Dissociated cerebellar contributions to feedforward gait adaptation

The cerebellum is important for motor adaptation. Lesions to the vestibulo-cerebellum selectively cause gait ataxia. Here we investigate how such damage affects locomotor adaptation when performing the ‘broken escalator’ paradigm. Following an auditory cue, participants were required to step from th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental brain research 2024-07, Vol.242 (7), p.1583-1593
Hauptverfasser: Bunday, Karen L., Ellmers, Toby J., Wimalaratna, M. Rashmi, Nadarajah, Luxme, Bronstein, Adolfo M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1593
container_issue 7
container_start_page 1583
container_title Experimental brain research
container_volume 242
creator Bunday, Karen L.
Ellmers, Toby J.
Wimalaratna, M. Rashmi
Nadarajah, Luxme
Bronstein, Adolfo M.
description The cerebellum is important for motor adaptation. Lesions to the vestibulo-cerebellum selectively cause gait ataxia. Here we investigate how such damage affects locomotor adaptation when performing the ‘broken escalator’ paradigm. Following an auditory cue, participants were required to step from the fixed surface onto a moving platform (akin to an airport travellator). The experiment included three conditions: 10 stationary (BEFORE), 15 moving (MOVING) and 10 stationary (AFTER) trials. We assessed both behavioural (gait approach velocity and trunk sway after stepping onto the moving platform) and neuromuscular outcomes (lower leg muscle activity, EMG). Unlike controls, cerebellar patients showed reduced after-effects (AFTER trials) with respect to gait approach velocity and leg EMG activity. However, patients with cerebellar damage maintain the ability to learn the trunk movement required to maximise stability after stepping onto the moving platform (i.e., reactive postural behaviours). Importantly, our findings reveal that these patients could even initiate these behaviours in a feedforward manner, leading to an after-effect. These findings reveal that the cerebellum is crucial for feedforward locomotor control, but that adaptive locomotor behaviours learned via feedback (i.e., reactive) mechanisms may be preserved following cerebellum damage.
doi_str_mv 10.1007/s00221-024-06840-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11208272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056670188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-530fbac856903624f1a6e54adf5a2c32457e19dd413abac2a939386f2e875aab3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS1ERbeFL8ChisSFS-j4v32q0NJSpEpc4GxNHGdxtRtv7QTEt6-3WwrtoZwsa37zZt48Qt5S-EAB9GkBYIy2wEQLygho7QuyoIKzllJQL8kCgIpWGGoPyVEp17sv1_CKHHKjFQhlF2T5KZaSfMQp9I0POXRhvcbc-DROOXbzFNNYmik1Qwj9kPIvzH2zwjg12ON2wl39NTkYcF3Cm_v3mHy_OP-2vGyvvn7-svx41Xoh7dRKDkOH3khlgSsmBooqSIH9IJF5zoTUgdq-F5Rj5RhabrlRAwtGS8SOH5Ozve527jah96GuiGu3zXGD-bdLGN3jyhh_uFX66ShlYJhmVeH9vUJON3Mok9vE4neOx5Dm4jiVXGmmufg_ClIpDdSYir57gl6nOY_1FJWqU6thpSrF9pTPqZQchofFKbhdnm6fp6t5urs8na1NJ_9afmj5E2AF-B4otTSuQv47-xnZWxKIq3U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072356966</pqid></control><display><type>article</type><title>Dissociated cerebellar contributions to feedforward gait adaptation</title><source>MEDLINE</source><source>SpringerLink</source><creator>Bunday, Karen L. ; Ellmers, Toby J. ; Wimalaratna, M. Rashmi ; Nadarajah, Luxme ; Bronstein, Adolfo M.</creator><creatorcontrib>Bunday, Karen L. ; Ellmers, Toby J. ; Wimalaratna, M. Rashmi ; Nadarajah, Luxme ; Bronstein, Adolfo M.</creatorcontrib><description>The cerebellum is important for motor adaptation. Lesions to the vestibulo-cerebellum selectively cause gait ataxia. Here we investigate how such damage affects locomotor adaptation when performing the ‘broken escalator’ paradigm. Following an auditory cue, participants were required to step from the fixed surface onto a moving platform (akin to an airport travellator). The experiment included three conditions: 10 stationary (BEFORE), 15 moving (MOVING) and 10 stationary (AFTER) trials. We assessed both behavioural (gait approach velocity and trunk sway after stepping onto the moving platform) and neuromuscular outcomes (lower leg muscle activity, EMG). Unlike controls, cerebellar patients showed reduced after-effects (AFTER trials) with respect to gait approach velocity and leg EMG activity. However, patients with cerebellar damage maintain the ability to learn the trunk movement required to maximise stability after stepping onto the moving platform (i.e., reactive postural behaviours). Importantly, our findings reveal that these patients could even initiate these behaviours in a feedforward manner, leading to an after-effect. These findings reveal that the cerebellum is crucial for feedforward locomotor control, but that adaptive locomotor behaviours learned via feedback (i.e., reactive) mechanisms may be preserved following cerebellum damage.