Integrated single-cell chromatin and transcriptomic analyses of human scalp reveal etiological insights into genetic risk for hair and skin disease
Genome-wide association studies (GWAS) of hair and skin disease have identified many genetic variants associated with disease phenotypes, but identifying causal variants and interpreting their function requires deciphering gene-regulatory networks in disease-relevant cell types. To this end, we gene...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2023-07, Vol.55 (8), p.1288-1300 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1300 |
---|---|
container_issue | 8 |
container_start_page | 1288 |
container_title | Nature genetics |
container_volume | 55 |
creator | Ober-Reynolds, Benjamin Wang, Chen Ko, Justin M. Rios, Eon J. Aasi, Sumaira Z. Davis, Mark M. Oro, Anthony E. Greenleaf, William J. |
description | Genome-wide association studies (GWAS) of hair and skin disease have identified many genetic variants associated with disease phenotypes, but identifying causal variants and interpreting their function requires deciphering gene-regulatory networks in disease-relevant cell types. To this end, we generated matched scRNA- and scATAC-seq profiles of human scalp biopsies, identifying diverse cell types of the hair follicle niche. By interrogating the integrated datasets across multiple levels of cellular resolution, we infer 50–100% more enhancer-gene links than prior approaches, and show that the aggregate accessibility at linked enhancers for highly-regulated genes predicts expression. We use these gene-regulatory maps to prioritize cell types, genes, and causal variants implicated in the pathobiology of androgenetic alopecia (AGA), eczema, and other complex traits. AGA GWAS signals are strongly and specifically enriched in dermal papilla cell open chromatin regions, supporting the role of these cells as key drivers of AGA pathogenesis. Finally, we trained machine-learning models to nominate SNPs that affect gene expression through disruption of specific transcription factor binding motifs, predicting candidate functional SNPs linked to expression of WNT10A in AGA and IL18RAP in eczema. Together, this work reveals principles of gene regulation and identifies gene regulatory consequences of natural genetic variation in complex skin and hair diseases. |
doi_str_mv | 10.1038/s41588-023-01445-4 |
format | Article |
fullrecord | <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11190942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_11190942</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_111909423</originalsourceid><addsrcrecordid>eNqlTktOwzAUtBCIls8FWL0LGOzGadIVCwSie_aRcV6TRx078nMr9RxcGIPYsGY1o5nRzAhxp9W9VlX7wEbXbSvVqpJKG1NLcyaWujZrqRvdnheu1loaVa0X4or5Q32nVHspFlVTK9WsmqX43IaMQ7IZe2AKg0fp0HtwY4qTzRTAhh5ysoFdojnHiVyRrD8xMsQdjIfJBmBn_QwJj2g9YKbo40BFAwpMw5i5kBxhwFBMB4l4D7uYYLSUfhZ4X6Z6YrSMN-JiZz3j7S9ei8eX57enVzkf3ifsHYbyx3dzosmmUxctdX-dQGM3xGOntd6ojVlV_2_4AkGseNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrated single-cell chromatin and transcriptomic analyses of human scalp reveal etiological insights into genetic risk for hair and skin disease</title><source>SpringerLink Journals</source><source>Nature</source><creator>Ober-Reynolds, Benjamin ; Wang, Chen ; Ko, Justin M. ; Rios, Eon J. ; Aasi, Sumaira Z. ; Davis, Mark M. ; Oro, Anthony E. ; Greenleaf, William J.</creator><creatorcontrib>Ober-Reynolds, Benjamin ; Wang, Chen ; Ko, Justin M. ; Rios, Eon J. ; Aasi, Sumaira Z. ; Davis, Mark M. ; Oro, Anthony E. ; Greenleaf, William J.