Reaction Mechanism and Performance of Innovative 2D Germanane‐Silicane Alloys: Si x Ge1− x H Electrodes in Lithium‐Ion Batteries

The adjustable structures and remarkable physicochemical properties of 2D monoelemental materials, such as silicene and germanene, have attracted significant attention in recent years. They can be transformed into silicane (SiH) and germanane (GeH) through covalent functionalization via hydrogen ato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2024-04, Vol.11 (24)
Hauptverfasser: Wei, Shuangying, Hartman, Tomáš, Mourdikoudis, Stefanos, Liu, Xueting, Wang, Gang, Kovalska, Evgeniya, Wu, Bing, Azadmanjiri, Jalal, Yu, Ruizhi, Chacko, Levna, Dekanovsky, Lukas, Oliveira, Filipa M., Li, Min, Luxa, Jan, Jamali Ashtiani, Saeed, Su, Jincang, Sofer, Zdeněk
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title Advanced science
container_volume 11
creator Wei, Shuangying
Hartman, Tomáš
Mourdikoudis, Stefanos
Liu, Xueting
Wang, Gang
Kovalska, Evgeniya
Wu, Bing
Azadmanjiri, Jalal
Yu, Ruizhi
Chacko, Levna
Dekanovsky, Lukas
Oliveira, Filipa M.
Li, Min
Luxa, Jan
Jamali Ashtiani, Saeed
Su, Jincang
Sofer, Zdeněk
description The adjustable structures and remarkable physicochemical properties of 2D monoelemental materials, such as silicene and germanene, have attracted significant attention in recent years. They can be transformed into silicane (SiH) and germanane (GeH) through covalent functionalization via hydrogen atom termination. However, synthesizing these materials with a scalable and low‐cost fabrication process to achieve high‐quality 2D SiH and GeH poses challenges. Herein, groundbreaking 2D SiH and GeH materials with varying compositions, specifically Si 0.25 Ge 0.75 H, Si 0.50 Ge 0.50 H, and Si 0.75 Ge 0.25 H, are prepared through a simple and efficient chemical exfoliation of their Zintl phases. These 2D materials offer significant advantages, including their large surface area, high mechanical flexibility, rapid electron mobility, and defect‐rich loose‐layered structures. Among these compositions, the Si 0.50 Ge 0.50 H electrode demonstrates the highest discharge capacity, reaching up to 1059 mAh g −1 after 60 cycles at a current density of 75 mA g −1 . A comprehensive ex‐situ electrochemical analysis is conducted to investigate the reaction mechanisms of lithiation/delithiation in Si 0.50 Ge 0.50 H. Subsequently, an initial assessment of the c ‐Li 15 (Si x Ge 1‐ x ) 4 phase after lithiation and the a ‐Si 0.50 Ge 0.50 phase after delithiation is presented. Hence, this study contributes crucial insights into the (de)lithiation reaction mechanisms within germanane‐silicane alloys. Such understanding is pivotal for mastering promising materials that amalgamate the finest properties of silicon and germanium. 2D materials with compositions Si 0.25 Ge 0.75 H, Si 0.50 Ge 0.50 H and Si 0.75 Ge 0.25 H, are synthesized a simple and efficient chemical exfoliation of their Zintl phases. Among these, the Si 0.50 Ge 0.50 H electrode displays the most superior performance, boosting a discharge capacity of 1059 mAh g −1 following 60 cycles at a current density of 75 mA g −1 . A comprehensive ex‐situ electrochemical analysis is performed to study the reaction mechanisms of lithiation/delithiation.
