Peripheral positions encode transport specificity in the small multidrug resistance exporters
In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our underst...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-06, Vol.121 (25), p.e2403273121 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 25 |
container_start_page | e2403273121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Burata, Olive E O'Donnell, Ever Hyun, Jeonghoon Lucero, Rachael M Thomas, Junius E Gibbs, Ethan M Reacher, Isabella Carney, Nolan A Stockbridge, Randy B |
description | In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our understanding of how novel substrate specificities evolve. In the current work, we examine a structurally minimalist family of model transport proteins, the small multidrug resistance (SMR) transporters, to understand the molecular basis for the emergence of a novel substrate specificity. We engineer a selective SMR protein to promiscuously export quaternary ammonium antiseptics, similar to the activity of a clade of multidrug exporters in this family. Using combinatorial mutagenesis and deep sequencing, we identify the necessary and sufficient molecular determinants of this engineered activity. Using X-ray crystallography, solid-supported membrane electrophysiology, binding assays, and a proteoliposome-based quaternary ammonium antiseptic transport assay that we developed, we dissect the mechanistic contributions of these residues to substrate polyspecificity. We find that substrate preference changes not through modification of the residues that directly interact with the substrate but through mutations peripheral to the binding pocket. Our work provides molecular insight into substrate promiscuity among the SMRs and can be applied to understand multidrug export and the evolution of novel transport functions more generally. |
doi_str_mv | 10.1073/pnas.2403273121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11194549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067915081</sourcerecordid><originalsourceid>FETCH-LOGICAL-p266t-c6ab66830e9396a5dbdf3f9044d0a57624e54883501787cc68e3e73aa163bce23</originalsourceid><addsrcrecordid>eNpdkE1rFTEUhoMo9ra67k4CbtxMPflOVkWKtoWCLnQpQ27m3N6UmWSaZMT-e6e0lerqLM7zvjznEHLM4ISBER_n5OsJlyC4EYyzF2TDwLFOSwcvyQaAm85KLg_IYa03AOCUhdfkQFirFdd6Q35-wxLnPRY_0jnX2GJOlWIKeUDaik91zqXROmOIuxhiu6Mx0bZHWic_jnRaxhaHslzTgjXW5lNAir_vQ1jqG_Jq58eKbx_nEfnx5fP3s4vu6uv55dmnq25eJVoXtN9qbQWgE057NWyHndg5kHIAr4zmEpW0VihgxpoQtEWBRnjPtNgG5OKInD70zst2wiFgWtXHfi5x8uWuzz72_25S3PfX-VfPGHNSSbc2fHhsKPl2wdr6KdaA4-gT5qX2ArRxTIFlK_r-P_QmLyWt962U4cAEqHvq3XOlvy5Prxd_AEZYiIc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072013051</pqid></control><display><type>article</type><title>Peripheral positions encode transport specificity in the small multidrug resistance exporters</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Burata, Olive E ; O'Donnell, Ever ; Hyun, Jeonghoon ; Lucero, Rachael M ; Thomas, Junius E ; Gibbs, Ethan M ; Reacher, Isabella ; Carney, Nolan A ; Stockbridge, Randy B</creator><creatorcontrib>Burata, Olive E ; O'Donnell, Ever ; Hyun, Jeonghoon ; Lucero, Rachael M ; Thomas, Junius E ; Gibbs, Ethan M ; Reacher, Isabella ; Carney, Nolan A ; Stockbridge, Randy B</creatorcontrib><description>In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our understanding of how novel substrate specificities evolve. In the current work, we examine a structurally minimalist family of model transport proteins, the small multidrug resistance (SMR) transporters, to understand the molecular basis for the emergence of a novel substrate specificity. We engineer a selective SMR protein to promiscuously export quaternary ammonium antiseptics, similar to the activity of a clade of multidrug exporters in this family. Using combinatorial mutagenesis and deep sequencing, we identify the necessary and sufficient molecular determinants of this engineered activity. Using X-ray crystallography, solid-supported membrane electrophysiology, binding assays, and a proteoliposome-based quaternary ammonium antiseptic transport assay that we developed, we dissect the mechanistic contributions of these residues to substrate polyspecificity. We find that substrate preference changes not through modification of the residues that directly interact with the substrate but through mutations peripheral to the binding pocket. Our work provides molecular insight into substrate promiscuity among the SMRs and can be applied to understand multidrug export and the evolution of novel transport functions more generally.