Dissociated cerebellar contributions to feedforward gait adaptation
The cerebellum is important for motor adaptation. Lesions to the vestibulo-cerebellum selectively cause gait ataxia. Here we investigate how such damage affects locomotor adaptation when performing the ‘broken escalator’ paradigm. Following an auditory cue, participants were required to step from th...
Gespeichert in:
Veröffentlicht in: | Experimental brain research 2024-07, Vol.242 (7), p.1583-1593 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1593 |
---|---|
container_issue | 7 |
container_start_page | 1583 |
container_title | Experimental brain research |
container_volume | 242 |
creator | Bunday, Karen L. Ellmers, Toby J. Wimalaratna, M. Rashmi Nadarajah, Luxme Bronstein, Adolfo M. |
description | The cerebellum is important for motor adaptation. Lesions to the vestibulo-cerebellum selectively cause gait ataxia. Here we investigate how such damage affects locomotor adaptation when performing the ‘broken escalator’ paradigm. Following an auditory cue, participants were required to step from the fixed surface onto a moving platform (akin to an airport travellator). The experiment included three conditions: 10 stationary (BEFORE), 15 moving (MOVING) and 10 stationary (AFTER) trials. We assessed both behavioural (gait approach velocity and trunk sway after stepping onto the moving platform) and neuromuscular outcomes (lower leg muscle activity, EMG). Unlike controls, cerebellar patients showed reduced after-effects (AFTER trials) with respect to gait approach velocity and leg EMG activity. However, patients with cerebellar damage maintain the ability to learn the trunk movement required to maximise stability
after
stepping onto the moving platform (i.e., reactive postural behaviours). Importantly, our findings reveal that these patients could even initiate these behaviours in a feedforward manner, leading to an after-effect. These findings reveal that the cerebellum is crucial for feedforward locomotor control, but that adaptive locomotor behaviours learned via feedback (i.e., reactive) mechanisms may be preserved following cerebellum damage. |
doi_str_mv | 10.1007/s00221-024-06840-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11208272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056670188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-530fbac856903624f1a6e54adf5a2c32457e19dd413abac2a939386f2e875aab3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS1ERbeFL8ChisSFS-j4v32q0NJSpEpc4GxNHGdxtRtv7QTEt6-3WwrtoZwsa37zZt48Qt5S-EAB9GkBYIy2wEQLygho7QuyoIKzllJQL8kCgIpWGGoPyVEp17sv1_CKHHKjFQhlF2T5KZaSfMQp9I0POXRhvcbc-DROOXbzFNNYmik1Qwj9kPIvzH2zwjg12ON2wl39NTkYcF3Cm_v3mHy_OP-2vGyvvn7-svx41Xoh7dRKDkOH3khlgSsmBooqSIH9IJF5zoTUgdq-F5Rj5RhabrlRAwtGS8SOH5Ozve527jah96GuiGu3zXGD-bdLGN3jyhh_uFX66ShlYJhmVeH9vUJON3Mok9vE4neOx5Dm4jiVXGmmufg_ClIpDdSYir57gl6nOY_1FJWqU6thpSrF9pTPqZQchofFKbhdnm6fp6t5urs8na1NJ_9afmj5E2AF-B4otTSuQv47-xnZWxKIq3U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072356966</pqid></control><display><type>article</type><title>Dissociated cerebellar contributions to feedforward gait adaptation</title><source>MEDLINE</source><source>SpringerLink</source><creator>Bunday, Karen L. ; Ellmers, Toby J. ; Wimalaratna, M. Rashmi ; Nadarajah, Luxme ; Bronstein, Adolfo M.</creator><creatorcontrib>Bunday, Karen L. ; Ellmers, Toby J. ; Wimalaratna, M. Rashmi ; Nadarajah, Luxme ; Bronstein, Adolfo M.</creatorcontrib><description>The cerebellum is important for motor adaptation. Lesions to the vestibulo-cerebellum selectively cause gait ataxia. Here we investigate how such damage affects locomotor adaptation when performing the ‘broken escalator’ paradigm. Following an auditory cue, participants were required to step from the fixed surface onto a moving platform (akin to an airport travellator). The experiment included three conditions: 10 stationary (BEFORE), 15 moving (MOVING) and 10 stationary (AFTER) trials. We assessed both behavioural (gait approach velocity and trunk sway after stepping onto the moving platform) and neuromuscular outcomes (lower leg muscle activity, EMG). Unlike controls, cerebellar patients showed reduced after-effects (AFTER trials) with respect to gait approach velocity and leg EMG activity. However, patients with cerebellar damage maintain the ability to learn the trunk movement required to maximise stability
after