</description><identifier>ISSN: 0014-4819</identifier><identifier>ISSN: 1432-1106</identifier><identifier>EISSN: 1432-1106</identifier><identifier>DOI: 10.1007/s00221-024-06840-9</identifier><identifier>PMID: 38760469</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation ; Adaptation, Physiological - physiology ; Adult ; Aged ; airports ; Ataxia ; Biomechanical Phenomena - physiology ; Biomedical and Life Sciences ; Biomedicine ; Cerebellum ; Cerebellum - physiology ; Clinical trials ; Electromyography ; Female ; Gait ; Gait - physiology ; Humans ; Male ; Middle Aged ; Muscle, Skeletal - physiology ; muscles ; Neurology ; Neurosciences ; Postural Balance - physiology ; Research Article ; Velocity</subject><ispartof>Experimental brain research, 2024-07, Vol.242 (7), p.1583-1593</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c459t-530fbac856903624f1a6e54adf5a2c32457e19dd413abac2a939386f2e875aab3</cites><orcidid>0000-0001-9595-6360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00221-024-06840-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00221-024-06840-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38760469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bunday, Karen L.</creatorcontrib><creatorcontrib>Ellmers, Toby J.</creatorcontrib><creatorcontrib>Wimalaratna, M. Rashmi</creatorcontrib><creatorcontrib>Nadarajah, Luxme</creatorcontrib><creatorcontrib>Bronstein, Adolfo M.</creatorcontrib><title>Dissociated cerebellar contributions to feedforward gait adaptation</title><title>Experimental brain research</title><addtitle>Exp Brain Res</addtitle><addtitle>Exp Brain Res</addtitle><description>The cerebellum is important for motor adaptation. Lesions to the vestibulo-cerebellum selectively cause gait ataxia. Here we investigate how such damage affects locomotor adaptation when performing the ‘broken escalator’ paradigm. Following an auditory cue, participants were required to step from the fixed surface onto a moving platform (akin to an airport travellator). The experiment included three conditions: 10 stationary (BEFORE), 15 moving (MOVING) and 10 stationary (AFTER) trials. We assessed both behavioural (gait approach velocity and trunk sway after stepping onto the moving platform) and neuromuscular outcomes (lower leg muscle activity, EMG). Unlike controls, cerebellar patients showed reduced after-effects (AFTER trials) with respect to gait approach velocity and leg EMG activity. However, patients with cerebellar damage maintain the ability to learn the trunk movement required to maximise stability after stepping onto the moving platform (i.e., reactive postural behaviours). Importantly, our findings reveal that these patients could even initiate these behaviours in a feedforward manner, leading to an after-effect. These findings reveal that the cerebellum is crucial for feedforward locomotor control, but that adaptive locomotor behaviours learned via feedback (i.e., reactive) mechanisms may be preserved following cerebellum damage.</description><subject>Adaptation</subject><subject>Adaptation, Physiological - physiology</subject><subject>Adult</subject><subject>Aged</subject><subject>airports</subject><subject>Ataxia</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cerebellum</subject><subject>Cerebellum - physiology</subject><subject>Clinical trials</subject><subject>Electromyography</subject><subject>Female</subject><subject>Gait</subject><subject>Gait - physiology</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Muscle, Skeletal - physiology</subject><subject>muscles</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Postural Balance - physiology</subject><subject>Research Article</subject><subject>Velocity</subject><issn>0014-4819</issn><issn>1432-1106</issn><issn>1432-1106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS1ERbeFL8ChisSFS-j4v32q0NJSpEpc4GxNHGdxtRtv7QTEt6-3WwrtoZwsa37zZt48Qt5S-EAB9GkBYIy2wEQLygho7QuyoIKzllJQL8kCgIpWGGoPyVEp17sv1_CKHHKjFQhlF2T5KZaSfMQp9I0POXRhvcbc-DROOXbzFNNYmik1Qwj9kPIvzH2zwjg12ON2wl39NTkYcF3Cm_v3mHy_OP-2vGyvvn7-svx41Xoh7dRKDkOH3khlgSsmBooqSIH9IJF5zoTUgdq-F5Rj5RhabrlRAwtGS8SOH5Ozve527jah96GuiGu3zXGD-bdLGN3jyhh_uFX66ShlYJhmVeH9vUJON3Mok9vE4neOx5Dm4jiVXGmmufg_ClIpDdSYir57gl6nOY_1FJWqU6thpSrF9pTPqZQchofFKbhdnm6fp6t5urs8na1NJ_9afmj5E2AF-B4otTSuQv47-xnZWxKIq3U</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Bunday, Karen L.</creator><creator>Ellmers, Toby J.