Detection and Exclusion of False-Positive Molecular Formula Assignments via Mass Error Distributions in UHR Mass Spectra of Natural Organic Matter
Ultrahigh resolution mass spectrometry (UHRMS) routinely detects and identifies thousands of mass peaks in complex mixtures, such as natural organic matter (NOM) and petroleum. The assignment of several chemically plausible molecular formulas (MFs) for a single accurate mass still poses a major prob...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2024-06, Vol.96 (25), p.10210-10218 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10218 |
---|---|
container_issue | 25 |
container_start_page | 10210 |
container_title | Analytical chemistry (Washington) |
container_volume | 96 |
creator | Gao, Shuxian Jennings, Elaine K. Han, Limei Koch, Boris P. Herzsprung, Peter Lechtenfeld, Oliver J. |
description | Ultrahigh resolution mass spectrometry (UHRMS) routinely detects and identifies thousands of mass peaks in complex mixtures, such as natural organic matter (NOM) and petroleum. The assignment of several chemically plausible molecular formulas (MFs) for a single accurate mass still poses a major problem for the reliable interpretation of NOM composition in a biogeochemical context. Applying sensible chemical rules for MF validation is often insufficient to eliminate multiple assignments (MultiAs)especially for mass peaks with low abundance or if ample heteroatoms or isotopes are included - and requires manual inspection or expert judgment. Here, we present a new approach based on mass error distributions for the identification of true and false assignments among MultiAs. To this end, we used the mass error in millidalton (mDa), which was superior to the commonly used relative mass error in ppm. We developed an automatic workflow to group MultiAs based on their shared formula units and Kendrick mass defect values and to evaluate the mass error distribution. In this way, the number of valid assignments of chlorinated disinfection byproducts was increased by 8-fold as compared to only applying 37Cl/35Cl isotope ratio filters. Likewise, phosphorus-containing MFs can be differentiated against chlorine-containing MFs with high confidence. Further, false assignments of highly aromatic sulfur-containing MFs (“black sulfur”) to sodium adducts in negative ionization mode can be excluded by applying our approach. Overall, MFs for mass peaks that are close to the detection limit or where naturally occurring isotopes are rare (e.g., 15N) or absent (e.g., P and F) can now be validated, substantially increasing the reliability of MF assignments and broadening the applicability of UHRMS analysis to even more complex samples and processes. |
doi_str_mv | 10.1021/acs.analchem.4c00489 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11209664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067913365</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-8fffbf28b5c4360f142f5ca3894569776e877e616df5adf09f65ee342c0239053</originalsourceid><addsrcrecordid>eNp9UctuEzEUtRCIhsIfIGSJDZsJ18-ZWaGqTShSSxHQteU4dupqZpzangh-gy_Go6QRsGDla53XvToIvSYwJ0DJe23SXA-6M3e2n3MDwJv2CZoRQaGSTUOfohkAsIrWACfoRUr3AIQAkc_RCWsa2bZUzNCvC5utyT4MWA9rvPhhujFNv-DwUnfJVl9C8tnvLL4OnTVjpyNehtiXAZ-l5DdDb4ec8M5rfK1TwosYQ8QXPuXoV-PknLAf8O3l1z3-bVvyop4CPus8Rt3hm7jRgzcFz9nGl-iZm5JfHd5TdLtcfD-_rK5uPn46P7uqNBN1rhrn3MrRZiUMZxIc4dQJo1nTciHbupa2qWsriVw7odcOWieFtYxTA5S1INgp-rD33Y6r3q5NOaMso7bR9zr-VEF79Tcy-Du1CTtFCIVWSl4c3h0cYngYbcqq98nYrtODDWNSDGTdEsbkFPb2H-p9GGOpb2LVggMXnBYW37NMDClF647bEFBT66q0rh5bV4fWi-zNn5ccRY81FwLsCZP8GPxfz99-wr55</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075404542</pqid></control><display><type>article</type><title>Detection and Exclusion of False-Positive Molecular Formula Assignments via Mass Error Distributions in UHR Mass Spectra of Natural Organic Matter</title><source>American Chemical Society Journals</source><creator>Gao, Shuxian ; Jennings, Elaine K. ; Han, Limei ; Koch, Boris P. ; Herzsprung, Peter ; Lechtenfeld, Oliver J.