Metrics reloaded: recommendations for image analysis validation
Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation o...
Gespeichert in:
Veröffentlicht in: | Nature methods 2024-02, Vol.21 (2), p.195-212 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | 2 |
container_start_page | 195 |
container_title | Nature methods |
container_volume | 21 |
creator | Maier-Hein, Lena Reinke, Annika Godau, Patrick Tizabi, Minu D. Buettner, Florian Christodoulou, Evangelia Glocker, Ben Isensee, Fabian Kleesiek, Jens Kozubek, Michal Reyes, Mauricio Riegler, Michael A. Wiesenfarth, Manuel Kavur, A. Emre Sudre, Carole H. Baumgartner, Michael Eisenmann, Matthias Heckmann-Nötzel, Doreen Rädsch, Tim Acion, Laura Antonelli, Michela Arbel, Tal Bakas, Spyridon Benis, Arriel Blaschko, Matthew B. Cardoso, M. Jorge Cheplygina, Veronika Cimini, Beth A. Collins, Gary S. Farahani, Keyvan Ferrer, Luciana Galdran, Adrian van Ginneken, Bram Haase, Robert Hashimoto, Daniel A. Hoffman, Michael M. Huisman, Merel Jannin, Pierre Kahn, Charles E. Kainmueller, Dagmar Kainz, Bernhard Karargyris, Alexandros Karthikesalingam, Alan Kofler, Florian Kopp-Schneider, Annette Kreshuk, Anna Kurc, Tahsin Landman, Bennett A. Litjens, Geert Madani, Amin Maier-Hein, Klaus Martel, Anne L. Mattson, Peter Meijering, Erik Menze, Bjoern Moons, Karel G. M. Müller, Henning Nichyporuk, Brennan Nickel, Felix Petersen, Jens Rajpoot, Nasir Rieke, Nicola Saez-Rodriguez, Julio Sánchez, Clara I. Shetty, Shravya van Smeden, Maarten Summers, Ronald M. Taha, Abdel A. Tiulpin, Aleksei Tsaftaris, Sotirios A. Van Calster, Ben Varoquaux, Gaël Jäger, Paul F. |
description | Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint—a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.
Metrics Reloaded is a comprehensive framework for guiding researchers in the problem-aware selection of metrics for common tasks in biomedical image analysis. |
doi_str_mv | 10.1038/s41592-023-02151-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11182665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925768691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-c18660925c6eaceca98aec9d90109201d66529b420e573bf890ed73c0cf60b233</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EoqXwBzigSFzKITDjr9hcqqoCirSIC5wtrzPZpkriYmdXan893qYt0AMHy9bMM-_M-GXsNcJ7BGE-ZInK8hq4KAcV1jdP2CEqaeoGQT29f4PFA_Yi50sAISRXz9mBMEI2KPGQnXyjOfUhV4mG6FtqP5ZXiONIU-vnPk656mKq-tFvqPKTH65zn6udH_ol_ZI96_yQ6dXdfcR-fv704-y8Xn3_8vXsdFUHBXauAxqtwXIVNPlAwVvjKdjWApYoYKu14nYtOZBqxLozFqhtRIDQaVhzIY7YyaJ7tV2P1Aaa5uQHd5XKZOnaRd-7fzNTf-E2cecQ0fCiXhTeLQoXj-rOT1duHwMpm8ZI2GFhj--6pfhrS3l2Y58DDYOfKG6z45ZraGzZp6BvH6GXcZvKR91SqtFG270gX6iQYs6JuocJENzeTLeY6YqZ7tZMd1OK3vy980PJvXsFEAuQS2raUPrT-z-yvwH1BKoZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925768691</pqid></control><display><type>article</type><title>Metrics reloaded: recommendations for image analysis validation</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Maier-Hein, Lena ; Reinke, Annika ; Godau, Patrick ; Tizabi, Minu D. ; Buettner, Florian ; Christodoulou, Evangelia ; Glocker, Ben ; Isensee, Fabian ; Kleesiek, Jens ; Kozubek, Michal ; Reyes, Mauricio ; Riegler, Michael A. ; Wiesenfarth, Manuel ; Kavur, A. Emre ; Sudre, Carole H. ; Baumgartner, Michael ; Eisenmann, Matthias ; Heckmann-Nötzel, Doreen ; Rädsch, Tim ; Acion, Laura ; Antonelli, Michela ; Arbel, Tal ; Bakas, Spyridon ; Benis, Arriel ; Blaschko, Matthew B. ; Cardoso, M. Jorge ; Cheplygina, Veronika ; Cimini, Beth A. ; Collins, Gary S. ; Farahani, Keyvan ; Ferrer, Luciana ; Galdran, Adrian ; van Ginneken, Bram ; Haase, Robert ; Hashimoto, Daniel A. ; Hoffman, Michael M. ; Huisman, Merel ; Jannin, Pierre ; Kahn, Charles E. ; Kainmueller, Dagmar ; Kainz, Bernhard ; Karargyris, Alexandros ; Karthikesalingam, Alan ; Kofler, Florian ; Kopp-Schneider, Annette ; Kreshuk, Anna ; Kurc, Tahsin ; Landman, Bennett A. ; Litjens, Geert ; Madani, Amin ; Maier-Hein, Klaus ; Martel, Anne L. ; Mattson, Peter ; Meijering, Erik ; Menze, Bjoern ; Moons, Karel G. M. ; Müller, Henning ; Nichyporuk, Brennan ; Nickel, Felix ; Petersen, Jens ; Rajpoot, Nasir ; Rieke, Nicola ; Saez-Rodriguez, Julio ; Sánchez, Clara I. ; Shetty, Shravya ; van Smeden, Maarten ; Summers, Ronald M. ; Taha, Abdel A. ; Tiulpin, Aleksei ; Tsaftaris, Sotirios A. ; Van Calster, Ben ; Varoquaux, Gaël ; Jäger, Paul F.