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2403273121</identifier><identifier>PMID: 38865266</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Ammonium ; Anti-Infective Agents, Local - chemistry ; Anti-Infective Agents, Local - metabolism ; Anti-Infective Agents, Local - pharmacology ; Antiseptics ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Binding ; Biological Sciences ; Biological Transport ; Combinatorial analysis ; Crystallography ; Crystallography, X-Ray ; Drug Resistance, Multiple, Bacterial - genetics ; Electrophysiology ; Evolution ; Exports ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Models, Molecular ; Multidrug resistance ; Mutagenesis ; Protein transport ; Proteins ; Quaternary Ammonium Compounds - chemistry ; Quaternary Ammonium Compounds - metabolism ; Residues ; Solute transport ; Substrate preferences ; Substrate Specificity ; Substrates ; X-ray crystallography</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-06, Vol.121 (25), p.e2403273121</ispartof><rights>Copyright National Academy of Sciences Jun 18, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0000-7448-013X ; 0009-0000-0835-9446 ; 0000-0001-8848-3032 ; 0000-0003-2239-5149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194549/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194549/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38865266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burata, Olive E</creatorcontrib><creatorcontrib>O'Donnell, Ever</creatorcontrib><creatorcontrib>Hyun, Jeonghoon</creatorcontrib><creatorcontrib>Lucero, Rachael M</creatorcontrib><creatorcontrib>Thomas, Junius E</creatorcontrib><creatorcontrib>Gibbs, Ethan M</creatorcontrib><creatorcontrib>Reacher, Isabella</creatorcontrib><creatorcontrib>Carney, Nolan A</creatorcontrib><creatorcontrib>Stockbridge, Randy B</creatorcontrib><title>Peripheral positions encode transport specificity in the small multidrug resistance exporters</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our understanding of how novel substrate specificities evolve. In the current work, we examine a structurally minimalist family of model transport proteins, the small multidrug resistance (SMR) transporters, to understand the molecular basis for the emergence of a novel substrate specificity. We engineer a selective SMR protein to promiscuously export quaternary ammonium antiseptics, similar to the activity of a clade of multidrug exporters in this family. Using combinatorial mutagenesis and deep sequencing, we identify the necessary and sufficient molecular determinants of this engineered activity. Using X-ray crystallography, solid-supported membrane electrophysiology, binding assays, and a proteoliposome-based quaternary ammonium antiseptic transport assay that we developed, we dissect the mechanistic contributions of these residues to substrate polyspecificity. We find that substrate preference changes not through modification of the residues that directly interact with the substrate but through mutations peripheral to the binding pocket. Our work provides molecular insight into substrate promiscuity among the SMRs and can be applied to understand multidrug export and the evolution of novel transport functions more generally.</description><subject>Ammonium</subject><subject>Anti-Infective Agents, Local - chemistry</subject><subject>Anti-Infective Agents, Local - metabolism</subject><subject>Anti-Infective Agents, Local - pharmacology</subject><subject>Antiseptics</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding</subject><subject>Biological Sciences</subject><subject>Biological Transport</subject><subject>Combinatorial analysis</subject><subject>Crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Drug Resistance, Multiple, Bacterial - genetics</subject><subject>Electrophysiology</subject><subject>Evolution</subject><subject>Exports</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Multidrug resistance</subject><subject>Mutagenesis</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Quaternary Ammonium Compounds - chemistry</subject><subject>Quaternary Ammonium Compounds - metabolism</subject><subject>Residues</subject><subject>Solute transport</subject><subject>Substrate preferences</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>X-ray crystallography</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE1rFTEUhoMo9ra67k4CbtxMPflOVkWKtoWCLnQpQ27m3N6UmWSaZMT-e6e0lerqLM7zvjznEHLM4ISBER_n5OsJlyC4EYyzF2TDwLFOSwcvyQaAm85KLg_IYa03AOCUhdfkQFirFdd6Q35-wxLnPRY_0jnX2GJOlWIKeUDaik91zqXROmOIuxhiu6Mx0bZHWic_jnRaxhaHslzTgjXW5lNAir_vQ1jqG_Jq58eKbx_nEfnx5fP3s4vu6uv55dmnq25eJVoXtN9qbQWgE057NWyHndg5kHIAr4zmEpW0VihgxpoQtEWBRnjPtNgG5OKInD70zst2wiFgWtXHfi5x8uWuzz72_25S3PfX-VfPGHNSSbc2fHhsKPl2wdr6KdaA4-gT5qX2ArRxTIFlK_r-P_QmLyWt962U4cAEqHvq3XOlvy5Prxd_AEZYiIc</recordid><startdate>20240618</startdate><enddate>20240618</enddate><creator>Burata, Olive E</creator><creator>O'Donnell, Ever</creator><creator>Hyun, Jeonghoon</creator><creator>Lucero, Rachael M</creator><creator>Thomas, Junius E</creator><creator>Gibbs, Ethan M</creator><creator>Reacher, Isabella</creator><creator>Carney, Nolan A</creator><creator>Stockbridge, Randy B</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0000-7448-013X</orcidid><orcidid>https://orcid.org/0009-0000-0835-9446</orcidid><orcidid>https://orcid.org/0000-0001-8848-3032</orcidid><orcidid>https://orcid.org/0000-0003-2239-5149</orcidid></search><sort><creationdate>20240618</creationdate><title>Peripheral positions encode transport specificity in the small multidrug resistance exporters</title><author>Burata, Olive E ; O'Donnell, Ever ; Hyun, Jeonghoon ; Lucero, Rachael M ; Thomas, Junius E ; Gibbs, Ethan M ; Reacher, Isabella ; Carney, Nolan A ; Stockbridge, Randy