Computational Analysis of Polymeric Biodegradable and Customizable Airway Stent Designs

The placement of endotracheal prostheses is a procedure used to treat tracheal lesions when no other surgical options are available. Unfortunately, this technique remains controversial. Both silicon and metallic stents are used with unpredictable success rates, as they have advantages but also disad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2024-06, Vol.16 (12), p.1691
Hauptverfasser: Ayechu-Abendaño, Ada, Pérez-Jiménez, Aurora, Sánchez-Matás, Carmen, López-Villalobos, José Luis, Díaz-Jiménez, Cristina, Fernández-Parra, Rocío, Malvè, Mauro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 1691
container_title Polymers
container_volume 16
creator Ayechu-Abendaño, Ada
Pérez-Jiménez, Aurora
Sánchez-Matás, Carmen
López-Villalobos, José Luis
Díaz-Jiménez, Cristina
Fernández-Parra, Rocío
Malvè, Mauro
description The placement of endotracheal prostheses is a procedure used to treat tracheal lesions when no other surgical options are available. Unfortunately, this technique remains controversial. Both silicon and metallic stents are used with unpredictable success rates, as they have advantages but also disadvantages. Typical side effects include restenosis due to epithelial hyperplasia, obstruction and granuloma formation. Repeat interventions are often required. Biodegradable stents are promising in the field of cardiovascular biomechanics but are not yet approved for use in the respiratory system. The aim of the present study is to summarize important information and to evaluate the role of different geometrical features for the fabrication of a new tracheo-bronchial prosthesis prototype, which should be biodegradable, adaptable to the patient's lesion and producible by 3D printing. A parametric design and subsequent computational analysis using the finite element method is carried out. Two different stent designs are parameterized and analyzed. The biodegradable material chosen for simulations is polylactic acid. Experimental tests are conducted for assessing its mechanical properties. The role of the key design parameters on the radial force of the biodegradable prosthesis is investigated. The computational results allow us to elucidate the role of the pitch angle, the wire thickness and the number of cells or units, among other parameters, on the radial force. This work may be useful for the design of ad hoc airway stents according to the patient and type of lesion.
doi_str_mv 10.3390/polym16121691
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11207808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072654584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-4afbf9b06499a5d915c706da89f3606cbdbc5a6a28e773e52ba6f26a004118fe3</originalsourceid><addsrcrecordid>eNpdkd1LwzAUxYMobsw9-ioFX3yp5qNN0yeZ8xMGCio-hts2nRltM5NWmX-9mZtjMw83IffH4dx7EDom-JyxFF_MTbWoCSeU8JTsoT7FCQsjxvH-1ruHhs7NsD9RzDlJDlGPiZRRHJE-ehubet610GrTQBWMfFk47QJTBk9LcWV1HlxpU6iphQKySgXQFMG4c62p9ffvx0jbL1gEz61q2uBaOT1t3BE6KKFyari-B-j19uZlfB9OHu8exqNJmLOEtmEEZVamGeZRmkJcpCTOE8wLEGnpnfM8K7I8Bg5UqCRhKqYZ8JJy8LMQIkrFBuhypTvvsloVubdgoZJzq2uwC2lAy91Oo9_l1HxKQvyCBBZe4WytYM1Hp1wra-1yVVXQKNM5yXBCBWGCUY-e_kNnprN-ZSuKx1EsIk-FKyq3xjmryo0bguUyNrkTm-dPtkfY0H8hsR8WzpT-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072654584</pqid></control><display><type>article</type><title>Computational Analysis of Polymeric Biodegradable and Customizable Airway Stent Designs</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Ayechu-Abendaño, Ada ; Pérez-Jiménez, Aurora ; Sánchez-Matás, Carmen ; López-Villalobos, José Luis ; Díaz-Jiménez, Cristina ; Fernández-Parra, Rocío ; Malvè, Mauro</creator><creatorcontrib>Ayechu-Abendaño, Ada ; Pérez-Jiménez, Aurora ; Sánchez-Matás, Carmen ; López-Villalobos, José Luis ; Díaz-Jiménez, Cristina ; Fernández-Parra, Rocío ; Malvè, Mauro</creatorcontrib><description>The placement of endotracheal prostheses is a procedure used to treat tracheal lesions when no other surgical options are available. Unfortunately, this technique remains controversial. Both silicon and metallic stents are used with unpredictable success rates, as they have advantages but also disadvantages. Typical side effects include restenosis due to epithelial hyperplasia, obstruction and granuloma formation. Repeat interventions are often required. Biodegradable stents are promising in the field of cardiovascular biomechanics but are not yet approved for use in the respiratory system. The aim of the present study is to summarize important information and to evaluate the role of different geometrical features for the fabrication of a new tracheo-bronchial prosthesis prototype, which should be biodegradable, adaptable to the patient's lesion and producible by 3D printing. A parametric design and subsequent computational analysis using the finite element method is carried out. Two different stent designs are parameterized and analyzed. The biodegradable material chosen for simulations is polylactic acid. Experimental tests are conducted for assessing its mechanical properties. The role of the key design parameters on the radial force of the biodegradable prosthesis is investigated. The computational results allow us to elucidate the role of the pitch angle, the wire thickness and the number of cells or units, among other parameters, on the radial force. This work may be useful for the design of ad hoc airway stents according to the patient and type of lesion.