</creator><creatorcontrib>Maier-Hein, Lena ; Reinke, Annika ; Godau, Patrick ; Tizabi, Minu D. ; Buettner, Florian ; Christodoulou, Evangelia ; Glocker, Ben ; Isensee, Fabian ; Kleesiek, Jens ; Kozubek, Michal ; Reyes, Mauricio ; Riegler, Michael A. ; Wiesenfarth, Manuel ; Kavur, A. Emre ; Sudre, Carole H. ; Baumgartner, Michael ; Eisenmann, Matthias ; Heckmann-Nötzel, Doreen ; Rädsch, Tim ; Acion, Laura ; Antonelli, Michela ; Arbel, Tal ; Bakas, Spyridon ; Benis, Arriel ; Blaschko, Matthew B. ; Cardoso, M. Jorge ; Cheplygina, Veronika ; Cimini, Beth A. ; Collins, Gary S. ; Farahani, Keyvan ; Ferrer, Luciana ; Galdran, Adrian ; van Ginneken, Bram ; Haase, Robert ; Hashimoto, Daniel A. ; Hoffman, Michael M. ; Huisman, Merel ; Jannin, Pierre ; Kahn, Charles E. ; Kainmueller, Dagmar ; Kainz, Bernhard ; Karargyris, Alexandros ; Karthikesalingam, Alan ; Kofler, Florian ; Kopp-Schneider, Annette ; Kreshuk, Anna ; Kurc, Tahsin ; Landman, Bennett A. ; Litjens, Geert ; Madani, Amin ; Maier-Hein, Klaus ; Martel, Anne L. ; Mattson, Peter ; Meijering, Erik ; Menze, Bjoern ; Moons, Karel G. M. ; Müller, Henning ; Nichyporuk, Brennan ; Nickel, Felix ; Petersen, Jens ; Rajpoot, Nasir ; Rieke, Nicola ; Saez-Rodriguez, Julio ; Sánchez, Clara I. ; Shetty, Shravya ; van Smeden, Maarten ; Summers, Ronald M. ; Taha, Abdel A. ; Tiulpin, Aleksei ; Tsaftaris, Sotirios A. ; Van Calster, Ben ; Varoquaux, Gaël ; Jäger, Paul F.</creatorcontrib><description>Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint—a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.
Metrics Reloaded is a comprehensive framework for guiding researchers in the problem-aware selection of metrics for common tasks in biomedical image analysis.</description><identifier>ISSN: 1548-7091</identifier><identifier>ISSN: 1548-7105</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-023-02151-z</identifier><identifier>PMID: 38347141</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>692/308 ; 706/648/160 ; Algorithms ; Artificial intelligence ; Bioengineering ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Classification ; Consortia ; Convergence ; Fingerprints ; Flaw detection ; Image analysis ; Image classification ; Image processing ; Image Processing, Computer-Assisted ; Image segmentation ; Life Sciences ; Machine Learning ; Medical imaging ; Object recognition ; Performance measurement ; Perspective ; Proteomics ; Semantic segmentation ; Semantics ; User experience</subject><ispartof>Nature methods, 2024-02, Vol.21 (2), p.195-212</ispartof><rights>Springer Nature America, Inc. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. Springer Nature America, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-c18660925c6eaceca98aec9d90109201d66529b420e573bf890ed73c0cf60b233</citedby><cites>FETCH-LOGICAL-c509t-c18660925c6eaceca98aec9d90109201d66529b420e573bf890ed73c0cf60b233</cites><orcidid>0000-0002-4517-1562 ; 0000-0001-5733-2127 ; 0000-0002-4897-9356 ; 0000-0003-0176-9324 ; 0000-0001-9640-9318 ; 0009-0006-8087-6089 ; 0000-0002-3005-4523 ; 0000-0003-1334-6388 ; 0000-0001-7902-589X ; 0000-0002-2772-2316 ; 0000-0002-0365-7265 ; 0000-0003-1375-5501 ; 0000-0003-0241-9334 ; 0000-0003-4136-5690 ; 0000-0001-8015-8358 ; 0000-0003-4363-1876 ; 0000-0002-7415-071X ; 0000-0002-0713-8761 ; 0000-0001-5949-2327 ; 0000-0001-8734-6482 ; 0000-0003-4910-9368 ; 0000-0003-3518-0315 ; 0000-0003-4725-3104 ; 0000-0001-5213-6012 ; 0000-0003-1076-5122 ; 0000-0002-3153-2064 ; 0000-0002-9125-8300 ; 0000-0002-7852-4141 ; 0000-0002-7604-9041 ; 0000-0003-1284-2558 ; 0000-0002-8552-8976 ; 0000-0002-1810-0267 ; 0000-0001-6760-1271 ; 0000-0001-8870-3007 ; 0000-0001-8081-7376 ; 0000-0002-6243-2568 ; 0000-0002-6654-7434 ; 0000-0002-1930-3410 ; 0000-0003-1554-1291 ; 0000-0002-5984-238X ; 0000-0001-6800-9878 ; 0000-0002-7813-5023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-023-02151-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-023-02151-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38347141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-rennes.hal.science/hal-04477840$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Maier-Hein, Lena</creatorcontrib><creatorcontrib>Reinke, Annika</creatorcontrib><creatorcontrib>Godau, Patrick</creatorcontrib><creatorcontrib>Tizabi, Minu D.