</creator><creatorcontrib>Gao, Shuxian ; Jennings, Elaine K. ; Han, Limei ; Koch, Boris P. ; Herzsprung, Peter ; Lechtenfeld, Oliver J.</creatorcontrib><description>Ultrahigh resolution mass spectrometry (UHRMS) routinely detects and identifies thousands of mass peaks in complex mixtures, such as natural organic matter (NOM) and petroleum. The assignment of several chemically plausible molecular formulas (MFs) for a single accurate mass still poses a major problem for the reliable interpretation of NOM composition in a biogeochemical context. Applying sensible chemical rules for MF validation is often insufficient to eliminate multiple assignments (MultiAs)especially for mass peaks with low abundance or if ample heteroatoms or isotopes are included - and requires manual inspection or expert judgment. Here, we present a new approach based on mass error distributions for the identification of true and false assignments among MultiAs. To this end, we used the mass error in millidalton (mDa), which was superior to the commonly used relative mass error in ppm. We developed an automatic workflow to group MultiAs based on their shared formula units and Kendrick mass defect values and to evaluate the mass error distribution. In this way, the number of valid assignments of chlorinated disinfection byproducts was increased by 8-fold as compared to only applying 37Cl/35Cl isotope ratio filters. Likewise, phosphorus-containing MFs can be differentiated against chlorine-containing MFs with high confidence. Further, false assignments of highly aromatic sulfur-containing MFs (“black sulfur”) to sodium adducts in negative ionization mode can be excluded by applying our approach. Overall, MFs for mass peaks that are close to the detection limit or where naturally occurring isotopes are rare (e.g., 15N) or absent (e.g., P and F) can now be validated, substantially increasing the reliability of MF assignments and broadening the applicability of UHRMS analysis to even more complex samples and processes.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.4c00489</identifier><identifier>PMID: 38869925</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adducts ; Chlorine ; Ionization ; Isotope ratios ; Isotopes ; Mass spectra ; Mass spectrometry ; Mass spectroscopy ; Organic matter ; Sulfur ; Workflow</subject><ispartof>Analytical chemistry (Washington), 2024-06, Vol.96 (25), p.10210-10218</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Jun 25, 2024</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a357t-8fffbf28b5c4360f142f5ca3894569776e877e616df5adf09f65ee342c0239053</cites><orcidid>0000-0002-8453-731X ; 0000-0001-5313-6014 ; 0000-0001-5872-443X ; 0000-0002-9844-144X ; 0009-0004-7819-7525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.4c00489$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.4c00489$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38869925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Shuxian</creatorcontrib><creatorcontrib>Jennings, Elaine K.</creatorcontrib><creatorcontrib>Han, Limei</creatorcontrib><creatorcontrib>Koch, Boris P.</creatorcontrib><creatorcontrib>Herzsprung, Peter</creatorcontrib><creatorcontrib>Lechtenfeld, Oliver J.</creatorcontrib><title>Detection and Exclusion of False-Positive Molecular Formula Assignments via Mass Error Distributions in UHR Mass Spectra of Natural Organic Matter</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Ultrahigh resolution mass spectrometry (UHRMS) routinely detects and identifies thousands of mass peaks in complex mixtures, such as natural organic matter (NOM) and petroleum. The assignment of several chemically plausible molecular formulas (MFs) for a single accurate mass still poses a major problem for the reliable interpretation of NOM composition in a biogeochemical context. Applying sensible chemical rules for MF validation