Peripheral positions encode transport specificity in the small multidrug resistance exporters

In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our underst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-06, Vol.121 (25), p.e2403273121
Hauptverfasser: Burata, Olive E, O'Donnell, Ever, Hyun, Jeonghoon, Lucero, Rachael M, Thomas, Junius E, Gibbs, Ethan M, Reacher, Isabella, Carney, Nolan A, Stockbridge, Randy B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 25
container_start_page e2403273121
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Burata, Olive E
O'Donnell, Ever
Hyun, Jeonghoon
Lucero, Rachael M
Thomas, Junius E
Gibbs, Ethan M
Reacher, Isabella
Carney, Nolan A
Stockbridge, Randy B
description In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our understanding of how novel substrate specificities evolve. In the current work, we examine a structurally minimalist family of model transport proteins, the small multidrug resistance (SMR) transporters, to understand the molecular basis for the emergence of a novel substrate specificity. We engineer a selective SMR protein to promiscuously export quaternary ammonium antiseptics, similar to the activity of a clade of multidrug exporters in this family. Using combinatorial mutagenesis and deep sequencing, we identify the necessary and sufficient molecular determinants of this engineered activity. Using X-ray crystallography, solid-supported membrane electrophysiology, binding assays, and a proteoliposome-based quaternary ammonium antiseptic transport assay that we developed, we dissect the mechanistic contributions of these residues to substrate polyspecificity. We find that substrate preference changes not through modification of the residues that directly interact with the substrate but through mutations peripheral to the binding pocket. Our work provides molecular insight into substrate promiscuity among the SMRs and can be applied to understand multidrug export and the evolution of novel transport functions more generally.
doi_str_mv 10.1073/pnas.2403273121
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11194549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067915081</sourcerecordid><originalsourceid>FETCH-LOGICAL-p266t-c6ab66830e9396a5dbdf3f9044d0a57624e54883501787cc68e3e73aa163bce23</originalsourceid><addsrcrecordid>eNpdkE1rFTEUhoMo9ra67k4CbtxMPflOVkWKtoWCLnQpQ27m3N6UmWSaZMT-e6e0lerqLM7zvjznEHLM4ISBER_n5OsJlyC4EYyzF2TDwLFOSwcvyQaAm85KLg_IYa03AOCUhdfkQFirFdd6Q35-wxLnPRY_0jnX2GJOlWIKeUDaik91zqXROmOIuxhiu6Mx0bZHWic_jnRaxhaHslzTgjXW5lNAir_vQ1jqG_Jq58eKbx_nEfnx5fP3s4vu6uv55dmnq25eJVoXtN9qbQWgE057NWyHndg5kHIAr4zmEpW0VihgxpoQtEWBRnjPtNgG5OKInD70zst2wiFgWtXHfi5x8uWuzz72_25S3PfX-VfPGHNSSbc2fHhsKPl2wdr6KdaA4-gT5qX2ArRxTIFlK_r-P_QmLyWt962U4cAEqHvq3XOlvy5Prxd_AEZYiIc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072013051</pqid></control><display><type>article</type><title>Peripheral positions encode transport specificity in the small multidrug resistance exporters</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Burata, Olive E ; O'Donnell, Ever ; Hyun, Jeonghoon ; Lucero, Rachael M ; Thomas, Junius E ; Gibbs, Ethan M ; Reacher, Isabella ; Carney, Nolan A ; Stockbridge, Randy B</creator><creatorcontrib>Burata, Olive E ; O'Donnell, Ever ; Hyun, Jeonghoon ; Lucero, Rachael M ; Thomas, Junius E ; Gibbs, Ethan M ; Reacher, Isabella ; Carney, Nolan A ; Stockbridge, Randy B</creatorcontrib><description>In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our understanding of how novel substrate specificities evolve. In the current work, we examine a structurally minimalist family of model transport proteins, the small multidrug resistance (SMR) transporters, to understand the molecular basis for the emergence of a novel substrate specificity. We engineer a selective SMR protein to promiscuously export quaternary ammonium antiseptics, similar to the activity of a clade of multidrug exporters in this family. Using combinatorial mutagenesis and deep sequencing, we identify the necessary and sufficient molecular determinants of this engineered activity. Using X-ray crystallography, solid-supported membrane electrophysiology, binding assays, and a proteoliposome-based quaternary ammonium antiseptic transport assay that we developed, we dissect the mechanistic contributions of these residues to substrate polyspecificity. We find that substrate preference changes not through modification of the residues that directly interact with the substrate but through mutations peripheral to the binding pocket. Our work provides molecular insight into substrate promiscuity among the SMRs and can be applied to understand multidrug export and the evolution of novel transport functions more generally.