</creator><creator>Wimalaratna, M. Rashmi</creator><creator>Nadarajah, Luxme</creator><creator>Bronstein, Adolfo M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9595-6360</orcidid></search><sort><creationdate>20240701</creationdate><title>Dissociated cerebellar contributions to feedforward gait adaptation</title><author>Bunday, Karen L. ; Ellmers, Toby J. ; Wimalaratna, M. Rashmi ; Nadarajah, Luxme ; Bronstein, Adolfo M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-530fbac856903624f1a6e54adf5a2c32457e19dd413abac2a939386f2e875aab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Adaptation, Physiological - physiology</topic><topic>Adult</topic><topic>Aged</topic><topic>airports</topic><topic>Ataxia</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cerebellum</topic><topic>Cerebellum - physiology</topic><topic>Clinical trials</topic><topic>Electromyography</topic><topic>Female</topic><topic>Gait</topic><topic>Gait - physiology</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Muscle, Skeletal - physiology</topic><topic>muscles</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Postural Balance - physiology</topic><topic>Research Article</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bunday, Karen L.</creatorcontrib><creatorcontrib>Ellmers, Toby J.</creatorcontrib><creatorcontrib>Wimalaratna, M. Rashmi</creatorcontrib><creatorcontrib>Nadarajah, Luxme</creatorcontrib><creatorcontrib>Bronstein, Adolfo M.</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bunday, Karen L.</au><au>Ellmers, Toby J.</au><au>Wimalaratna, M. Rashmi</au><au>Nadarajah, Luxme</au><au>Bronstein, Adolfo M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissociated cerebellar contributions to feedforward gait adaptation</atitle><jtitle>Experimental brain research</jtitle><stitle>Exp Brain Res</stitle><addtitle>Exp Brain Res</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>242</volume><issue>7</issue><spage>1583</spage><epage>1593</epage><pages>1583-1593</pages><issn>0014-4819</issn><issn>1432-1106</issn><eissn>1432-1106</eissn><abstract>The cerebellum is important for motor adaptation. Lesions to the vestibulo-cerebellum selectively cause gait ataxia. Here we investigate how such damage affects locomotor adaptation when performing the ‘broken escalator’ paradigm. Following an auditory cue, participants were required to step from the fixed surface onto a moving platform (akin to an airport travellator). The experiment included three conditions: 10 stationary (BEFORE), 15 moving (MOVING) and 10 stationary (AFTER) trials. We assessed both behavioural (gait approach velocity and trunk sway after stepping onto the moving platform) and neuromuscular outcomes (lower leg muscle activity, EMG). Unlike controls, cerebellar patients showed reduced after-effects (AFTER trials) with respect to gait approach velocity and leg EMG activity. However, patients with cerebellar damage maintain the ability to learn the trunk movement required to maximise stability after stepping onto the moving platform (i.e., reactive postural behaviours). Importantly, our findings reveal that these patients could even initiate these behaviours in a feedforward manner, leading to an after-effect. These findings reveal that the cerebellum is crucial for feedforward locomotor control, but that adaptive locomotor behaviours learned via feedback (i.e., reactive) mechanisms may be preserved following cerebellum damage.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38760469</pmid><doi>10.1007/s00221-024-06840-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9595-6360</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4819
ispartof Experimental brain research, 2024-07, Vol.242 (7), p.1583-1593
issn 0014-4819
1432-1106
1432-1106
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11208272
source MEDLINE; SpringerLink
subjects Adaptation
Adaptation, Physiological - physiology
Adult
Aged
airports
Ataxia
Biomechanical Phenomena - physiology
Biomedical and Life Sciences
Biomedicine
Cerebellum
Cerebellum - physiology
Clinical trials
Electromyography
Female
Gait
Gait - physiology
Humans
Male
Middle Aged
Muscle, Skeletal - physiology
muscles
Neurology
Neurosciences
Postural Balance - physiology
Research Article
Velocity
title Dissociated cerebellar contributions to feedforward gait adaptation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A01%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissociated%20cerebellar%20contributions%20to%20feedforward%20gait%20adaptation&rft.jtitle=Experimental%20brain%20research&rft.au=Bunday,%20Karen%20L.&rft.date=2024-07-01&rft.volume=242&rft.issue=7&rft.spage=1583&rft.epage=1593&rft.pages=1583-1593&rft.issn=0014-4819&rft.eissn=1432-1106&rft_id=info:doi/10.1007/s00221-024-06840-9&rft_dat=%3Cproquest_pubme%3E3056670188%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072356966&rft_id=info:pmid/38760469&rfr_iscdi=true