doi_str_mv 10.1002/advs.202308955
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11199986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_11199986</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_111999863</originalsourceid><addsrcrecordid>eNqljbtOwzAUhi0kRCvoynxeoMVOnNZhQVwKrQQSouyRSU7IQY5d2W5ENybEiHjEPglBYmFm-j_pvzF2LPhEcJ6c6KoLk4QnKVd5lu2xYSJyNU6VlAM2CuGFcy6ydCaFOmCDVE3lTHI5ZO8PqMtIzsIdlo22FFrQtoJ79LXzrbYlgqthaa3rdKQOIbmCG_xxtMXd2-eKDJU9wrkxbhtOYUXw2ifE7uOrhwXMDZbRuwoDkIVbig1t2r647D8vdIzoCcMR26-1CTj61UN2dj1_vFyM15unFqsSbfTaFGtPrfbbwmkq_jqWmuLZdYUQIs9zNU3_v_ANwJFytg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reaction Mechanism and Performance of Innovative 2D Germanane‐Silicane Alloys: Si x Ge1− x H Electrodes in Lithium‐Ion Batteries</title><source>PubMed Central Free</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Wei, Shuangying ; Hartman, Tomáš ; Mourdikoudis, Stefanos ; Liu, Xueting ; Wang, Gang ; Kovalska, Evgeniya ; Wu, Bing ; Azadmanjiri, Jalal ; Yu, Ruizhi ; Chacko, Levna ; Dekanovsky, Lukas ; Oliveira, Filipa M. ; Li, Min ; Luxa, Jan ; Jamali Ashtiani, Saeed ; Su, Jincang ; Sofer, Zdeněk</creator><creatorcontrib>Wei, Shuangying ; Hartman, Tomáš ; Mourdikoudis, Stefanos ; Liu, Xueting ; Wang, Gang ; Kovalska, Evgeniya ; Wu, Bing ; Azadmanjiri, Jalal ; Yu, Ruizhi ; Chacko, Levna ; Dekanovsky, Lukas ; Oliveira, Filipa M. ; Li, Min ; Luxa, Jan ; Jamali Ashtiani, Saeed ; Su, Jincang ; Sofer, Zdeněk</creatorcontrib><description>The adjustable structures and remarkable physicochemical properties of 2D monoelemental materials, such as silicene and germanene, have attracted significant attention in recent years. They can be transformed into silicane (SiH) and germanane (GeH) through covalent functionalization via hydrogen atom termination. However, synthesizing these materials with a scalable and low‐cost fabrication process to achieve high‐quality 2D SiH and GeH poses challenges. Herein, groundbreaking 2D SiH and GeH materials with varying compositions, specifically Si 0.25 Ge 0.75 H, Si 0.50 Ge 0.50 H, and Si 0.75 Ge 0.25 H, are prepared through a simple and efficient chemical exfoliation of their Zintl phases. These 2D materials offer significant advantages, including their large surface area, high mechanical flexibility, rapid electron mobility, and defect‐rich loose‐layered structures. Among these compositions, the Si 0.50 Ge 0.50 H electrode demonstrates the highest discharge capacity, reaching up to 1059 mAh g −1 after 60 cycles at a current density of 75 mA g −1 . A comprehensive ex‐situ electrochemical analysis is conducted to investigate the reaction mechanisms of lithiation/delithiation in Si 0.50 Ge 0.50 H. Subsequently, an initial assessment of the c ‐Li 15 (Si x Ge 1‐ x ) 4 phase after lithiation and the a ‐Si 0.50 Ge 0.50 phase after delithiation is presented. Hence, this study contributes crucial insights into the (de)lithiation reaction mechanisms within germanane‐silicane alloys. Such understanding is pivotal for mastering promising materials that amalgamate the finest properties of silicon and germanium. 2D materials with compositions Si 0.25 Ge 0.75 H, Si 0.50 Ge 0.50 H and Si 0.75 Ge 0.25 H, are synthesized a simple and efficient chemical exfoliation of their Zintl phases. Among these, the Si 0.50 Ge 0.50 H electrode displays the most superior performance, boosting a discharge capacity of 1059 mAh g −1 following 60 cycles at a current density of 75 mA g −1 . A comprehensive ex‐situ electrochemical analysis is performed to study the reaction mechanisms of lithiation/delithiation.</description><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202308955</identifier><identifier>PMID: 38647404</identifier><language>eng</language><publisher>Hoboken: John Wiley and Sons Inc</publisher><ispartof>Advanced science, 2024-04, Vol.11 (24)</ispartof><rights>2024 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199986/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199986/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Wei, Shuangying</creatorcontrib><creatorcontrib>Hartman, Tomáš</creatorcontrib><creatorcontrib>Mourdikoudis, Stefanos</creatorcontrib><creatorcontrib>Liu, Xueting</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Kovalska, Evgeniya</creatorcontrib><creatorcontrib>Wu, Bing</creatorcontrib><creatorcontrib>Azadmanjiri, Jalal</creatorcontrib><creatorcontrib>Yu, Ruizhi</creatorcontrib><creatorcontrib>Chacko, Levna</creatorcontrib><creatorcontrib>Dekanovsky, Lukas</creatorcontrib><creatorcontrib>Oliveira, Filipa M.