</creatorcontrib><creatorcontrib>Buettner, Florian</creatorcontrib><creatorcontrib>Christodoulou, Evangelia</creatorcontrib><creatorcontrib>Glocker, Ben</creatorcontrib><creatorcontrib>Isensee, Fabian</creatorcontrib><creatorcontrib>Kleesiek, Jens</creatorcontrib><creatorcontrib>Kozubek, Michal</creatorcontrib><creatorcontrib>Reyes, Mauricio</creatorcontrib><creatorcontrib>Riegler, Michael A.</creatorcontrib><creatorcontrib>Wiesenfarth, Manuel</creatorcontrib><creatorcontrib>Kavur, A. Emre</creatorcontrib><creatorcontrib>Sudre, Carole H.</creatorcontrib><creatorcontrib>Baumgartner, Michael</creatorcontrib><creatorcontrib>Eisenmann, Matthias</creatorcontrib><creatorcontrib>Heckmann-Nötzel, Doreen</creatorcontrib><creatorcontrib>Rädsch, Tim</creatorcontrib><creatorcontrib>Acion, Laura</creatorcontrib><creatorcontrib>Antonelli, Michela</creatorcontrib><creatorcontrib>Arbel, Tal</creatorcontrib><creatorcontrib>Bakas, Spyridon</creatorcontrib><creatorcontrib>Benis, Arriel</creatorcontrib><creatorcontrib>Blaschko, Matthew B.</creatorcontrib><creatorcontrib>Cardoso, M. Jorge</creatorcontrib><creatorcontrib>Cheplygina, Veronika</creatorcontrib><creatorcontrib>Cimini, Beth A.</creatorcontrib><creatorcontrib>Collins, Gary S.</creatorcontrib><creatorcontrib>Farahani, Keyvan</creatorcontrib><creatorcontrib>Ferrer, Luciana</creatorcontrib><creatorcontrib>Galdran, Adrian</creatorcontrib><creatorcontrib>van Ginneken, Bram</creatorcontrib><creatorcontrib>Haase, Robert</creatorcontrib><creatorcontrib>Hashimoto, Daniel A.</creatorcontrib><creatorcontrib>Hoffman, Michael M.</creatorcontrib><creatorcontrib>Huisman, Merel</creatorcontrib><creatorcontrib>Jannin, Pierre</creatorcontrib><creatorcontrib>Kahn, Charles E.</creatorcontrib><creatorcontrib>Kainmueller, Dagmar</creatorcontrib><creatorcontrib>Kainz, Bernhard</creatorcontrib><creatorcontrib>Karargyris, Alexandros</creatorcontrib><creatorcontrib>Karthikesalingam, Alan</creatorcontrib><creatorcontrib>Kofler, Florian</creatorcontrib><creatorcontrib>Kopp-Schneider, Annette</creatorcontrib><creatorcontrib>Kreshuk, Anna</creatorcontrib><creatorcontrib>Kurc, Tahsin</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Litjens, Geert</creatorcontrib><creatorcontrib>Madani, Amin</creatorcontrib><creatorcontrib>Maier-Hein, Klaus</creatorcontrib><creatorcontrib>Martel, Anne L.</creatorcontrib><creatorcontrib>Mattson, Peter</creatorcontrib><creatorcontrib>Meijering, Erik</creatorcontrib><creatorcontrib>Menze, Bjoern</creatorcontrib><creatorcontrib>Moons, Karel G. M.</creatorcontrib><creatorcontrib>Müller, Henning</creatorcontrib><creatorcontrib>Nichyporuk, Brennan</creatorcontrib><creatorcontrib>Nickel, Felix</creatorcontrib><creatorcontrib>Petersen, Jens</creatorcontrib><creatorcontrib>Rajpoot, Nasir</creatorcontrib><creatorcontrib>Rieke, Nicola</creatorcontrib><creatorcontrib>Saez-Rodriguez, Julio</creatorcontrib><creatorcontrib>Sánchez, Clara I.</creatorcontrib><creatorcontrib>Shetty, Shravya</creatorcontrib><creatorcontrib>van Smeden, Maarten</creatorcontrib><creatorcontrib>Summers, Ronald M.</creatorcontrib><creatorcontrib>Taha, Abdel A.</creatorcontrib><creatorcontrib>Tiulpin, Aleksei</creatorcontrib><creatorcontrib>Tsaftaris, Sotirios A.</creatorcontrib><creatorcontrib>Van Calster, Ben</creatorcontrib><creatorcontrib>Varoquaux, Gaël</creatorcontrib><creatorcontrib>Jäger, Paul F.</creatorcontrib><title>Metrics reloaded: recommendations for image analysis validation</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint—a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.