</creatorcontrib><description>Genome-wide association studies (GWAS) of hair and skin disease have identified many genetic variants associated with disease phenotypes, but identifying causal variants and interpreting their function requires deciphering gene-regulatory networks in disease-relevant cell types. To this end, we generated matched scRNA- and scATAC-seq profiles of human scalp biopsies, identifying diverse cell types of the hair follicle niche. By interrogating the integrated datasets across multiple levels of cellular resolution, we infer 50–100% more enhancer-gene links than prior approaches, and show that the aggregate accessibility at linked enhancers for highly-regulated genes predicts expression. We use these gene-regulatory maps to prioritize cell types, genes, and causal variants implicated in the pathobiology of androgenetic alopecia (AGA), eczema, and other complex traits. AGA GWAS signals are strongly and specifically enriched in dermal papilla cell open chromatin regions, supporting the role of these cells as key drivers of AGA pathogenesis. Finally, we trained machine-learning models to nominate SNPs that affect gene expression through disruption of specific transcription factor binding motifs, predicting candidate functional SNPs linked to expression of WNT10A in AGA and IL18RAP in eczema. Together, this work reveals principles of gene regulation and identifies gene regulatory consequences of natural genetic variation in complex skin and hair diseases.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-023-01445-4</identifier><identifier>PMID: 37500727</identifier><language>eng</language><ispartof>Nature genetics, 2023-07, Vol.55 (8), p.1288-1300</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Ober-Reynolds, Benjamin</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Ko, Justin M.</creatorcontrib><creatorcontrib>Rios, Eon J.</creatorcontrib><creatorcontrib>Aasi, Sumaira Z.</creatorcontrib><creatorcontrib>Davis, Mark M.</creatorcontrib><creatorcontrib>Oro, Anthony E.</creatorcontrib><creatorcontrib>Greenleaf, William J.</creatorcontrib><title>Integrated single-cell chromatin and transcriptomic analyses of human scalp reveal etiological insights into genetic risk for hair and skin disease</title><title>Nature genetics</title><description>Genome-wide association studies (GWAS) of hair and skin disease have identified many genetic variants associated with disease phenotypes, but identifying causal variants and interpreting their function requires deciphering gene-regulatory networks in disease-relevant cell types. To this end, we generated matched scRNA- and scATAC-seq profiles of human scalp biopsies, identifying diverse cell types of the hair follicle niche. By interrogating the integrated datasets across multiple levels of cellular resolution, we infer 50–100% more enhancer-gene links than prior approaches, and show that the aggregate accessibility at linked enhancers for highly-regulated genes predicts expression. We use these gene-regulatory maps to prioritize cell types, genes, and causal variants implicated in the pathobiology of androgenetic alopecia (AGA), eczema, and other complex traits. AGA GWAS signals are strongly and specifically enriched in dermal papilla cell open chromatin regions, supporting the role of these cells as key drivers of AGA pathogenesis. Finally, we trained machine-learning models to nominate SNPs that affect gene expression through disruption of specific transcription factor binding motifs, predicting candidate functional SNPs linked to expression of WNT10A in AGA and IL18RAP in eczema. Together, this work reveals principles of gene regulation and identifies gene regulatory consequences of natural genetic variation in complex skin and hair diseases.</description><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqlTktOwzAUtBCIls8FWL0LGOzGadIVCwSie_aRcV6TRx078nMr9RxcGIPYsGY1o5nRzAhxp9W9VlX7wEbXbSvVqpJKG1NLcyaWujZrqRvdnheu1loaVa0X4or5Q32nVHspFlVTK9WsmqX43IaMQ7IZe2AKg0fp0HtwY4qTzRTAhh5ysoFdojnHiVyRrD8xMsQdjIfJBmBn_QwJj2g9YKbo40BFAwpMw5i5kBxhwFBMB4l4D7uYYLSUfhZ4X6Z6YrSMN-JiZz3j7S9ei8eX57enVzkf3ifsHYbyx3dzosmmUxctdX-dQGM3xGOntd6ojVlV_2_4AkGseNA</recordid><startdate>20230727</startdate><enddate>20230727</enddate><creator>Ober-Reynolds, Benjamin</creator><creator>Wang, Chen</creator><creator>Ko, Justin M.</creator><creator>Rios, Eon J.</creator><creator>Aasi, Sumaira Z.</creator><creator>Davis, Mark M.</creator><creator>Oro, Anthony E.</creator><creator>Greenleaf, William J.