Reaction Mechanism and Performance of Innovative 2D Germanane‐Silicane Alloys: Si x Ge1− x H Electrodes in Lithium‐Ion Batteries
The adjustable structures and remarkable physicochemical properties of 2D monoelemental materials, such as silicene and germanene, have attracted significant attention in recent years. They can be transformed into silicane (SiH) and germanane (GeH) through covalent functionalization via hydrogen ato...
Gespeichert in:
Veröffentlicht in: | Advanced science 2024-04, Vol.11 (24) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Advanced science |
container_volume | 11 |
creator | Wei, Shuangying Hartman, Tomáš Mourdikoudis, Stefanos Liu, Xueting Wang, Gang Kovalska, Evgeniya Wu, Bing Azadmanjiri, Jalal Yu, Ruizhi Chacko, Levna Dekanovsky, Lukas Oliveira, Filipa M. Li, Min Luxa, Jan Jamali Ashtiani, Saeed Su, Jincang Sofer, Zdeněk |
description | The adjustable structures and remarkable physicochemical properties of 2D monoelemental materials, such as silicene and germanene, have attracted significant attention in recent years. They can be transformed into silicane (SiH) and germanane (GeH) through covalent functionalization via hydrogen atom termination. However, synthesizing these materials with a scalable and low‐cost fabrication process to achieve high‐quality 2D SiH and GeH poses challenges. Herein, groundbreaking 2D SiH and GeH materials with varying compositions, specifically Si
0.25
Ge
0.75
H, Si
0.50
Ge
0.50
H, and Si
0.75
Ge
0.25
H, are prepared through a simple and efficient chemical exfoliation of their Zintl phases. These 2D materials offer significant advantages, including their large surface area, high mechanical flexibility, rapid electron mobility, and defect‐rich loose‐layered structures. Among these compositions, the Si
0.50
Ge
0.50
H electrode demonstrates the highest discharge capacity, reaching up to 1059 mAh g
−1
after 60 cycles at a current density of 75 mA g
−1
. A comprehensive ex‐situ electrochemical analysis is conducted to investigate the reaction mechanisms of lithiation/delithiation in Si
0.50
Ge
0.50
H. Subsequently, an initial assessment of the
c
‐Li
15
(Si
x
Ge
1‐
x
)
4
phase after lithiation and the
a
‐Si
0.50
Ge
0.50
phase after delithiation is presented. Hence, this study contributes crucial insights into the (de)lithiation reaction mechanisms within germanane‐silicane alloys. Such understanding is pivotal for mastering promising materials that amalgamate the finest properties of silicon and germanium.
2D materials with compositions Si
0.25
Ge
0.75
H, Si
0.50
Ge
0.50
H and Si
0.75
Ge
0.25
H, are synthesized a simple and efficient chemical exfoliation of their Zintl phases. Among these, the Si
0.50
Ge
0.50
H electrode displays the most superior performance, boosting a discharge capacity of 1059 mAh g
−1
following 60 cycles at a current density of 75 mA g
−1
. A comprehensive ex‐situ electrochemical analysis is performed to study the reaction mechanisms of lithiation/delithiation. |
doi_str_mv | 10.1002/advs.202308955 |
format | Article |
fullrecord | <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11199986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_11199986</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_111999863</originalsourceid><addsrcrecordid>eNqljbtOwzAUhi0kRCvoynxeoMVOnNZhQVwKrQQSouyRSU7IQY5d2W5ENybEiHjEPglBYmFm-j_pvzF2LPhEcJ6c6KoLk4QnKVd5lu2xYSJyNU6VlAM2CuGFcy6ydCaFOmCDVE3lTHI5ZO8PqMtIzsIdlo22FFrQtoJ79LXzrbYlgqthaa3rdKQOIbmCG_xxtMXd2-eKDJU9wrkxbhtOYUXw2ifE7uOrhwXMDZbRuwoDkIVbig1t2r647D8vdIzoCcMR26-1CTj61UN2dj1_vFyM15unFqsSbfTaFGtPrfbbwmkq_jqWmuLZdYUQIs9zNU3_v_ANwJFytg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reaction Mechanism and Performance of Innovative 2D Germanane‐Silicane Alloys: Si x Ge1− x H Electrodes in Lithium‐Ion Batteries</title><source>PubMed Central Free</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Wei, Shuangying ; Hartman, Tomáš ; Mourdikoudis, Stefanos ; Liu, Xueting ; Wang, Gang ; Kovalska, Evgeniya ; Wu, Bing ; Azadmanjiri, Jalal ; Yu, Ruizhi ; Chacko, Levna ; Dekanovsky, Lukas ; Oliveira, Filipa M. ; Li, Min ; Luxa, Jan ; Jamali Ashtiani, Saeed ; Su, Jincang ; Sofer, Zdeněk</creator><creatorcontrib>Wei, Shuangying ; Hartman, Tomáš ; Mourdikoudis, Stefanos ; Liu, Xueting ; Wang, Gang ; Kovalska, Evgeniya ; Wu, Bing ; Azadmanjiri, Jalal ; Yu, Ruizhi ; Chacko, Levna ; Dekanovsky, Lukas ; Oliveira, Filipa M. ; Li, Min ; Luxa, Jan ; Jamali Ashtiani, Saeed ; Su, Jincang ; Sofer, Zdeněk</creatorcontrib><description>The adjustable structures and remarkable physicochemical properties of 2D monoelemental materials, such as silicene and germanene, have attracted significant attention in recent years. They can be transformed into silicane (SiH) and germanane (GeH) through covalent functionalization via hydrogen atom termination. However, synthesizing these materials with a scalable and low‐cost fabrication process to achieve high‐quality 2D SiH and GeH poses challenges. Herein, groundbreaking 2D SiH and GeH materials with varying compositions, specifically Si