Metrics Reloaded is a comprehensive framework for guiding researchers in the problem-aware selection of metrics for common tasks in biomedical image analysis.</description><subject>692/308</subject><subject>706/648/160</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bioengineering</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Classification</subject><subject>Consortia</subject><subject>Convergence</subject><subject>Fingerprints</subject><subject>Flaw detection</subject><subject>Image analysis</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image segmentation</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Medical imaging</subject><subject>Object recognition</subject><subject>Performance measurement</subject><subject>Perspective</subject><subject>Proteomics</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>User experience</subject><issn>1548-7091</issn><issn>1548-7105</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1v1DAQhi0EoqXwBzigSFzKITDjr9hcqqoCirSIC5wtrzPZpkriYmdXan893qYt0AMHy9bMM-_M-GXsNcJ7BGE-ZInK8hq4KAcV1jdP2CEqaeoGQT29f4PFA_Yi50sAISRXz9mBMEI2KPGQnXyjOfUhV4mG6FtqP5ZXiONIU-vnPk656mKq-tFvqPKTH65zn6udH_ol_ZI96_yQ6dXdfcR-fv704-y8Xn3_8vXsdFUHBXauAxqtwXIVNPlAwVvjKdjWApYoYKu14nYtOZBqxLozFqhtRIDQaVhzIY7YyaJ7tV2P1Aaa5uQHd5XKZOnaRd-7fzNTf-E2cecQ0fCiXhTeLQoXj-rOT1duHwMpm8ZI2GFhj--6pfhrS3l2Y58DDYOfKG6z45ZraGzZp6BvH6GXcZvKR91SqtFG270gX6iQYs6JuocJENzeTLeY6YqZ7tZMd1OK3vy980PJvXsFEAuQS2raUPrT-z-yvwH1BKoZ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Maier-Hein, Lena</creator><creator>Reinke, Annika</creator><creator>Godau, Patrick</creator><creator>Tizabi, Minu D.</creator><creator>Buettner, Florian</creator><creator>Christodoulou, Evangelia</creator><creator>Glocker, Ben</creator><creator>Isensee, Fabian</creator><creator>Kleesiek, Jens</creator><creator>Kozubek, Michal</creator><creator>Reyes, Mauricio</creator><creator>Riegler, Michael A.</creator><creator>Wiesenfarth, Manuel</creator><creator>Kavur, A. Emre</creator><creator>Sudre, Carole H.</creator><creator>Baumgartner, Michael</creator><creator>Eisenmann, Matthias</creator><creator>Heckmann-Nötzel, Doreen</creator><creator>Rädsch, Tim</creator><creator>Acion, Laura</creator><creator>Antonelli, Michela</creator><creator>Arbel, Tal</creator><creator>Bakas, Spyridon</creator><creator>Benis, Arriel</creator><creator>Blaschko, Matthew B.</creator><creator>Cardoso, M. Jorge</creator><creator>Cheplygina, Veronika</creator><creator>Cimini, Beth A.</creator><creator>Collins, Gary S.</creator><creator>Farahani, Keyvan</creator><creator>Ferrer, Luciana</creator><creator>Galdran, Adrian</creator><creator>van Ginneken, Bram</creator><creator>Haase, Robert</creator><creator>Hashimoto, Daniel A.</creator><creator>Hoffman, Michael M.</creator><creator>Huisman, Merel</creator><creator>Jannin, Pierre</creator><creator>Kahn, Charles E.</creator><creator>Kainmueller, Dagmar</creator><creator>Kainz, Bernhard</creator><creator>Karargyris, Alexandros</creator><creator>Karthikesalingam, Alan</creator><creator>Kofler, Florian</creator><creator>Kopp-Schneider, Annette</creator><creator>Kreshuk, Anna</creator><creator>Kurc, Tahsin</creator><creator>Landman, Bennett A.</creator><creator>Litjens, Geert</creator><creator>Madani, Amin</creator><creator>Maier-Hein, Klaus</creator><creator>Martel, Anne L.</creator><creator>Mattson, Peter</creator><creator>Meijering, Erik</creator><creator>Menze, Bjoern</creator><creator>Moons, Karel G. M.</creator><creator>Müller, Henning</creator><creator>Nichyporuk, Brennan</creator><creator>Nickel, Felix</creator><creator>Petersen, Jens</creator><creator>Rajpoot, Nasir</creator><creator>Rieke, Nicola</creator><creator>Saez-Rodriguez, Julio</creator><creator>Sánchez, Clara I.