Toward the Scalable, Rapid, Reproducible, and Cost-Effective Synthesis of Personalized Nanomedicines at the Point of Care
Organic nanoparticles are used in nanomedicine, including for cancer treatment and some types of COVID-19 vaccines. Here, we demonstrate the scalable, rapid, reproducible, and cost-effective synthesis of three model organic nanoparticle formulations relevant to nanomedicine applications. We employed...
Gespeichert in:
Veröffentlicht in: | Nano letters 2024-01, Vol.24 (3), p.920-928 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 928 |
---|---|
container_issue | 3 |
container_start_page | 920 |
container_title | Nano letters |
container_volume | 24 |
creator | Young, Hamilton He, Yuxin Joo, Bryan Ferguson, Sam Demko, Amberlynn Butterfield, Sarah K. Lowe, James Mjema, Nathan F. Sheth, Vinit Whitehead, Luke Ruiz-Echevarria, Maria J. Wilhelm, Stefan |
description | Organic nanoparticles are used in nanomedicine, including for cancer treatment and some types of COVID-19 vaccines. Here, we demonstrate the scalable, rapid, reproducible, and cost-effective synthesis of three model organic nanoparticle formulations relevant to nanomedicine applications. We employed a custom-made, low-cost fluid mixer device constructed from a commercially available three-dimensional printer. We investigated how systematically changing aqueous and organic volumetric flow rate ratios determined liposome, polymer nanoparticle, and solid lipid nanoparticle sizes, size distributions, and payload encapsulation efficiencies. By manipulating inlet volumes, we synthesized organic nanoparticles with encapsulation efficiencies approaching 100% for RNA-based payloads. The synthesized organic nanoparticles were safe and effective at the cell culture level, as demonstrated by various assays. Such cost-effective synthesis approaches could potentially increase the accessibility to clinically relevant organic nanoparticle formulations for personalized nanomedicine applications at the point of care, especially in nonhospital and low-resource settings. |
doi_str_mv | 10.1021/acs.nanolett.3c04171 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11211002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918197001</sourcerecordid><originalsourceid>FETCH-LOGICAL-a450t-d7de68ec1229b5bf96eaf2e5992a5db3060e6d07669fd567eb35c18e69688bc93</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRCIlsI_QChHDs0ydjZOfEJoVT6kCiooZ2tiT6irrL3YTtHy6_F2tyu4cBrL896bN_MYe8lhwUHwN2jSwqMPE-W8aAwseccfsVPeNlBLpcTj47tfnrBnKd0CgGpaeMpOml5Ax0Gdsu11-IXRVvmGqm8GJxwmOq--4sbZUmgTg52Nu_9Eb6tVSLm-GEcy2d0VxtYXYnKpCmN1RTEFj5P7Tbb6XJytyTrjPKUK8_2Aq-B83kFXGOk5ezLilOjFoZ6x7-8vrlcf68svHz6t3l3WuGwh17azJHsyXAg1tMOoJOEoqC0bYmuHBiSQtNBJqUbbyo6GpjW8J6lk3w9GNWfs7V53Mw_FkSGfI056E90a41YHdPrfjnc3-ke405wLzgFEUXh9UIjh50wp67VLhqYJPYU5aaF4z1UHwAt0uYeaGFKKNB7ncNC72HSJTT_Epg-xFdqrvz0eSQ85FQDsATv6bZhjuXP6v-Yf3lCpyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918197001</pqid></control><display><type>article</type><title>Toward the Scalable, Rapid, Reproducible, and Cost-Effective Synthesis of Personalized Nanomedicines at the Point of Care</title><source>ACS Publications</source><source>MEDLINE</source><creator>Young, Hamilton ; He, Yuxin ; Joo, Bryan ; Ferguson, Sam ; Demko, Amberlynn ; Butterfield, Sarah K. ; Lowe, James ; Mjema, Nathan F. ; Sheth, Vinit ; Whitehead, Luke ; Ruiz-Echevarria, Maria J. ; Wilhelm, Stefan</creator><creatorcontrib>Young, Hamilton ; He, Yuxin ; Joo, Bryan ; Ferguson, Sam ; Demko, Amberlynn ; Butterfield, Sarah K. ; Lowe, James ; Mjema, Nathan F. ; Sheth, Vinit ; Whitehead, Luke ; Ruiz-Echevarria, Maria J. ; Wilhelm, Stefan</creatorcontrib><description>Organic nanoparticles are used in nanomedicine, including for cancer treatment and some types of COVID-19 vaccines. Here, we demonstrate the scalable, rapid, reproducible, and cost-effective synthesis of three model organic nanoparticle formulations relevant to nanomedicine applications. We employed a custom-made, low-cost fluid mixer device constructed from a commercially available three-dimensional printer. We investigated how systematically changing aqueous and organic volumetric flow rate ratios determined liposome, polymer nanoparticle, and solid lipid nanoparticle sizes, size distributions, and payload encapsulation efficiencies. By manipulating inlet volumes, we synthesized organic nanoparticles with encapsulation efficiencies approaching 100% for RNA-based payloads. The synthesized organic nanoparticles were safe and effective at the cell culture level, as demonstrated by various assays. Such cost-effective synthesis approaches could potentially increase the accessibility to clinically relevant organic nanoparticle formulations for personalized nanomedicine applications at the point of care, especially in nonhospital and low-resource settings.