0.25
Ge
0.75
H, Si
0.50
Ge
0.50
H, and Si
0.75
Ge
0.25
H, are prepared through a simple and efficient chemical exfoliation of their Zintl phases. These 2D materials offer significant advantages, including their large surface area, high mechanical flexibility, rapid electron mobility, and defect‐rich loose‐layered structures. Among these compositions, the Si
0.50
Ge
0.50
H electrode demonstrates the highest discharge capacity, reaching up to 1059 mAh g
−1
after 60 cycles at a current density of 75 mA g
−1
. A comprehensive ex‐situ electrochemical analysis is conducted to investigate the reaction mechanisms of lithiation/delithiation in Si
0.50
Ge
0.50
H. Subsequently, an initial assessment of the
c
‐Li
15
(Si
x
Ge
1‐
x
)
4
phase after lithiation and the
a
‐Si
0.50
Ge
0.50
phase after delithiation is presented. Hence, this study contributes crucial insights into the (de)lithiation reaction mechanisms within germanane‐silicane alloys. Such understanding is pivotal for mastering promising materials that amalgamate the finest properties of silicon and germanium.
2D materials with compositions Si
0.25
Ge
0.75
H, Si
0.50
Ge
0.50
H and Si
0.75
Ge
0.25
H, are synthesized a simple and efficient chemical exfoliation of their Zintl phases. Among these, the Si
0.50
Ge
0.50
H electrode displays the most superior performance, boosting a discharge capacity of 1059 mAh g
−1
following 60 cycles at a current density of 75 mA g
−1
. A comprehensive ex‐situ electrochemical analysis is performed to study the reaction mechanisms of lithiation/delithiation.</description><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202308955</identifier><identifier>PMID: 38647404</identifier><language>eng</language><publisher>Hoboken: John Wiley and Sons Inc</publisher><ispartof>Advanced science, 2024-04, Vol.11 (24)</ispartof><rights>2024 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199986/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199986/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Wei, Shuangying</creatorcontrib><creatorcontrib>Hartman, Tomáš</creatorcontrib><creatorcontrib>Mourdikoudis, Stefanos</creatorcontrib><creatorcontrib>Liu, Xueting</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Kovalska, Evgeniya</creatorcontrib><creatorcontrib>Wu, Bing</creatorcontrib><creatorcontrib>Azadmanjiri, Jalal</creatorcontrib><creatorcontrib>Yu, Ruizhi</creatorcontrib><creatorcontrib>Chacko, Levna</creatorcontrib><creatorcontrib>Dekanovsky, Lukas</creatorcontrib><creatorcontrib>Oliveira, Filipa M.</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Luxa, Jan</creatorcontrib><creatorcontrib>Jamali Ashtiani, Saeed</creatorcontrib><creatorcontrib>Su, Jincang</creatorcontrib><creatorcontrib>Sofer, Zdeněk</creatorcontrib><title>Reaction Mechanism and Performance of Innovative 2D Germanane‐Silicane Alloys: Si x Ge1− x H Electrodes in Lithium‐Ion Batteries</title><title>Advanced science</title><description>The adjustable structures and remarkable physicochemical properties of 2D monoelemental materials, such as silicene and germanene, have attracted significant attention in recent years. They can be transformed into silicane (SiH) and germanane (GeH) through covalent functionalization via hydrogen atom termination. However, synthesizing these materials with a scalable and low‐cost fabrication process to achieve high‐quality 2D SiH and GeH poses challenges. Herein, groundbreaking 2D SiH and GeH materials with varying compositions, specifically Si
0.25
Ge
0.75
H, Si
0.50
Ge
0.50
H, and Si
0.75
Ge
0.25
H, are prepared through a simple and efficient chemical exfoliation of their Zintl phases. These 2D materials offer significant advantages, including their large surface area, high mechanical flexibility, rapid electron mobility, and defect‐rich loose‐layered structures. Among these compositions, the Si
0.50
Ge
0.50
H electrode demonstrates the highest discharge capacity, reaching up to 1059 mAh g
−1
after 60 cycles at a current density of 75 mA g
−1
. A comprehensive ex‐situ electrochemical analysis is conducted to investigate the reaction mechanisms of lithiation/delithiation in Si
0.50
Ge
0.50
H. Subsequently, an initial assessment of the
c
‐Li
15
(Si
x
Ge
1‐
x
)
4
phase after lithiation and the
a
‐Si
0.50
Ge
0.50
phase after delithiation is presented. Hence, this study contributes crucial insights into the (de)lithiation reaction mechanisms within germanane‐silicane alloys. Such understanding is pivotal for mastering promising materials that amalgamate the finest properties of silicon and germanium.