</creator><scope>5PM</scope></search><sort><creationdate>20230727</creationdate><title>Integrated single-cell chromatin and transcriptomic analyses of human scalp reveal etiological insights into genetic risk for hair and skin disease</title><author>Ober-Reynolds, Benjamin ; Wang, Chen ; Ko, Justin M. ; Rios, Eon J. ; Aasi, Sumaira Z. ; Davis, Mark M. ; Oro, Anthony E. ; Greenleaf, William J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_111909423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ober-Reynolds, Benjamin</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Ko, Justin M.</creatorcontrib><creatorcontrib>Rios, Eon J.</creatorcontrib><creatorcontrib>Aasi, Sumaira Z.</creatorcontrib><creatorcontrib>Davis, Mark M.</creatorcontrib><creatorcontrib>Oro, Anthony E.</creatorcontrib><creatorcontrib>Greenleaf, William J.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ober-Reynolds, Benjamin</au><au>Wang, Chen</au><au>Ko, Justin M.</au><au>Rios, Eon J.</au><au>Aasi, Sumaira Z.</au><au>Davis, Mark M.</au><au>Oro, Anthony E.</au><au>Greenleaf, William J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated single-cell chromatin and transcriptomic analyses of human scalp reveal etiological insights into genetic risk for hair and skin disease</atitle><jtitle>Nature genetics</jtitle><date>2023-07-27</date><risdate>2023</risdate><volume>55</volume><issue>8</issue><spage>1288</spage><epage>1300</epage><pages>1288-1300</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Genome-wide association studies (GWAS) of hair and skin disease have identified many genetic variants associated with disease phenotypes, but identifying causal variants and interpreting their function requires deciphering gene-regulatory networks in disease-relevant cell types. To this end, we generated matched scRNA- and scATAC-seq profiles of human scalp biopsies, identifying diverse cell types of the hair follicle niche. By interrogating the integrated datasets across multiple levels of cellular resolution, we infer 50–100% more enhancer-gene links than prior approaches, and show that the aggregate accessibility at linked enhancers for highly-regulated genes predicts expression. We use these gene-regulatory maps to prioritize cell types, genes, and causal variants implicated in the pathobiology of androgenetic alopecia (AGA), eczema, and other complex traits. AGA GWAS signals are strongly and specifically enriched in dermal papilla cell open chromatin regions, supporting the role of these cells as key drivers of AGA pathogenesis. Finally, we trained machine-learning models to nominate SNPs that affect gene expression through disruption of specific transcription factor binding motifs, predicting candidate functional SNPs linked to expression of WNT10A in AGA and IL18RAP in eczema. Together, this work reveals principles of gene regulation and identifies gene regulatory consequences of natural genetic variation in complex skin and hair diseases.</abstract><pmid>37500727</pmid><doi>10.1038/s41588-023-01445-4</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2023-07, Vol.55 (8), p.1288-1300 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11190942 |
source | SpringerLink Journals; Nature |
title | Integrated single-cell chromatin and transcriptomic analyses of human scalp reveal etiological insights into genetic risk for hair and skin disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A08%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20single-cell%20chromatin%20and%20transcriptomic%20analyses%20of%20human%20scalp%20reveal%20etiological%20insights%20into%20genetic%20risk%20for%20hair%20and%20skin%20disease&rft.jtitle=Nature%20genetics&rft.au=Ober-Reynolds,%20Benjamin&rft.date=2023-07-27&rft.volume=55&rft.issue=8&rft.spage=1288&rft.epage=1300&rft.pages=1288-1300&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-023-01445-4&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_11190942%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37500727&rfr_iscdi=true |