</description><identifier>ISSN: 1530-6984</identifier><identifier>ISSN: 1530-6992</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.3c04171</identifier><identifier>PMID: 38207109</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cost-Benefit Analysis ; COVID-19 Vaccines ; Drug Delivery Systems - methods ; Humans ; Liposomes ; Nanomedicine - methods ; Nanoparticles ; Point-of-Care Systems</subject><ispartof>Nano letters, 2024-01, Vol.24 (3), p.920-928</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a450t-d7de68ec1229b5bf96eaf2e5992a5db3060e6d07669fd567eb35c18e69688bc93</citedby><cites>FETCH-LOGICAL-a450t-d7de68ec1229b5bf96eaf2e5992a5db3060e6d07669fd567eb35c18e69688bc93</cites><orcidid>0000-0003-2167-6221 ; 0000-0001-7133-9982 ; 0000-0003-2249-5780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.3c04171$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.3c04171$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38207109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, Hamilton</creatorcontrib><creatorcontrib>He, Yuxin</creatorcontrib><creatorcontrib>Joo, Bryan</creatorcontrib><creatorcontrib>Ferguson, Sam</creatorcontrib><creatorcontrib>Demko, Amberlynn</creatorcontrib><creatorcontrib>Butterfield, Sarah K.</creatorcontrib><creatorcontrib>Lowe, James</creatorcontrib><creatorcontrib>Mjema, Nathan F.</creatorcontrib><creatorcontrib>Sheth, Vinit</creatorcontrib><creatorcontrib>Whitehead, Luke</creatorcontrib><creatorcontrib>Ruiz-Echevarria, Maria J.</creatorcontrib><creatorcontrib>Wilhelm, Stefan</creatorcontrib><title>Toward the Scalable, Rapid, Reproducible, and Cost-Effective Synthesis of Personalized Nanomedicines at the Point of Care</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Organic nanoparticles are used in nanomedicine, including for cancer treatment and some types of COVID-19 vaccines. Here, we demonstrate the scalable, rapid, reproducible, and cost-effective synthesis of three model organic nanoparticle formulations relevant to nanomedicine applications. We employed a custom-made, low-cost fluid mixer device constructed from a commercially available three-dimensional printer. We investigated how systematically changing aqueous and organic volumetric flow rate ratios determined liposome, polymer nanoparticle, and solid lipid nanoparticle sizes, size distributions, and payload encapsulation efficiencies. By manipulating inlet volumes, we synthesized organic nanoparticles with encapsulation efficiencies approaching 100% for RNA-based payloads. The synthesized organic nanoparticles were safe and effective at the cell culture level, as demonstrated by various assays. Such cost-effective synthesis approaches could potentially increase the accessibility to clinically relevant organic nanoparticle formulations for personalized nanomedicine applications at the point of care, especially in nonhospital and low-resource settings.</description><subject>Cost-Benefit Analysis</subject><subject>COVID-19 Vaccines</subject><subject>Drug Delivery Systems - methods</subject><subject>Humans</subject><subject>Liposomes</subject><subject>Nanomedicine - methods</subject><subject>Nanoparticles</subject><subject>Point-of-Care Systems</subject><issn>1530-6984</issn><issn>1530-6992</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQtRCIlsI_QChHDs0ydjZOfEJoVT6kCiooZ2tiT6irrL3YTtHy6_F2tyu4cBrL896bN_MYe8lhwUHwN2jSwqMPE-W8aAwseccfsVPeNlBLpcTj47tfnrBnKd0CgGpaeMpOml5Ax0Gdsu11-IXRVvmGqm8GJxwmOq--4sbZUmgTg52Nu_9Eb6tVSLm-GEcy2d0VxtYXYnKpCmN1RTEFj5P7Tbb6XJytyTrjPKUK8_2Aq-B83kFXGOk5ezLilOjFoZ6x7-8vrlcf68svHz6t3l3WuGwh17azJHsyXAg1tMOoJOEoqC0bYmuHBiSQtNBJqUbbyo6GpjW8J6lk3w9GNWfs7V53Mw_FkSGfI056E90a41YHdPrfjnc3-ke405wLzgFEUXh9UIjh50wp67VLhqYJPYU5aaF4z1UHwAt0uYeaGFKKNB7ncNC72HSJTT_Epg-xFdqrvz0eSQ85FQDsATv6bZhjuXP6v-Yf3lCpyw</recordid><startdate>20240124</startdate><enddate>20240124</enddate><creator>Young, Hamilton</creator><creator>He, Yuxin</creator><creator>Joo, Bryan</creator><creator>Ferguson, Sam</creator><creator>Demko, Amberlynn</creator><creator>Butterfield, Sarah K.</creator><creator>Lowe, James</creator><creator>Mjema, Nathan F.</creator><creator>Sheth, Vinit</creator><creator>Whitehead, Luke</creator><creator>Ruiz-Echevarria, Maria J.