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16121691</identifier><identifier>PMID: 38932041</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; Algae ; Biodegradable materials ; Biomechanics ; Customization ; Design ; Design parameters ; Finite element method ; Lesions ; Mechanical properties ; Medical equipment ; Optimization ; Pitch (inclination) ; Polylactic acid ; Prostheses ; Respiratory system ; Side effects ; Silicones ; Stents ; Three dimensional printing ; Tissue engineering</subject><ispartof>Polymers, 2024-06, Vol.16 (12), p.1691</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c372t-4afbf9b06499a5d915c706da89f3606cbdbc5a6a28e773e52ba6f26a004118fe3</cites><orcidid>0009-0005-5780-3458 ; 0000-0003-3691-5846 ; 0000-0002-7665-9261 ; 0000-0002-0116-2736 ; 0000-0003-2128-9141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207808/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207808/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38932041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ayechu-Abendaño, Ada</creatorcontrib><creatorcontrib>Pérez-Jiménez, Aurora</creatorcontrib><creatorcontrib>Sánchez-Matás, Carmen</creatorcontrib><creatorcontrib>López-Villalobos, José Luis</creatorcontrib><creatorcontrib>Díaz-Jiménez, Cristina</creatorcontrib><creatorcontrib>Fernández-Parra, Rocío</creatorcontrib><creatorcontrib>Malvè, Mauro</creatorcontrib><title>Computational Analysis of Polymeric Biodegradable and Customizable Airway Stent Designs</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>The placement of endotracheal prostheses is a procedure used to treat tracheal lesions when no other surgical options are available. Unfortunately, this technique remains controversial. Both silicon and metallic stents are used with unpredictable success rates, as they have advantages but also disadvantages. Typical side effects include restenosis due to epithelial hyperplasia, obstruction and granuloma formation. Repeat interventions are often required. Biodegradable stents are promising in the field of cardiovascular biomechanics but are not yet approved for use in the respiratory system. The aim of the present study is to summarize important information and to evaluate the role of different geometrical features for the fabrication of a new tracheo-bronchial prosthesis prototype, which should be biodegradable, adaptable to the patient's lesion and producible by 3D printing. A parametric design and subsequent computational analysis using the finite element method is carried out. Two different stent designs are parameterized and analyzed. The biodegradable material chosen for simulations is polylactic acid. Experimental tests are conducted for assessing its mechanical properties. The role of the key design parameters on the radial force of the biodegradable prosthesis is investigated. The computational results allow us to elucidate the role of the pitch angle, the wire thickness and the number of cells or units, among other parameters, on the radial force. This work may be useful for the design of ad hoc airway stents according to the patient and type of lesion.</description><subject>3-D printers</subject><subject>Algae</subject><subject>Biodegradable materials</subject><subject>Biomechanics</subject><subject>Customization</subject><subject>Design</subject><subject>Design parameters</subject><subject>Finite element method</subject><subject>Lesions</subject><subject>Mechanical properties</subject><subject>Medical equipment</subject><subject>Optimization</subject><subject>Pitch (inclination)</subject><subject>Polylactic acid</subject><subject>Prostheses</subject><subject>Respiratory system</subject><subject>Side effects</subject><subject>Silicones</subject><subject>Stents</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkd1LwzAUxYMobsw9-ioFX3yp5qNN0yeZ8xMGCio-hts2nRltM5NWmX-9mZtjMw83IffH4dx7EDom-JyxFF_MTbWoCSeU8JTsoT7FCQsjxvH-1ruHhs7NsD9RzDlJDlGPiZRRHJE-ehubet610GrTQBWMfFk47QJTBk9LcWV1HlxpU6iphQKySgXQFMG4c62p9ffvx0jbL1gEz61q2uBaOT1t3BE6KKFyari-B-j19uZlfB9OHu8exqNJmLOEtmEEZVamGeZRmkJcpCTOE8wLEGnpnfM8K7I8Bg5UqCRhKqYZ8JJy8LMQIkrFBuhypTvvsloVubdgoZJzq2uwC2lAy91Oo9_l1HxKQvyCBBZe4WytYM1Hp1wra-1yVVXQKNM5yXBCBWGCUY-e_kNnprN-ZSuKx1EsIk-FKyq3xjmryo0bguUyNrkTm-dPtkfY0H8hsR8WzpT-</recordid><startdate>20240614</startdate><enddate>20240614</enddate><creator>Ayechu-Abendaño, Ada</creator><creator>Pérez-Jiménez, Aurora</creator><creator>Sánchez-Matás, Carmen</creator><creator>López-Villalobos, José Luis</creator><creator>Díaz-Jiménez, Cristina</creator><creator>Fernández-Parra, Rocío</creator><creator>Malvè, Mauro</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0005-5780-3458</orcidid><orcidid>https://orcid.org/0000-0003-3691-5846</orcidid><orcidid>https://orcid.org/0000-0002-7665-9261</orcidid><orcidid>https://orcid.org/0000-0002-0116-2736</orcidid><orcidid>https://orcid.org/0000-0003-2128-9141</orcidid></search><sort><creationdate>20240614</creationdate><title>Computational