2D materials with compositions Si
0.25
Ge
0.75
H, Si
0.50
Ge
0.50
H and Si
0.75
Ge
0.25
H, are synthesized a simple and efficient chemical exfoliation of their Zintl phases. Among these, the Si
0.50
Ge
0.50
H electrode displays the most superior performance, boosting a discharge capacity of 1059 mAh g
−1
following 60 cycles at a current density of 75 mA g
−1
. A comprehensive ex‐situ electrochemical analysis is performed to study the reaction mechanisms of lithiation/delithiation.</description><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqljbtOwzAUhi0kRCvoynxeoMVOnNZhQVwKrQQSouyRSU7IQY5d2W5ENybEiHjEPglBYmFm-j_pvzF2LPhEcJ6c6KoLk4QnKVd5lu2xYSJyNU6VlAM2CuGFcy6ydCaFOmCDVE3lTHI5ZO8PqMtIzsIdlo22FFrQtoJ79LXzrbYlgqthaa3rdKQOIbmCG_xxtMXd2-eKDJU9wrkxbhtOYUXw2ifE7uOrhwXMDZbRuwoDkIVbig1t2r647D8vdIzoCcMR26-1CTj61UN2dj1_vFyM15unFqsSbfTaFGtPrfbbwmkq_jqWmuLZdYUQIs9zNU3_v_ANwJFytg</recordid><startdate>20240422</startdate><enddate>20240422</enddate><creator>Wei, Shuangying</creator><creator>Hartman, Tomáš</creator><creator>Mourdikoudis, Stefanos</creator><creator>Liu, Xueting</creator><creator>Wang, Gang</creator><creator>Kovalska, Evgeniya</creator><creator>Wu, Bing</creator><creator>Azadmanjiri, Jalal</creator><creator>Yu, Ruizhi</creator><creator>Chacko, Levna</creator><creator>Dekanovsky, Lukas</creator><creator>Oliveira, Filipa M.</creator><creator>Li, Min</creator><creator>Luxa, Jan</creator><creator>Jamali Ashtiani, Saeed</creator><creator>Su, Jincang</creator><creator>Sofer, Zdeněk</creator><general>John Wiley and Sons Inc</general><scope>5PM</scope></search><sort><creationdate>20240422</creationdate><title>Reaction Mechanism and Performance of Innovative 2D Germanane‐Silicane Alloys: Si x Ge1− x H Electrodes in Lithium‐Ion Batteries</title><author>Wei, Shuangying ; Hartman, Tomáš ; Mourdikoudis, Stefanos ; Liu, Xueting ; Wang, Gang ; Kovalska, Evgeniya ; Wu, Bing ; Azadmanjiri, Jalal ; Yu, Ruizhi ; Chacko, Levna ; Dekanovsky, Lukas ; Oliveira, Filipa M. ; Li, Min ; Luxa, Jan ; Jamali Ashtiani, Saeed ; Su, Jincang ; Sofer, Zdeněk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_111999863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Shuangying</creatorcontrib><creatorcontrib>Hartman, Tomáš</creatorcontrib><creatorcontrib>Mourdikoudis, Stefanos</creatorcontrib><creatorcontrib>Liu, Xueting</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Kovalska, Evgeniya</creatorcontrib><creatorcontrib>Wu, Bing</creatorcontrib><creatorcontrib>Azadmanjiri, Jalal</creatorcontrib><creatorcontrib>Yu, Ruizhi</creatorcontrib><creatorcontrib>Chacko, Levna</creatorcontrib><creatorcontrib>Dekanovsky, Lukas</creatorcontrib><creatorcontrib>Oliveira, Filipa M.</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Luxa, Jan</creatorcontrib><creatorcontrib>Jamali Ashtiani, Saeed</creatorcontrib><creatorcontrib>Su, Jincang</creatorcontrib><creatorcontrib>Sofer, Zdeněk</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Shuangying</au><au>Hartman, Tomáš</au><au>Mourdikoudis, Stefanos</au><au>Liu, Xueting</au><au>Wang, Gang</au><au>Kovalska, Evgeniya</au><au>Wu, Bing</au><au>Azadmanjiri, Jalal</au><au>Yu, Ruizhi</au><au>Chacko, Levna</au><au>Dekanovsky, Lukas</au><au>Oliveira, Filipa M.