stepping onto the moving platform (i.e., reactive postural behaviours). Importantly, our findings reveal that these patients could even initiate these behaviours in a feedforward manner, leading to an after-effect. These findings reveal that the cerebellum is crucial for feedforward locomotor control, but that adaptive locomotor behaviours learned via feedback (i.e., reactive) mechanisms may be preserved following cerebellum damage.</description><identifier>ISSN: 0014-4819</identifier><identifier>ISSN: 1432-1106</identifier><identifier>EISSN: 1432-1106</identifier><identifier>DOI: 10.1007/s00221-024-06840-9</identifier><identifier>PMID: 38760469</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation ; Adaptation, Physiological - physiology ; Adult ; Aged ; airports ; Ataxia ; Biomechanical Phenomena - physiology ; Biomedical and Life Sciences ; Biomedicine ; Cerebellum ; Cerebellum - physiology ; Clinical trials ; Electromyography ; Female ; Gait ; Gait - physiology ; Humans ; Male ; Middle Aged ; Muscle, Skeletal - physiology ; muscles ; Neurology ; Neurosciences ; Postural Balance - physiology ; Research Article ; Velocity</subject><ispartof>Experimental brain research, 2024-07, Vol.242 (7), p.1583-1593</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c459t-530fbac856903624f1a6e54adf5a2c32457e19dd413abac2a939386f2e875aab3</cites><orcidid>0000-0001-9595-6360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00221-024-06840-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00221-024-06840-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38760469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bunday, Karen L.</creatorcontrib><creatorcontrib>Ellmers, Toby J.</creatorcontrib><creatorcontrib>Wimalaratna, M. Rashmi</creatorcontrib><creatorcontrib>Nadarajah, Luxme</creatorcontrib><creatorcontrib>Bronstein, Adolfo M.</creatorcontrib><title>Dissociated cerebellar contributions to feedforward gait adaptation</title><title>Experimental brain research</title><addtitle>Exp Brain Res</addtitle><addtitle>Exp Brain Res</addtitle><description>The cerebellum is important for motor adaptation. Lesions to the vestibulo-cerebellum selectively cause gait ataxia. Here we investigate how such damage affects locomotor adaptation when performing the ‘broken escalator’ paradigm. Following an auditory cue, participants were required to step from the fixed surface onto a moving platform (akin to an airport travellator). The experiment included three conditions: 10 stationary (BEFORE), 15 moving (MOVING) and 10 stationary (AFTER) trials. We assessed both behavioural (gait approach velocity and trunk sway after stepping onto the moving platform) and neuromuscular outcomes (lower leg muscle activity, EMG). Unlike controls, cerebellar patients showed reduced after-effects (AFTER trials) with respect to gait approach velocity and leg EMG activity. However, patients with cerebellar damage maintain the ability to learn the trunk movement required to maximise stability
after
stepping onto the moving platform (i.e., reactive postural behaviours). Importantly, our findings reveal that these patients could even initiate these behaviours in a feedforward manner, leading to an after-effect. These findings reveal that the cerebellum is crucial for feedforward locomotor control, but that adaptive locomotor behaviours learned via feedback (i.e., reactive) mechanisms may be preserved following cerebellum damage.</description><subject>Adaptation</subject><subject>Adaptation, Physiological - physiology</subject><subject>Adult</subject><subject>Aged</subject><subject>airports</subject><subject>Ataxia</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cerebellum</subject><subject>Cerebellum - physiology</subject><subject>Clinical trials</subject><subject>Electromyography</subject><subject>Female</subject><subject>Gait</subject><subject>Gait - physiology</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Muscle, Skeletal - physiology</subject><subject>muscles</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Postural Balance - physiology</subject><subject>Research Article</subject><subject>Velocity</subject><issn>0014-4819</issn><issn>1432-1106</issn><issn>1432-1106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS1ERbeFL8ChisSFS-j4v32q0NJSpEpc4GxNHGdxtRtv7QTEt6-3WwrtoZwsa37zZt48Qt5S-EAB9GkBYIy2wEQLygho7QuyoIKzllJQL8kCgIpWGGoPyVEp17sv1_CKHHKjFQhlF2T5KZaSfMQp9I0POXRhvcbc-DROOXbzFNNYmik1Qwj9kPIvzH2zwjg12ON2wl39NTkYcF3Cm_v3mHy_OP-2vGyvvn7-svx41Xoh7dRKDkOH3khlgSsmBooqSIH9IJF5zoTUgdq-F5Rj5RhabrlRAwtGS8SOH5Ozve527jah96GuiGu3zXGD-bdLGN3jyhh_uFX66ShlYJhmVeH9vUJON3Mok9vE4neOx5Dm4jiVXGmmufg_ClIpDdSYir57gl6nOY_1FJWqU6thpSrF9pTPqZQchofFKbhdnm6fp6t5urs8na1NJ_9afmj5E2AF-B4otTSuQv47-xnZWxKIq3U</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Bunday, Karen L.</creator><creator>Ellmers, Toby J.