is often insufficient to eliminate multiple assignments (MultiAs)especially for mass peaks with low abundance or if ample heteroatoms or isotopes are included - and requires manual inspection or expert judgment. Here, we present a new approach based on mass error distributions for the identification of true and false assignments among MultiAs. To this end, we used the mass error in millidalton (mDa), which was superior to the commonly used relative mass error in ppm. We developed an automatic workflow to group MultiAs based on their shared formula units and Kendrick mass defect values and to evaluate the mass error distribution. In this way, the number of valid assignments of chlorinated disinfection byproducts was increased by 8-fold as compared to only applying 37Cl/35Cl isotope ratio filters. Likewise, phosphorus-containing MFs can be differentiated against chlorine-containing MFs with high confidence. Further, false assignments of highly aromatic sulfur-containing MFs (“black sulfur”) to sodium adducts in negative ionization mode can be excluded by applying our approach. Overall, MFs for mass peaks that are close to the detection limit or where naturally occurring isotopes are rare (e.g., 15N) or absent (e.g., P and F) can now be validated, substantially increasing the reliability of MF assignments and broadening the applicability of UHRMS analysis to even more complex samples and processes.</description><subject>Adducts</subject><subject>Chlorine</subject><subject>Ionization</subject><subject>Isotope ratios</subject><subject>Isotopes</subject><subject>Mass spectra</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Organic matter</subject><subject>Sulfur</subject><subject>Workflow</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UctuEzEUtRCIhsIfIGSJDZsJ18-ZWaGqTShSSxHQteU4dupqZpzangh-gy_Go6QRsGDla53XvToIvSYwJ0DJe23SXA-6M3e2n3MDwJv2CZoRQaGSTUOfohkAsIrWACfoRUr3AIQAkc_RCWsa2bZUzNCvC5utyT4MWA9rvPhhujFNv-DwUnfJVl9C8tnvLL4OnTVjpyNehtiXAZ-l5DdDb4ec8M5rfK1TwosYQ8QXPuXoV-PknLAf8O3l1z3-bVvyop4CPus8Rt3hm7jRgzcFz9nGl-iZm5JfHd5TdLtcfD-_rK5uPn46P7uqNBN1rhrn3MrRZiUMZxIc4dQJo1nTciHbupa2qWsriVw7odcOWieFtYxTA5S1INgp-rD33Y6r3q5NOaMso7bR9zr-VEF79Tcy-Du1CTtFCIVWSl4c3h0cYngYbcqq98nYrtODDWNSDGTdEsbkFPb2H-p9GGOpb2LVggMXnBYW37NMDClF647bEFBT66q0rh5bV4fWi-zNn5ccRY81FwLsCZP8GPxfz99-wr55</recordid><startdate>20240625</startdate><enddate>20240625</enddate><creator>Gao, Shuxian</creator><creator>Jennings, Elaine K.</creator><creator>Han, Limei</creator><creator>Koch, Boris P.</creator><creator>Herzsprung, Peter</creator><creator>Lechtenfeld, Oliver J.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8453-731X</orcidid><orcidid>https://orcid.org/0000-0001-5313-6014</orcidid><orcidid>https://orcid.org/0000-0001-5872-443X</orcidid><orcidid>https://orcid.org/0000-0002-9844-144X</orcidid><orcidid>https://orcid.org/0009-0004-7819-7525</orcidid></search><sort><creationdate>20240625</creationdate><title>Detection and Exclusion of False-Positive Molecular Formula Assignments via Mass Error Distributions in UHR Mass Spectra of Natural Organic Matter</title><author>Gao, Shuxian ; Jennings, Elaine K. ; Han, Limei ; Koch, Boris P. ; Herzsprung, Peter ; Lechtenfeld, Oliver J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-8fffbf28b5c4360f142f5ca3894569776e877e616df5adf09f65ee342c0239053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adducts</topic><topic>Chlorine</topic><topic>Ionization</topic><topic>Isotope ratios</topic><topic>Isotopes</topic><topic>Mass spectra</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Organic matter</topic><topic>Sulfur</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Shuxian</creatorcontrib><creatorcontrib>Jennings, Elaine K.</creatorcontrib><creatorcontrib>Han, Limei</creatorcontrib><creatorcontrib>Koch, Boris P.</creatorcontrib><creatorcontrib>Herzsprung, Peter</creatorcontrib><creatorcontrib>Lechtenfeld, Oliver J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Shuxian</au><au>Jennings, Elaine K.