</creator><creator>Shetty, Shravya</creator><creator>van Smeden, Maarten</creator><creator>Summers, Ronald M.</creator><creator>Taha, Abdel A.</creator><creator>Tiulpin, Aleksei</creator><creator>Tsaftaris, Sotirios A.</creator><creator>Van Calster, Ben</creator><creator>Varoquaux, Gaël</creator><creator>Jäger, Paul F.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4517-1562</orcidid><orcidid>https://orcid.org/0000-0001-5733-2127</orcidid><orcidid>https://orcid.org/0000-0002-4897-9356</orcidid><orcidid>https://orcid.org/0000-0003-0176-9324</orcidid><orcidid>https://orcid.org/0000-0001-9640-9318</orcidid><orcidid>https://orcid.org/0009-0006-8087-6089</orcidid><orcidid>https://orcid.org/0000-0002-3005-4523</orcidid><orcidid>https://orcid.org/0000-0003-1334-6388</orcidid><orcidid>https://orcid.org/0000-0001-7902-589X</orcidid><orcidid>https://orcid.org/0000-0002-2772-2316</orcidid><orcidid>https://orcid.org/0000-0002-0365-7265</orcidid><orcidid>https://orcid.org/0000-0003-1375-5501</orcidid><orcidid>https://orcid.org/0000-0003-0241-9334</orcidid><orcidid>https://orcid.org/0000-0003-4136-5690</orcidid><orcidid>https://orcid.org/0000-0001-8015-8358</orcidid><orcidid>https://orcid.org/0000-0003-4363-1876</orcidid><orcidid>https://orcid.org/0000-0002-7415-071X</orcidid><orcidid>https://orcid.org/0000-0002-0713-8761</orcidid><orcidid>https://orcid.org/0000-0001-5949-2327</orcidid><orcidid>https://orcid.org/0000-0001-8734-6482</orcidid><orcidid>https://orcid.org/0000-0003-4910-9368</orcidid><orcidid>https://orcid.org/0000-0003-3518-0315</orcidid><orcidid>https://orcid.org/0000-0003-4725-3104</orcidid><orcidid>https://orcid.org/0000-0001-5213-6012</orcidid><orcidid>https://orcid.org/0000-0003-1076-5122</orcidid><orcidid>https://orcid.org/0000-0002-3153-2064</orcidid><orcidid>https://orcid.org/0000-0002-9125-8300</orcidid><orcidid>https://orcid.org/0000-0002-7852-4141</orcidid><orcidid>https://orcid.org/0000-0002-7604-9041</orcidid><orcidid>https://orcid.org/0000-0003-1284-2558</orcidid><orcidid>https://orcid.org/0000-0002-8552-8976</orcidid><orcidid>https://orcid.org/0000-0002-1810-0267</orcidid><orcidid>https://orcid.org/0000-0001-6760-1271</orcidid><orcidid>https://orcid.org/0000-0001-8870-3007</orcidid><orcidid>https://orcid.org/0000-0001-8081-7376</orcidid><orcidid>https://orcid.org/0000-0002-6243-2568</orcidid><orcidid>https://orcid.org/0000-0002-6654-7434</orcidid><orcidid>https://orcid.org/0000-0002-1930-3410</orcidid><orcidid>https://orcid.org/0000-0003-1554-1291</orcidid><orcidid>https://orcid.org/0000-0002-5984-238X</orcidid><orcidid>https://orcid.org/0000-0001-6800-9878</orcidid><orcidid>https://orcid.org/0000-0002-7813-5023</orcidid></search><sort><creationdate>20240201</creationdate><title>Metrics reloaded: recommendations for image analysis validation</title><author>Maier-Hein, Lena ; Reinke, Annika ; Godau, Patrick ; Tizabi, Minu D. ; Buettner, Florian ; Christodoulou, Evangelia ; Glocker, Ben ; Isensee, Fabian ; Kleesiek, Jens ; Kozubek, Michal ; Reyes, Mauricio ; Riegler, Michael A. ; Wiesenfarth, Manuel ; Kavur, A. Emre ; Sudre, Carole H. ; Baumgartner, Michael ; Eisenmann, Matthias ; Heckmann-Nötzel, Doreen ; Rädsch, Tim ; Acion, Laura ; Antonelli, Michela ; Arbel, Tal ; Bakas, Spyridon ; Benis, Arriel ; Blaschko, Matthew B. ; Cardoso, M. Jorge ; Cheplygina, Veronika ; Cimini, Beth A. ; Collins, Gary S. ; Farahani, Keyvan ; Ferrer, Luciana ; Galdran, Adrian ; van Ginneken, Bram ; Haase, Robert ; Hashimoto, Daniel A. ; Hoffman, Michael M. ; Huisman, Merel ; Jannin, Pierre ; Kahn, Charles E. ; Kainmueller, Dagmar ; Kainz, Bernhard ; Karargyris, Alexandros ; Karthikesalingam, Alan ; Kofler, Florian ; Kopp-Schneider, Annette ; Kreshuk, Anna ; Kurc, Tahsin ; Landman, Bennett A. ; Litjens, Geert ; Madani, Amin ; Maier-Hein, Klaus ; Martel, Anne L. ; Mattson, Peter ; Meijering, Erik ; Menze, Bjoern ; Moons, Karel G. M. ; Müller, Henning ; Nichyporuk, Brennan ; Nickel, Felix ; Petersen, Jens ; Rajpoot, Nasir ; Rieke, Nicola ; Saez-Rodriguez, Julio ; Sánchez, Clara I. ; Shetty, Shravya ; van Smeden, Maarten ; Summers, Ronald M. ; Taha, Abdel A. ; Tiulpin, Aleksei ; Tsaftaris, Sotirios A. ; Van Calster, Ben ; Varoquaux, Gaël ; Jäger, Paul F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-c18660925c6eaceca98aec9d90109201d66529b420e573bf890ed73c0cf60b233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>692/308</topic><topic>706/648/160</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bioengineering</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Classification</topic><topic>Consortia</topic><topic>Convergence</topic><topic>Fingerprints</topic><topic>Flaw detection</topic><topic>Image analysis</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image segmentation</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Medical imaging</topic><topic>Object recognition</topic><topic>Performance measurement</topic><topic>Perspective</topic><topic>Proteomics</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>User experience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maier-Hein, Lena</creatorcontrib><creatorcontrib>Reinke, Annika</creatorcontrib><creatorcontrib>Godau, Patrick</creatorcontrib><creatorcontrib>Tizabi, Minu D.</creatorcontrib><creatorcontrib>Buettner, Florian</creatorcontrib><creatorcontrib>Christodoulou, Evangelia</creatorcontrib><creatorcontrib>Glocker, Ben</creatorcontrib><creatorcontrib>Isensee, Fabian</creatorcontrib><creatorcontrib>Kleesiek, Jens</creatorcontrib><creatorcontrib>Kozubek, Michal</creatorcontrib><creatorcontrib>Reyes, Mauricio</creatorcontrib><creatorcontrib>Riegler, Michael A.</creatorcontrib><creatorcontrib>Wiesenfarth, Manuel</creatorcontrib><creatorcontrib>Kavur, A. Emre</creatorcontrib><creatorcontrib>Sudre, Carole H.</creatorcontrib><creatorcontrib>Baumgartner, Michael</creatorcontrib><creatorcontrib>Eisenmann, Matthias</creatorcontrib><creatorcontrib>Heckmann-Nötzel, Doreen</creatorcontrib><creatorcontrib>Rädsch, Tim</creatorcontrib><creatorcontrib>Acion, Laura</creatorcontrib><creatorcontrib>Antonelli, Michela</creatorcontrib><creatorcontrib>Arbel, Tal</creatorcontrib><creatorcontrib>Bakas, Spyridon</creatorcontrib><creatorcontrib>Benis, Arriel</creatorcontrib><creatorcontrib>Blaschko, Matthew B.</creatorcontrib><creatorcontrib>Cardoso, M. Jorge</creatorcontrib><creatorcontrib>Cheplygina, Veronika</creatorcontrib><creatorcontrib>Cimini, Beth A.</creatorcontrib><creatorcontrib>Collins, Gary S.</creatorcontrib><creatorcontrib>Farahani, Keyvan</creatorcontrib><creatorcontrib>Ferrer, Luciana</creatorcontrib><creatorcontrib>Galdran, Adrian</creatorcontrib><creatorcontrib>van Ginneken, Bram</creatorcontrib><creatorcontrib>Haase, Robert</creatorcontrib><creatorcontrib>Hashimoto, Daniel A.</creatorcontrib><creatorcontrib>Hoffman, Michael M.</creatorcontrib><creatorcontrib>Huisman, Merel</creatorcontrib><creatorcontrib>Jannin, Pierre</creatorcontrib><creatorcontrib>Kahn, Charles E.