
Point-of-Care Systems
title Toward the Scalable, Rapid, Reproducible, and Cost-Effective Synthesis of Personalized Nanomedicines at the Point of Care
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A07%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20the%20Scalable,%20Rapid,%20Reproducible,%20and%20Cost-Effective%20Synthesis%20of%20Personalized%20Nanomedicines%20at%20the%20Point%20of%20Care&rft.jtitle=Nano%20letters&rft.au=Young,%20Hamilton&rft.date=2024-01-24&rft.volume=24&rft.issue=3&rft.spage=920&rft.epage=928&rft.pages=920-928&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.3c04171&rft_dat=%3Cproquest_pubme%3E2918197001%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918197001&rft_id=info:pmid/38207109&rfr_iscdi=true