</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Luxa, Jan</creatorcontrib><creatorcontrib>Jamali Ashtiani, Saeed</creatorcontrib><creatorcontrib>Su, Jincang</creatorcontrib><creatorcontrib>Sofer, Zdeněk</creatorcontrib><title>Reaction Mechanism and Performance of Innovative 2D Germanane‐Silicane Alloys: Si x Ge1− x H Electrodes in Lithium‐Ion Batteries</title><title>Advanced science</title><description>The adjustable structures and remarkable physicochemical properties of 2D monoelemental materials, such as silicene and germanene, have attracted significant attention in recent years. They can be transformed into silicane (SiH) and germanane (GeH) through covalent functionalization via hydrogen atom termination. However, synthesizing these materials with a scalable and low‐cost fabrication process to achieve high‐quality 2D SiH and GeH poses challenges. Herein, groundbreaking 2D SiH and GeH materials with varying compositions, specifically Si 0.25 Ge 0.75 H, Si 0.50 Ge 0.50 H, and Si 0.75 Ge 0.25 H, are prepared through a simple and efficient chemical exfoliation of their Zintl phases. These 2D materials offer significant advantages, including their large surface area, high mechanical flexibility, rapid electron mobility, and defect‐rich loose‐layered structures. Among these compositions, the Si 0.50 Ge 0.50 H electrode demonstrates the highest discharge capacity, reaching up to 1059 mAh g −1 after 60 cycles at a current density of 75 mA g −1 . A comprehensive ex‐situ electrochemical analysis is conducted to investigate the reaction mechanisms of lithiation/delithiation in Si 0.50 Ge 0.50 H. Subsequently, an initial assessment of the c ‐Li 15 (Si x Ge 1‐ x ) 4 phase after lithiation and the a ‐Si 0.50 Ge 0.50 phase after delithiation is presented. Hence, this study contributes crucial insights into the (de)lithiation reaction mechanisms within germanane‐silicane alloys. Such understanding is pivotal for mastering promising materials that amalgamate the finest properties of silicon and germanium. 2D materials with compositions Si 0.25 Ge 0.75 H, Si 0.50 Ge 0.50 H and Si 0.75 Ge 0.25 H, are synthesized a simple and efficient chemical exfoliation of their Zintl phases. Among these, the Si 0.50 Ge 0.50 H electrode displays the most superior performance, boosting a discharge capacity of 1059 mAh g −1 following 60 cycles at a current density of 75 mA g −1 . A comprehensive ex‐situ electrochemical analysis is performed to study the reaction mechanisms of lithiation/delithiation.</description><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqljbtOwzAUhi0kRCvoynxeoMVOnNZhQVwKrQQSouyRSU7IQY5d2W5ENybEiHjEPglBYmFm-j_pvzF2LPhEcJ6c6KoLk4QnKVd5lu2xYSJyNU6VlAM2CuGFcy6ydCaFOmCDVE3lTHI5ZO8PqMtIzsIdlo22FFrQtoJ79LXzrbYlgqthaa3rdKQOIbmCG_xxtMXd2-eKDJU9wrkxbhtOYUXw2ifE7uOrhwXMDZbRuwoDkIVbig1t2r647D8vdIzoCcMR26-1CTj61UN2dj1_vFyM15unFqsSbfTaFGtPrfbbwmkq_jqWmuLZdYUQIs9zNU3_v_ANwJFytg</recordid><startdate>20240422</startdate><enddate>20240422</enddate><creator>Wei, Shuangying</creator><creator>Hartman, Tomáš</creator><creator>Mourdikoudis, Stefanos</creator><creator>Liu, Xueting</creator><creator>Wang, Gang</creator><creator>Kovalska, Evgeniya</creator><creator>Wu, Bing</creator><creator>Azadmanjiri, Jalal</creator><creator>Yu, Ruizhi</creator><creator>Chacko, Levna</creator><creator>Dekanovsky, Lukas</creator><creator>Oliveira, Filipa M.</creator><creator>Li, Min</creator><creator>Luxa, Jan</creator><creator>Jamali Ashtiani, Saeed</creator><creator>Su, Jincang</creator><creator>Sofer, Zdeněk</creator><general>John Wiley and Sons Inc</general><scope>5PM</scope></search><sort><creationdate>20240422</creationdate><title>Reaction Mechanism and Performance of Innovative 2D Germanane‐Silicane Alloys: Si x Ge1− x H Electrodes in Lithium‐Ion Batteries</title><author>Wei, Shuangying ; Hartman, Tomáš ; Mourdikoudis, Stefanos ; Liu, Xueting ; Wang, Gang ; Kovalska, Evgeniya ; Wu, Bing ; Azadmanjiri, Jalal ; Yu, Ruizhi ; Chacko, Levna ; Dekanovsky, Lukas ; Oliveira, Filipa M. ; Li, Min ; Luxa, Jan ; Jamali Ashtiani, Saeed ; Su, Jincang ; Sofer, Zdeněk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_111999863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Shuangying</creatorcontrib><creatorcontrib>Hartman, Tomáš</creatorcontrib><creatorcontrib>Mourdikoudis, Stefanos</creatorcontrib><creatorcontrib>Liu, Xueting</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Kovalska, Evgeniya</creatorcontrib><creatorcontrib>Wu, Bing</creatorcontrib><creatorcontrib>Azadmanjiri, Jalal</creatorcontrib><creatorcontrib>Yu, Ruizhi</creatorcontrib><creatorcontrib>Chacko, Levna</creatorcontrib><creatorcontrib>Dekanovsky, Lukas</creatorcontrib><creatorcontrib>Oliveira, Filipa M.