</creator><creator>Wilhelm, Stefan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2167-6221</orcidid><orcidid>https://orcid.org/0000-0001-7133-9982</orcidid><orcidid>https://orcid.org/0000-0003-2249-5780</orcidid></search><sort><creationdate>20240124</creationdate><title>Toward the Scalable, Rapid, Reproducible, and Cost-Effective Synthesis of Personalized Nanomedicines at the Point of Care</title><author>Young, Hamilton ; He, Yuxin ; Joo, Bryan ; Ferguson, Sam ; Demko, Amberlynn ; Butterfield, Sarah K. ; Lowe, James ; Mjema, Nathan F. ; Sheth, Vinit ; Whitehead, Luke ; Ruiz-Echevarria, Maria J. ; Wilhelm, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a450t-d7de68ec1229b5bf96eaf2e5992a5db3060e6d07669fd567eb35c18e69688bc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cost-Benefit Analysis</topic><topic>COVID-19 Vaccines</topic><topic>Drug Delivery Systems - methods</topic><topic>Humans</topic><topic>Liposomes</topic><topic>Nanomedicine - methods</topic><topic>Nanoparticles</topic><topic>Point-of-Care Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Hamilton</creatorcontrib><creatorcontrib>He, Yuxin</creatorcontrib><creatorcontrib>Joo, Bryan</creatorcontrib><creatorcontrib>Ferguson, Sam</creatorcontrib><creatorcontrib>Demko, Amberlynn</creatorcontrib><creatorcontrib>Butterfield, Sarah K.</creatorcontrib><creatorcontrib>Lowe, James</creatorcontrib><creatorcontrib>Mjema, Nathan F.</creatorcontrib><creatorcontrib>Sheth, Vinit</creatorcontrib><creatorcontrib>Whitehead, Luke</creatorcontrib><creatorcontrib>Ruiz-Echevarria, Maria J.</creatorcontrib><creatorcontrib>Wilhelm, Stefan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Hamilton</au><au>He, Yuxin</au><au>Joo, Bryan</au><au>Ferguson, Sam</au><au>Demko, Amberlynn</au><au>Butterfield, Sarah K.</au><au>Lowe, James</au><au>Mjema, Nathan F.</au><au>Sheth, Vinit</au><au>Whitehead, Luke</au><au>Ruiz-Echevarria, Maria J.</au><au>Wilhelm, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward the Scalable, Rapid, Reproducible, and Cost-Effective Synthesis of Personalized Nanomedicines at the Point of Care</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-01-24</date><risdate>2024</risdate><volume>24</volume><issue>3</issue><spage>920</spage><epage>928</epage><pages>920-928</pages><issn>1530-6984</issn><issn>1530-6992</issn><eissn>1530-6992</eissn><abstract>Organic nanoparticles are used in nanomedicine, including for cancer treatment and some types of COVID-19 vaccines. Here, we demonstrate the scalable, rapid, reproducible, and cost-effective synthesis of three model organic nanoparticle formulations relevant to nanomedicine applications. We employed a custom-made, low-cost fluid mixer device constructed from a commercially available three-dimensional printer. We investigated how systematically changing aqueous and organic volumetric flow rate ratios determined liposome, polymer nanoparticle, and solid lipid nanoparticle sizes, size distributions, and payload encapsulation efficiencies. By manipulating inlet volumes, we synthesized organic nanoparticles with encapsulation efficiencies approaching 100% for RNA-based payloads. The synthesized organic nanoparticles were safe and effective at the cell culture level, as demonstrated by various assays. Such cost-effective synthesis approaches could potentially increase the accessibility to clinically relevant organic nanoparticle formulations for personalized nanomedicine applications at the point of care, especially in nonhospital and low-resource settings.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38207109</pmid><doi>10.1021/acs.nanolett.3c04171</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2167-6221</orcidid><orcidid>https://orcid.org/0000-0001-7133-9982</orcidid><orcidid>https://orcid.org/0000-0003-2249-5780</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2024-01, Vol.24 (3), p.920-928 |
issn | 1530-6984 1530-6992 1530-6992 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11211002 |
source | ACS Publications; MEDLINE |
subjects | Cost-Benefit Analysis COVID-19 Vaccines Drug Delivery Systems - methods Humans Liposomes Nanomedicine - methods Nanoparticles Point-of-Care Systems |
title | Toward the Scalable, Rapid, Reproducible, and Cost-Effective Synthesis of Personalized Nanomedicines at the Point of Care |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A07%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20the%20Scalable,%20Rapid,%20Reproducible,%20and%20Cost-Effective%20Synthesis%20of%20Personalized%20Nanomedicines%20at%20the%20Point%20of%20Care&rft.jtitle=Nano%20letters&rft.au=Young,%20Hamilton&rft.date=2024-01-24&rft.volume=24&rft.issue=3&rft.spage=920&rft.epage=928&rft.pages=920-928&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.3c04171&rft_dat=%3Cproquest_pubme%3E2918197001%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918197001&rft_id=info:pmid/38207109&rfr_iscdi=true |