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2403273121</identifier><identifier>PMID: 38865266</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Ammonium ; Anti-Infective Agents, Local - chemistry ; Anti-Infective Agents, Local - metabolism ; Anti-Infective Agents, Local - pharmacology ; Antiseptics ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Binding ; Biological Sciences ; Biological Transport ; Combinatorial analysis ; Crystallography ; Crystallography, X-Ray ; Drug Resistance, Multiple, Bacterial - genetics ; Electrophysiology ; Evolution ; Exports ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Models, Molecular ; Multidrug resistance ; Mutagenesis ; Protein transport ; Proteins ; Quaternary Ammonium Compounds - chemistry ; Quaternary Ammonium Compounds - metabolism ; Residues ; Solute transport ; Substrate preferences ; Substrate Specificity ; Substrates ; X-ray crystallography</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-06, Vol.121 (25), p.e2403273121</ispartof><rights>Copyright National Academy of Sciences Jun 18, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0000-7448-013X ; 0009-0000-0835-9446 ; 0000-0001-8848-3032 ; 0000-0003-2239-5149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194549/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194549/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38865266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burata, Olive E</creatorcontrib><creatorcontrib>O'Donnell, Ever</creatorcontrib><creatorcontrib>Hyun, Jeonghoon</creatorcontrib><creatorcontrib>Lucero, Rachael M</creatorcontrib><creatorcontrib>Thomas, Junius E</creatorcontrib><creatorcontrib>Gibbs, Ethan M</creatorcontrib><creatorcontrib>Reacher, Isabella</creatorcontrib><creatorcontrib>Carney, Nolan A</creatorcontrib><creatorcontrib>Stockbridge, Randy B</creatorcontrib><title>Peripheral positions encode transport specificity in the small multidrug resistance exporters</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our understanding of how novel substrate specificities evolve. In the current work, we examine a structurally minimalist family of model transport proteins, the small multidrug resistance (SMR) transporters, to understand the molecular basis for the emergence of a novel substrate specificity. We engineer a selective SMR protein to promiscuously export quaternary ammonium antiseptics, similar to the activity of a clade of multidrug exporters in this family. Using combinatorial mutagenesis and deep sequencing, we identify the necessary and sufficient molecular determinants of this engineered activity. Using X-ray crystallography, solid-supported membrane electrophysiology, binding assays, and a proteoliposome-based quaternary ammonium antiseptic transport assay that we developed, we dissect the mechanistic contributions of these residues to substrate polyspecificity. We find that substrate preference changes not through modification of the residues that directly interact with the substrate but through mutations peripheral to the binding pocket. Our work provides molecular insight into substrate promiscuity among the SMRs and can be applied to understand multidrug export and the evolution of novel transport functions more generally.</description><subject>Ammonium</subject><subject>Anti-Infective Agents, Local - chemistry</subject><subject>Anti-Infective Agents, Local - metabolism</subject><subject>Anti-Infective Agents, Local - pharmacology</subject><subject>Antiseptics</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding</subject><subject>Biological Sciences</subject><subject>Biological Transport</subject><subject>Combinatorial analysis</subject><subject>Crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Drug Resistance, Multiple, Bacterial - genetics</subject><subject>Electrophysiology</subject><subject>Evolution</subject><subject>Exports</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Multidrug resistance</subject><subject>Mutagenesis</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Quaternary Ammonium Compounds - chemistry</subject><subject>Quaternary Ammonium Compounds - metabolism</subject><subject>Residues</subject><subject>Solute transport</subject><subject>Substrate preferences</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>X-ray crystallography</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE1rFTEUhoMo9ra67k4CbtxMPflOVkWKtoWCLnQpQ27m3N6UmWSaZMT-e6e0lerqLM7zvjznEHLM4ISBER_n5OsJlyC4EYyzF2TDwLFOSwcvyQaAm85KLg_IYa03AOCUhdfkQFirFdd6Q35-wxLnPRY_0jnX2GJOlWIKeUDaik91zqXROmOIuxhiu6Mx0bZHWic_jnRaxhaHslzTgjXW5lNAir_vQ1jqG_Jq58eKbx_nEfnx5fP3s4vu6uv55dmnq25eJVoXtN9qbQWgE057NWyHndg5kHIAr4zmEpW0VihgxpoQtEWBRnjPtNgG5OKInD70zst2wiFgWtXHfi5x8uWuzz72_25S3PfX-VfPGHNSSbc2fHhsKPl2wdr6KdaA4-gT5qX2ArRxTIFlK_r-P_QmLyWt962U4cAEqHvq3XOlvy5Prxd_AEZYiIc</recordid><startdate>20240618</startdate><enddate>20240618</enddate><creator>Burata, Olive E</creator><creator>O'Donnell, Ever</creator><creator>Hyun, Jeonghoon</creator><creator>Lucero, Rachael M</creator><creator>Thomas, Junius E</creator><creator>Gibbs, Ethan M</creator><creator>Reacher, Isabella</creator><creator>Carney, Nolan A</creator><creator>Stockbridge, Randy B</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0000-7448-013X</orcidid><orcidid>https://orcid.org/0009-0000-0835-9446</orcidid><orcidid>https://orcid.org/0000-0001-8848-3032</orcidid><orcidid>https://orcid.org/0000-0003-2239-5149</orcidid></search><sort><creationdate>20240618</creationdate><title>Peripheral positions encode transport specificity in the small multidrug resistance exporters</title><author>Burata, Olive E ; O'Donnell, Ever ; Hyun, Jeonghoon ; Lucero, Rachael M ; Thomas, Junius E ; Gibbs, Ethan M ; Reacher, Isabella ; Carney, Nolan A ; Stockbridge, Randy