</creatorcontrib><creatorcontrib>Kainmueller, Dagmar</creatorcontrib><creatorcontrib>Kainz, Bernhard</creatorcontrib><creatorcontrib>Karargyris, Alexandros</creatorcontrib><creatorcontrib>Karthikesalingam, Alan</creatorcontrib><creatorcontrib>Kofler, Florian</creatorcontrib><creatorcontrib>Kopp-Schneider, Annette</creatorcontrib><creatorcontrib>Kreshuk, Anna</creatorcontrib><creatorcontrib>Kurc, Tahsin</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Litjens, Geert</creatorcontrib><creatorcontrib>Madani, Amin</creatorcontrib><creatorcontrib>Maier-Hein, Klaus</creatorcontrib><creatorcontrib>Martel, Anne L.</creatorcontrib><creatorcontrib>Mattson, Peter</creatorcontrib><creatorcontrib>Meijering, Erik</creatorcontrib><creatorcontrib>Menze, Bjoern</creatorcontrib><creatorcontrib>Moons, Karel G. M.</creatorcontrib><creatorcontrib>Müller, Henning</creatorcontrib><creatorcontrib>Nichyporuk, Brennan</creatorcontrib><creatorcontrib>Nickel, Felix</creatorcontrib><creatorcontrib>Petersen, Jens</creatorcontrib><creatorcontrib>Rajpoot, Nasir</creatorcontrib><creatorcontrib>Rieke, Nicola</creatorcontrib><creatorcontrib>Saez-Rodriguez, Julio</creatorcontrib><creatorcontrib>Sánchez, Clara I.</creatorcontrib><creatorcontrib>Shetty, Shravya</creatorcontrib><creatorcontrib>van Smeden, Maarten</creatorcontrib><creatorcontrib>Summers, Ronald M.</creatorcontrib><creatorcontrib>Taha, Abdel A.</creatorcontrib><creatorcontrib>Tiulpin, Aleksei</creatorcontrib><creatorcontrib>Tsaftaris, Sotirios A.</creatorcontrib><creatorcontrib>Van Calster, Ben</creatorcontrib><creatorcontrib>Varoquaux, Gaël</creatorcontrib><creatorcontrib>Jäger, Paul F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maier-Hein, Lena</au><au>Reinke, Annika</au><au>Godau, Patrick</au><au>Tizabi, Minu D.</au><au>Buettner, Florian</au><au>Christodoulou, Evangelia</au><au>Glocker, Ben</au><au>Isensee, Fabian</au><au>Kleesiek, Jens</au><au>Kozubek, Michal</au><au>Reyes, Mauricio</au><au>Riegler, Michael A.</au><au>Wiesenfarth, Manuel</au><au>Kavur, A. Emre</au><au>Sudre, Carole H.</au><au>Baumgartner, Michael</au><au>Eisenmann, Matthias</au><au>Heckmann-Nötzel, Doreen</au><au>Rädsch, Tim</au><au>Acion, Laura</au><au>Antonelli, Michela</au><au>Arbel, Tal</au><au>Bakas, Spyridon</au><au>Benis, Arriel</au><au>Blaschko, Matthew B.</au><au>Cardoso, M. Jorge</au><au>Cheplygina, Veronika</au><au>Cimini, Beth A.</au><au>Collins, Gary S.</au><au>Farahani, Keyvan</au><au>Ferrer, Luciana</au><au>Galdran, Adrian</au><au>van Ginneken, Bram</au><au>Haase, Robert</au><au>Hashimoto, Daniel A.</au><au>Hoffman, Michael M.</au><au>Huisman, Merel</au><au>Jannin, Pierre</au><au>Kahn, Charles E.</au><au>Kainmueller, Dagmar</au><au>Kainz, Bernhard</au><au>Karargyris, Alexandros</au><au>Karthikesalingam, Alan</au><au>Kofler, Florian</au><au>Kopp-Schneider, Annette</au><au>Kreshuk, Anna</au><au>Kurc, Tahsin</au><au>Landman, Bennett A.</au><au>Litjens, Geert</au><au>Madani, Amin</au><au>Maier-Hein, Klaus</au><au>Martel, Anne L.</au><au>Mattson, Peter</au><au>Meijering, Erik</au><au>Menze, Bjoern</au><au>Moons, Karel G. M.</au><au>Müller, Henning</au><au>Nichyporuk, Brennan</au><au>Nickel, Felix</au><au>Petersen, Jens</au><au>Rajpoot, Nasir</au><au>Rieke, Nicola</au><au>Saez-Rodriguez, Julio</au><au>Sánchez, Clara I.</au><au>Shetty, Shravya</au><au>van Smeden, Maarten</au><au>Summers, Ronald M.</au><au>Taha, Abdel A.</au><au>Tiulpin, Aleksei</au><au>Tsaftaris, Sotirios A.</au><au>Van Calster, Ben</au><au>Varoquaux, Gaël</au><au>Jäger, Paul F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metrics reloaded: recommendations for image analysis validation</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>21</volume><issue>2</issue><spage>195</spage><epage>212</epage><pages>195-212</pages><issn>1548-7091</issn><issn>1548-7105</issn><eissn>1548-7105</eissn><abstract>Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint—a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.