Analysis of Polymeric Biodegradable and Customizable Airway Stent Designs</title><author>Ayechu-Abendaño, Ada ; Pérez-Jiménez, Aurora ; Sánchez-Matás, Carmen ; López-Villalobos, José Luis ; Díaz-Jiménez, Cristina ; Fernández-Parra, Rocío ; Malvè, Mauro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-4afbf9b06499a5d915c706da89f3606cbdbc5a6a28e773e52ba6f26a004118fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>Algae</topic><topic>Biodegradable materials</topic><topic>Biomechanics</topic><topic>Customization</topic><topic>Design</topic><topic>Design parameters</topic><topic>Finite element method</topic><topic>Lesions</topic><topic>Mechanical properties</topic><topic>Medical equipment</topic><topic>Optimization</topic><topic>Pitch (inclination)</topic><topic>Polylactic acid</topic><topic>Prostheses</topic><topic>Respiratory system</topic><topic>Side effects</topic><topic>Silicones</topic><topic>Stents</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayechu-Abendaño, Ada</creatorcontrib><creatorcontrib>Pérez-Jiménez, Aurora</creatorcontrib><creatorcontrib>Sánchez-Matás, Carmen</creatorcontrib><creatorcontrib>López-Villalobos, José Luis</creatorcontrib><creatorcontrib>Díaz-Jiménez, Cristina</creatorcontrib><creatorcontrib>Fernández-Parra, Rocío</creatorcontrib><creatorcontrib>Malvè, Mauro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayechu-Abendaño, Ada</au><au>Pérez-Jiménez, Aurora</au><au>Sánchez-Matás, Carmen</au><au>López-Villalobos, José Luis</au><au>Díaz-Jiménez, Cristina</au><au>Fernández-Parra, Rocío</au><au>Malvè, Mauro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Analysis of Polymeric Biodegradable and Customizable Airway Stent Designs</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-06-14</date><risdate>2024</risdate><volume>16</volume><issue>12</issue><spage>1691</spage><pages>1691-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The placement of endotracheal prostheses is a procedure used to treat tracheal lesions when no other surgical options are available. Unfortunately, this technique remains controversial. Both silicon and metallic stents are used with unpredictable success rates, as they have advantages but also disadvantages. Typical side effects include restenosis due to epithelial hyperplasia, obstruction and granuloma formation. Repeat interventions are often required. Biodegradable stents are promising in the field of cardiovascular biomechanics but are not yet approved for use in the respiratory system. The aim of the present study is to summarize important information and to evaluate the role of different geometrical features for the fabrication of a new tracheo-bronchial prosthesis prototype, which should be biodegradable, adaptable to the patient's lesion and producible by 3D printing. A parametric design and subsequent computational analysis using the finite element method is carried out. Two different stent designs are parameterized and analyzed. The biodegradable material chosen for simulations is polylactic acid. Experimental tests are conducted for assessing its mechanical properties. The role of the key design parameters on the radial force of the biodegradable prosthesis is investigated. The computational results allow us to elucidate the role of the pitch angle, the wire thickness and the number of cells or units, among other parameters, on the radial force. This work may be useful for the design of ad hoc airway stents according to the patient and type of lesion.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38932041</pmid><doi>10.3390/polym16121691</doi><orcidid>https://orcid.org/0009-0005-5780-3458</orcidid><orcidid>https://orcid.org/0000-0003-3691-5846</orcidid><orcidid>https://orcid.org/0000-0002-7665-9261</orcidid><orcidid>https://orcid.org/0000-0002-0116-2736</orcidid><orcidid>https://orcid.org/0000-0003-2128-9141</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2024-06, Vol.16 (12), p.1691
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11207808
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects 3-D printers
Algae
Biodegradable materials
Biomechanics
Customization
Design
Design parameters
Finite element method
Lesions
Mechanical properties
Medical equipment
Optimization
Pitch (inclination)
Polylactic acid
Prostheses
Respiratory system
Side effects
Silicones
Stents
Three dimensional printing
Tissue engineering
title Computational Analysis of Polymeric Biodegradable and Customizable Airway Stent Designs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Analysis%20of%20Polymeric%20Biodegradable%20and%20Customizable%20Airway%20Stent%20Designs&rft.jtitle=Polymers&rft.au=Ayechu-Abenda%C3%B1o,%20Ada&rft.date=2024-06-14&rft.volume=16&rft.issue=12&rft.spage=1691&rft.pages=1691-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16121691&rft_dat=%3Cproquest_pubme%3E3072654584%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072654584&rft_id=info:pmid/38932041&rfr_iscdi=true