</au><au>Han, Limei</au><au>Koch, Boris P.</au><au>Herzsprung, Peter</au><au>Lechtenfeld, Oliver J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and Exclusion of False-Positive Molecular Formula Assignments via Mass Error Distributions in UHR Mass Spectra of Natural Organic Matter</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2024-06-25</date><risdate>2024</risdate><volume>96</volume><issue>25</issue><spage>10210</spage><epage>10218</epage><pages>10210-10218</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><abstract>Ultrahigh resolution mass spectrometry (UHRMS) routinely detects and identifies thousands of mass peaks in complex mixtures, such as natural organic matter (NOM) and petroleum. The assignment of several chemically plausible molecular formulas (MFs) for a single accurate mass still poses a major problem for the reliable interpretation of NOM composition in a biogeochemical context. Applying sensible chemical rules for MF validation is often insufficient to eliminate multiple assignments (MultiAs)especially for mass peaks with low abundance or if ample heteroatoms or isotopes are included - and requires manual inspection or expert judgment. Here, we present a new approach based on mass error distributions for the identification of true and false assignments among MultiAs. To this end, we used the mass error in millidalton (mDa), which was superior to the commonly used relative mass error in ppm. We developed an automatic workflow to group MultiAs based on their shared formula units and Kendrick mass defect values and to evaluate the mass error distribution. In this way, the number of valid assignments of chlorinated disinfection byproducts was increased by 8-fold as compared to only applying 37Cl/35Cl isotope ratio filters. Likewise, phosphorus-containing MFs can be differentiated against chlorine-containing MFs with high confidence. Further, false assignments of highly aromatic sulfur-containing MFs (“black sulfur”) to sodium adducts in negative ionization mode can be excluded by applying our approach. Overall, MFs for mass peaks that are close to the detection limit or where naturally occurring isotopes are rare (e.g., 15N) or absent (e.g., P and F) can now be validated, substantially increasing the reliability of MF assignments and broadening the applicability of UHRMS analysis to even more complex samples and processes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38869925</pmid><doi>10.1021/acs.analchem.4c00489</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8453-731X</orcidid><orcidid>https://orcid.org/0000-0001-5313-6014</orcidid><orcidid>https://orcid.org/0000-0001-5872-443X</orcidid><orcidid>https://orcid.org/0000-0002-9844-144X</orcidid><orcidid>https://orcid.org/0009-0004-7819-7525</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2024-06, Vol.96 (25), p.10210-10218 |
issn | 0003-2700 1520-6882 1520-6882 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11209664 |
source | American Chemical Society Journals |
subjects | Adducts Chlorine Ionization Isotope ratios Isotopes Mass spectra Mass spectrometry Mass spectroscopy Organic matter Sulfur Workflow |
title | Detection and Exclusion of False-Positive Molecular Formula Assignments via Mass Error Distributions in UHR Mass Spectra of Natural Organic Matter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20Exclusion%20of%20False-Positive%20Molecular%20Formula%20Assignments%20via%20Mass%20Error%20Distributions%20in%20UHR%20Mass%20Spectra%20of%20Natural%20Organic%20Matter&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Gao,%20Shuxian&rft.date=2024-06-25&rft.volume=96&rft.issue=25&rft.spage=10210&rft.epage=10218&rft.pages=10210-10218&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.4c00489&rft_dat=%3Cproquest_pubme%3E3067913365%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075404542&rft_id=info:pmid/38869925&rfr_iscdi=true |