</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Luxa, Jan</creatorcontrib><creatorcontrib>Jamali Ashtiani, Saeed</creatorcontrib><creatorcontrib>Su, Jincang</creatorcontrib><creatorcontrib>Sofer, Zdeněk</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Shuangying</au><au>Hartman, Tomáš</au><au>Mourdikoudis, Stefanos</au><au>Liu, Xueting</au><au>Wang, Gang</au><au>Kovalska, Evgeniya</au><au>Wu, Bing</au><au>Azadmanjiri, Jalal</au><au>Yu, Ruizhi</au><au>Chacko, Levna</au><au>Dekanovsky, Lukas</au><au>Oliveira, Filipa M.</au><au>Li, Min</au><au>Luxa, Jan</au><au>Jamali Ashtiani, Saeed</au><au>Su, Jincang</au><au>Sofer, Zdeněk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reaction Mechanism and Performance of Innovative 2D Germanane‐Silicane Alloys: Si x Ge1− x H Electrodes in Lithium‐Ion Batteries</atitle><jtitle>Advanced science</jtitle><date>2024-04-22</date><risdate>2024</risdate><volume>11</volume><issue>24</issue><eissn>2198-3844</eissn><abstract>The adjustable structures and remarkable physicochemical properties of 2D monoelemental materials, such as silicene and germanene, have attracted significant attention in recent years. They can be transformed into silicane (SiH) and germanane (GeH) through covalent functionalization via hydrogen atom termination. However, synthesizing these materials with a scalable and low‐cost fabrication process to achieve high‐quality 2D SiH and GeH poses challenges. Herein, groundbreaking 2D SiH and GeH materials with varying compositions, specifically Si 0.25 Ge 0.75 H, Si 0.50 Ge 0.50 H, and Si 0.75 Ge 0.25 H, are prepared through a simple and efficient chemical exfoliation of their Zintl phases. These 2D materials offer significant advantages, including their large surface area, high mechanical flexibility, rapid electron mobility, and defect‐rich loose‐layered structures. Among these compositions, the Si 0.50 Ge 0.50 H electrode demonstrates the highest discharge capacity, reaching up to 1059 mAh g −1 after 60 cycles at a current density of 75 mA g −1 . A comprehensive ex‐situ electrochemical analysis is conducted to investigate the reaction mechanisms of lithiation/delithiation in Si 0.50 Ge 0.50 H. Subsequently, an initial assessment of the c ‐Li 15 (Si x Ge 1‐ x ) 4 phase after lithiation and the a ‐Si 0.50 Ge 0.50 phase after delithiation is presented. Hence, this study contributes crucial insights into the (de)lithiation reaction mechanisms within germanane‐silicane alloys. Such understanding is pivotal for mastering promising materials that amalgamate the finest properties of silicon and germanium. 2D materials with compositions Si 0.25 Ge 0.75 H, Si 0.50 Ge 0.50 H and Si 0.75 Ge 0.25 H, are synthesized a simple and efficient chemical exfoliation of their Zintl phases. Among these, the Si 0.50 Ge 0.50 H electrode displays the most superior performance, boosting a discharge capacity of 1059 mAh g −1 following 60 cycles at a current density of 75 mA g −1 . A comprehensive ex‐situ electrochemical analysis is performed to study the reaction mechanisms of lithiation/delithiation.</abstract><cop>Hoboken</cop><pub>John Wiley and Sons Inc</pub><pmid>38647404</pmid><doi>10.1002/advs.202308955</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2198-3844
ispartof Advanced science, 2024-04, Vol.11 (24)
issn 2198-3844
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11199986
source PubMed Central Free; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
title Reaction Mechanism and Performance of Innovative 2D Germanane‐Silicane Alloys: Si x Ge1− x H Electrodes in Lithium‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reaction%20Mechanism%20and%20Performance%20of%20Innovative%202D%20Germanane%E2%80%90Silicane%20Alloys:%20Si%20x%20Ge1%E2%88%92%20x%20H%20Electrodes%20in%20Lithium%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20science&rft.au=Wei,%20Shuangying&rft.date=2024-04-22&rft.volume=11&rft.issue=24&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202308955&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_11199986%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38647404&rfr_iscdi=true