</au><au>Li, Min</au><au>Luxa, Jan</au><au>Jamali Ashtiani, Saeed</au><au>Su, Jincang</au><au>Sofer, Zdeněk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reaction Mechanism and Performance of Innovative 2D Germanane‐Silicane Alloys: Si x Ge1− x H Electrodes in Lithium‐Ion Batteries</atitle><jtitle>Advanced science</jtitle><date>2024-04-22</date><risdate>2024</risdate><volume>11</volume><issue>24</issue><eissn>2198-3844</eissn><abstract>The adjustable structures and remarkable physicochemical properties of 2D monoelemental materials, such as silicene and germanene, have attracted significant attention in recent years. They can be transformed into silicane (SiH) and germanane (GeH) through covalent functionalization via hydrogen atom termination. However, synthesizing these materials with a scalable and low‐cost fabrication process to achieve high‐quality 2D SiH and GeH poses challenges. Herein, groundbreaking 2D SiH and GeH materials with varying compositions, specifically Si
0.25
Ge
0.75
H, Si
0.50
Ge
0.50
H, and Si
0.75
Ge
0.25
H, are prepared through a simple and efficient chemical exfoliation of their Zintl phases. These 2D materials offer significant advantages, including their large surface area, high mechanical flexibility, rapid electron mobility, and defect‐rich loose‐layered structures. Among these compositions, the Si
0.50
Ge
0.50
H electrode demonstrates the highest discharge capacity, reaching up to 1059 mAh g
−1
after 60 cycles at a current density of 75 mA g
−1
. A comprehensive ex‐situ electrochemical analysis is conducted to investigate the reaction mechanisms of lithiation/delithiation in Si
0.50
Ge
0.50
H. Subsequently, an initial assessment of the
c
‐Li
15
(Si
x
Ge
1‐
x
)
4
phase after lithiation and the
a
‐Si
0.50
Ge
0.50
phase after delithiation is presented. Hence, this study contributes crucial insights into the (de)lithiation reaction mechanisms within germanane‐silicane alloys. Such understanding is pivotal for mastering promising materials that amalgamate the finest properties of silicon and germanium.
2D materials with compositions Si
0.25
Ge
0.75
H, Si
0.50
Ge
0.50
H and Si
0.75
Ge
0.25
H, are synthesized a simple and efficient chemical exfoliation of their Zintl phases. Among these, the Si
0.50
Ge
0.50
H electrode displays the most superior performance, boosting a discharge capacity of 1059 mAh g
−1
following 60 cycles at a current density of 75 mA g
−1
. A comprehensive ex‐situ electrochemical analysis is performed to study the reaction mechanisms of lithiation/delithiation.</abstract><cop>Hoboken</cop><pub>John Wiley and Sons Inc</pub><pmid>38647404</pmid><doi>10.1002/advs.202308955</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2198-3844 |
ispartof | Advanced science, 2024-04, Vol.11 (24) |
issn | 2198-3844 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11199986 |
source | PubMed Central Free; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
title | Reaction Mechanism and Performance of Innovative 2D Germanane‐Silicane Alloys: Si x Ge1− x H Electrodes in Lithium‐Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reaction%20Mechanism%20and%20Performance%20of%20Innovative%202D%20Germanane%E2%80%90Silicane%20Alloys:%20Si%20x%20Ge1%E2%88%92%20x%20H%20Electrodes%20in%20Lithium%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20science&rft.au=Wei,%20Shuangying&rft.date=2024-04-22&rft.volume=11&rft.issue=24&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202308955&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_11199986%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38647404&rfr_iscdi=true |