</creator><creator>Wimalaratna, M. Rashmi</creator><creator>Nadarajah, Luxme</creator><creator>Bronstein, Adolfo M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9595-6360</orcidid></search><sort><creationdate>20240701</creationdate><title>Dissociated cerebellar contributions to feedforward gait adaptation</title><author>Bunday, Karen L. ; Ellmers, Toby J. ; Wimalaratna, M. Rashmi ; Nadarajah, Luxme ; Bronstein, Adolfo M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-530fbac856903624f1a6e54adf5a2c32457e19dd413abac2a939386f2e875aab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Adaptation, Physiological - physiology</topic><topic>Adult</topic><topic>Aged</topic><topic>airports</topic><topic>Ataxia</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cerebellum</topic><topic>Cerebellum - physiology</topic><topic>Clinical trials</topic><topic>Electromyography</topic><topic>Female</topic><topic>Gait</topic><topic>Gait - physiology</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Muscle, Skeletal - physiology</topic><topic>muscles</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Postural Balance - physiology</topic><topic>Research Article</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bunday, Karen L.</creatorcontrib><creatorcontrib>Ellmers, Toby J.</creatorcontrib><creatorcontrib>Wimalaratna, M. Rashmi</creatorcontrib><creatorcontrib>Nadarajah, Luxme</creatorcontrib><creatorcontrib>Bronstein, Adolfo M.</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bunday, Karen L.</au><au>Ellmers, Toby J.</au><au>Wimalaratna, M. Rashmi</au><au>Nadarajah, Luxme</au><au>Bronstein, Adolfo M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissociated cerebellar contributions to feedforward gait adaptation</atitle><jtitle>Experimental brain research</jtitle><stitle>Exp Brain Res</stitle><addtitle>Exp Brain Res</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>242</volume><issue>7</issue><spage>1583</spage><epage>1593</epage><pages>1583-1593</pages><issn>0014-4819</issn><issn>1432-1106</issn><eissn>1432-1106</eissn><abstract>The cerebellum is important for motor adaptation. Lesions to the vestibulo-cerebellum selectively cause gait ataxia. Here we investigate how such damage affects locomotor adaptation when performing the ‘broken escalator’ paradigm. Following an auditory cue, participants were required to step from the fixed surface onto a moving platform (akin to an airport travellator). The experiment included three conditions: 10 stationary (BEFORE), 15 moving (MOVING) and 10 stationary (AFTER) trials. We assessed both behavioural (gait approach velocity and trunk sway after stepping onto the moving platform) and neuromuscular outcomes (lower leg muscle activity, EMG). Unlike controls, cerebellar patients showed reduced after-effects (AFTER trials) with respect to gait approach velocity and leg EMG activity. However, patients with cerebellar damage maintain the ability to learn the trunk movement required to maximise stability
after
stepping onto the moving platform (i.e., reactive postural behaviours). Importantly, our findings reveal that these patients could even initiate these behaviours in a feedforward manner, leading to an after-effect. These findings reveal that the cerebellum is crucial for feedforward locomotor control, but that adaptive locomotor behaviours learned via feedback (i.e., reactive) mechanisms may be preserved following cerebellum damage.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38760469</pmid><doi>10.1007/s00221-024-06840-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9595-6360</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4819 |
ispartof | Experimental brain research, 2024-07, Vol.242 (7), p.1583-1593 |
issn | 0014-4819 1432-1106 1432-1106 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11208272 |
source | MEDLINE; SpringerLink |
subjects | Adaptation Adaptation, Physiological - physiology Adult Aged airports Ataxia Biomechanical Phenomena - physiology Biomedical and Life Sciences Biomedicine Cerebellum Cerebellum - physiology Clinical trials Electromyography Female Gait Gait - physiology Humans Male Middle Aged Muscle, Skeletal - physiology muscles Neurology Neurosciences Postural Balance - physiology Research Article Velocity |
title | Dissociated cerebellar contributions to feedforward gait adaptation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A01%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissociated%20cerebellar%20contributions%20to%20feedforward%20gait%20adaptation&rft.jtitle=Experimental%20brain%20research&rft.au=Bunday,%20Karen%20L.&rft.date=2024-07-01&rft.volume=242&rft.issue=7&rft.spage=1583&rft.epage=1593&rft.pages=1583-1593&rft.issn=0014-4819&rft.eissn=1432-1106&rft_id=info:doi/10.1007/s00221-024-06840-9&rft_dat=%3Cproquest_pubme%3E3056670188%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072356966&rft_id=info:pmid/38760469&rfr_iscdi=true |