B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p266t-c6ab66830e9396a5dbdf3f9044d0a57624e54883501787cc68e3e73aa163bce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonium</topic><topic>Anti-Infective Agents, Local - chemistry</topic><topic>Anti-Infective Agents, Local - metabolism</topic><topic>Anti-Infective Agents, Local - pharmacology</topic><topic>Antiseptics</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding</topic><topic>Biological Sciences</topic><topic>Biological Transport</topic><topic>Combinatorial analysis</topic><topic>Crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Drug Resistance, Multiple, Bacterial - genetics</topic><topic>Electrophysiology</topic><topic>Evolution</topic><topic>Exports</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Multidrug resistance</topic><topic>Mutagenesis</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Quaternary Ammonium Compounds - chemistry</topic><topic>Quaternary Ammonium Compounds - metabolism</topic><topic>Residues</topic><topic>Solute transport</topic><topic>Substrate preferences</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burata, Olive E</creatorcontrib><creatorcontrib>O'Donnell, Ever</creatorcontrib><creatorcontrib>Hyun, Jeonghoon</creatorcontrib><creatorcontrib>Lucero, Rachael M</creatorcontrib><creatorcontrib>Thomas, Junius E</creatorcontrib><creatorcontrib>Gibbs, Ethan M</creatorcontrib><creatorcontrib>Reacher, Isabella</creatorcontrib><creatorcontrib>Carney, Nolan A</creatorcontrib><creatorcontrib>Stockbridge, Randy B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burata, Olive E</au><au>O'Donnell, Ever</au><au>Hyun, Jeonghoon</au><au>Lucero, Rachael M</au><au>Thomas, Junius E</au><au>Gibbs, Ethan M</au><au>Reacher, Isabella</au><au>Carney, Nolan A</au><au>Stockbridge, Randy B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peripheral positions encode transport specificity in the small multidrug resistance exporters</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-06-18</date><risdate>2024</risdate><volume>121</volume><issue>25</issue><spage>e2403273121</spage><pages>e2403273121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our understanding of how novel substrate specificities evolve. In the current work, we examine a structurally minimalist family of model transport proteins, the small multidrug resistance (SMR) transporters, to understand the molecular basis for the emergence of a novel substrate specificity. We engineer a selective SMR protein to promiscuously export quaternary ammonium antiseptics, similar to the activity of a clade of multidrug exporters in this family. Using combinatorial mutagenesis and deep sequencing, we identify the necessary and sufficient molecular determinants of this engineered activity. Using X-ray crystallography, solid-supported membrane electrophysiology, binding assays, and a proteoliposome-based quaternary ammonium antiseptic transport assay that we developed, we dissect the mechanistic contributions of these residues to substrate polyspecificity. We find that substrate preference changes not through modification of the residues that directly interact with the substrate but through mutations peripheral to the binding pocket. Our work provides molecular insight into substrate promiscuity among the SMRs and can be applied to understand multidrug export and the evolution of novel transport functions more generally.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38865266</pmid><doi>10.1073/pnas.2403273121</doi><orcidid>https://orcid.org/0009-0000-7448-013X</orcidid><orcidid>https://orcid.org/0009-0000-0835-9446</orcidid><orcidid>https://orcid.org/0000-0001-8848-3032</orcidid><orcidid>https://orcid.org/0000-0003-2239-5149</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-06, Vol.121 (25), p.e2403273121
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11194549
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Ammonium
Anti-Infective Agents, Local - chemistry
Anti-Infective Agents, Local - metabolism
Anti-Infective Agents, Local - pharmacology
Antiseptics
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Binding
Biological Sciences
Biological Transport
Combinatorial analysis
Crystallography
Crystallography, X-Ray
Drug Resistance, Multiple, Bacterial - genetics
Electrophysiology
Evolution
Exports
Membrane Transport Proteins - chemistry
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Models, Molecular
Multidrug resistance
Mutagenesis
Protein transport
Proteins
Quaternary Ammonium Compounds - chemistry
Quaternary Ammonium Compounds - metabolism
Residues
Solute transport
Substrate preferences
Substrate Specificity
Substrates
X-ray crystallography
title Peripheral positions encode transport specificity in the small multidrug resistance exporters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peripheral%20positions%20encode%20transport%20specificity%20in%20the%20small%20multidrug%20resistance%20exporters&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Burata,%20Olive%20E&rft.date=2024-06-18&rft.volume=121&rft.issue=25&rft.spage=e2403273121&rft.pages=e2403273121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2403273121&rft_dat=%3Cproquest_pubme%3E3067915081%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072013051&rft_id=info:pmid/38865266&rfr_iscdi=true