B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p266t-c6ab66830e9396a5dbdf3f9044d0a57624e54883501787cc68e3e73aa163bce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonium</topic><topic>Anti-Infective Agents, Local - chemistry</topic><topic>Anti-Infective Agents, Local - metabolism</topic><topic>Anti-Infective Agents, Local - pharmacology</topic><topic>Antiseptics</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding</topic><topic>Biological Sciences</topic><topic>Biological Transport</topic><topic>Combinatorial analysis</topic><topic>Crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Drug Resistance, Multiple, Bacterial - genetics</topic><topic>Electrophysiology</topic><topic>Evolution</topic><topic>Exports</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Multidrug resistance</topic><topic>Mutagenesis</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Quaternary Ammonium Compounds - chemistry</topic><topic>Quaternary Ammonium Compounds - metabolism</topic><topic>Residues</topic><topic>Solute transport</topic><topic>Substrate preferences</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burata, Olive E</creatorcontrib><creatorcontrib>O'Donnell, Ever</creatorcontrib><creatorcontrib>Hyun, Jeonghoon</creatorcontrib><creatorcontrib>Lucero, Rachael M</creatorcontrib><creatorcontrib>Thomas, Junius E</creatorcontrib><creatorcontrib>Gibbs, Ethan M</creatorcontrib><creatorcontrib>Reacher, Isabella</creatorcontrib><creatorcontrib>Carney, Nolan A</creatorcontrib><creatorcontrib>Stockbridge, Randy B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burata, Olive E</au><au>O'Donnell, Ever</au><au>Hyun, Jeonghoon</au><au>Lucero, Rachael M</au><au>Thomas, Junius E</au><au>Gibbs, Ethan M</au><au>Reacher, Isabella</au><au>Carney, Nolan A</au><au>Stockbridge, Randy B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peripheral positions encode transport specificity in the small multidrug resistance exporters</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-06-18</date><risdate>2024</risdate><volume>121</volume><issue>25</issue><spage>e2403273121</spage><pages>e2403273121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our understanding of how novel substrate specificities evolve. In the current work, we examine a structurally minimalist family of model transport proteins, the small multidrug resistance (SMR) transporters, to understand the molecular basis for the emergence of a novel substrate specificity. We engineer a selective SMR protein to promiscuously export quaternary ammonium antiseptics, similar to the activity of a clade of multidrug exporters in this family. Using combinatorial mutagenesis and deep sequencing, we identify the necessary and sufficient molecular determinants of this engineered activity. Using X-ray crystallography, solid-supported membrane electrophysiology, binding assays, and a proteoliposome-based quaternary ammonium antiseptic transport assay that we developed, we dissect the mechanistic contributions of these residues to substrate polyspecificity. We find that substrate preference changes not through modification of the residues that directly interact with the substrate but through mutations peripheral to the binding pocket. Our work provides molecular insight into substrate promiscuity among the SMRs and can be applied to understand multidrug export and the evolution of novel transport functions more generally.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38865266</pmid><doi>10.1073/pnas.2403273121</doi><orcidid>https://orcid.org/0009-0000-7448-013X</orcidid><orcidid>https://orcid.org/0009-0000-0835-9446</orcidid><orcidid>https://orcid.org/0000-0001-8848-3032</orcidid><orcidid>https://orcid.org/0000-0003-2239-5149</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-06, Vol.121 (25), p.e2403273121 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11194549 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Ammonium Anti-Infective Agents, Local - chemistry Anti-Infective Agents, Local - metabolism Anti-Infective Agents, Local - pharmacology Antiseptics Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Binding Biological Sciences Biological Transport Combinatorial analysis Crystallography Crystallography, X-Ray Drug Resistance, Multiple, Bacterial - genetics Electrophysiology Evolution Exports Membrane Transport Proteins - chemistry Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Models, Molecular Multidrug resistance Mutagenesis Protein transport Proteins Quaternary Ammonium Compounds - chemistry Quaternary Ammonium Compounds - metabolism Residues Solute transport Substrate preferences Substrate Specificity Substrates X-ray crystallography |
title | Peripheral positions encode transport specificity in the small multidrug resistance exporters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peripheral%20positions%20encode%20transport%20specificity%20in%20the%20small%20multidrug%20resistance%20exporters&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Burata,%20Olive%20E&rft.date=2024-06-18&rft.volume=121&rft.issue=25&rft.spage=e2403273121&rft.pages=e2403273121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2403273121&rft_dat=%3Cproquest_pubme%3E3067915081%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072013051&rft_id=info:pmid/38865266&rfr_iscdi=true |