Metrics Reloaded is a comprehensive framework for guiding researchers in the problem-aware selection of metrics for common tasks in biomedical image analysis.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>38347141</pmid><doi>10.1038/s41592-023-02151-z</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4517-1562</orcidid><orcidid>https://orcid.org/0000-0001-5733-2127</orcidid><orcidid>https://orcid.org/0000-0002-4897-9356</orcidid><orcidid>https://orcid.org/0000-0003-0176-9324</orcidid><orcidid>https://orcid.org/0000-0001-9640-9318</orcidid><orcidid>https://orcid.org/0009-0006-8087-6089</orcidid><orcidid>https://orcid.org/0000-0002-3005-4523</orcidid><orcidid>https://orcid.org/0000-0003-1334-6388</orcidid><orcidid>https://orcid.org/0000-0001-7902-589X</orcidid><orcidid>https://orcid.org/0000-0002-2772-2316</orcidid><orcidid>https://orcid.org/0000-0002-0365-7265</orcidid><orcidid>https://orcid.org/0000-0003-1375-5501</orcidid><orcidid>https://orcid.org/0000-0003-0241-9334</orcidid><orcidid>https://orcid.org/0000-0003-4136-5690</orcidid><orcidid>https://orcid.org/0000-0001-8015-8358</orcidid><orcidid>https://orcid.org/0000-0003-4363-1876</orcidid><orcidid>https://orcid.org/0000-0002-7415-071X</orcidid><orcidid>https://orcid.org/0000-0002-0713-8761</orcidid><orcidid>https://orcid.org/0000-0001-5949-2327</orcidid><orcidid>https://orcid.org/0000-0001-8734-6482</orcidid><orcidid>https://orcid.org/0000-0003-4910-9368</orcidid><orcidid>https://orcid.org/0000-0003-3518-0315</orcidid><orcidid>https://orcid.org/0000-0003-4725-3104</orcidid><orcidid>https://orcid.org/0000-0001-5213-6012</orcidid><orcidid>https://orcid.org/0000-0003-1076-5122</orcidid><orcidid>https://orcid.org/0000-0002-3153-2064</orcidid><orcidid>https://orcid.org/0000-0002-9125-8300</orcidid><orcidid>https://orcid.org/0000-0002-7852-4141</orcidid><orcidid>https://orcid.org/0000-0002-7604-9041</orcidid><orcidid>https://orcid.org/0000-0003-1284-2558</orcidid><orcidid>https://orcid.org/0000-0002-8552-8976</orcidid><orcidid>https://orcid.org/0000-0002-1810-0267</orcidid><orcidid>https://orcid.org/0000-0001-6760-1271</orcidid><orcidid>https://orcid.org/0000-0001-8870-3007</orcidid><orcidid>https://orcid.org/0000-0001-8081-7376</orcidid><orcidid>https://orcid.org/0000-0002-6243-2568</orcidid><orcidid>https://orcid.org/0000-0002-6654-7434</orcidid><orcidid>https://orcid.org/0000-0002-1930-3410</orcidid><orcidid>https://orcid.org/0000-0003-1554-1291</orcidid><orcidid>https://orcid.org/0000-0002-5984-238X</orcidid><orcidid>https://orcid.org/0000-0001-6800-9878</orcidid><orcidid>https://orcid.org/0000-0002-7813-5023</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2024-02, Vol.21 (2), p.195-212 |
issn | 1548-7091 1548-7105 1548-7105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11182665 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 692/308 706/648/160 Algorithms Artificial intelligence Bioengineering Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Classification Consortia Convergence Fingerprints Flaw detection Image analysis Image classification Image processing Image Processing, Computer-Assisted Image segmentation Life Sciences Machine Learning Medical imaging Object recognition Performance measurement Perspective Proteomics Semantic segmentation Semantics User experience |
title | Metrics reloaded: recommendations for image analysis validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A41%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metrics%20reloaded:%20recommendations%20for%20image%20analysis%20validation&rft.jtitle=Nature%20methods&rft.au=Maier-Hein,%20Lena&rft.date=2024-02-01&rft.volume=21&rft.issue=2&rft.spage=195&rft.epage=212&rft.pages=195-212&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-023-02151-z&rft_dat=%3Cproquest_pubme%3E2925768691%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925768691&rft_id=info:pmid/38347141&rfr_iscdi=true |