Metrics reloaded: recommendations for image analysis validation

Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2024-02, Vol.21 (2), p.195-212
Hauptverfasser: Maier-Hein, Lena, Reinke, Annika, Godau, Patrick, Tizabi, Minu D., Buettner, Florian, Christodoulou, Evangelia, Glocker, Ben, Isensee, Fabian, Kleesiek, Jens, Kozubek, Michal, Reyes, Mauricio, Riegler, Michael A., Wiesenfarth, Manuel, Kavur, A. Emre, Sudre, Carole H., Baumgartner, Michael, Eisenmann, Matthias, Heckmann-Nötzel, Doreen, Rädsch, Tim, Acion, Laura, Antonelli, Michela, Arbel, Tal, Bakas, Spyridon, Benis, Arriel, Blaschko, Matthew B., Cardoso, M. Jorge, Cheplygina, Veronika, Cimini, Beth A., Collins, Gary S., Farahani, Keyvan, Ferrer, Luciana, Galdran, Adrian, van Ginneken, Bram, Haase, Robert, Hashimoto, Daniel A., Hoffman, Michael M., Huisman, Merel, Jannin, Pierre, Kahn, Charles E., Kainmueller, Dagmar, Kainz, Bernhard, Karargyris, Alexandros, Karthikesalingam, Alan, Kofler, Florian, Kopp-Schneider, Annette, Kreshuk, Anna, Kurc, Tahsin, Landman, Bennett A., Litjens, Geert, Madani, Amin, Maier-Hein, Klaus, Martel, Anne L., Mattson, Peter, Meijering, Erik, Menze, Bjoern, Moons, Karel G. M., Müller, Henning, Nichyporuk, Brennan, Nickel, Felix, Petersen, Jens, Rajpoot, Nasir, Rieke, Nicola, Saez-Rodriguez, Julio, Sánchez, Clara I., Shetty, Shravya, van Smeden, Maarten, Summers, Ronald M., Taha, Abdel A., Tiulpin, Aleksei, Tsaftaris, Sotirios A., Van Calster, Ben, Varoquaux, Gaël, Jäger, Paul F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 212
container_issue 2
container_start_page 195
container_title Nature methods
container_volume 21
creator Maier-Hein, Lena
Reinke, Annika
Godau, Patrick
Tizabi, Minu D.
Buettner, Florian
Christodoulou, Evangelia
Glocker, Ben
Isensee, Fabian
Kleesiek, Jens
Kozubek, Michal
Reyes, Mauricio
Riegler, Michael A.
Wiesenfarth, Manuel
Kavur, A. Emre
Sudre, Carole H.
Baumgartner, Michael
Eisenmann, Matthias
Heckmann-Nötzel, Doreen
Rädsch, Tim
Acion, Laura
Antonelli, Michela
Arbel, Tal
Bakas, Spyridon
Benis, Arriel
Blaschko, Matthew B.
Cardoso, M. Jorge
Cheplygina, Veronika
Cimini, Beth A.
Collins, Gary S.
Farahani, Keyvan
Ferrer, Luciana
Galdran, Adrian
van Ginneken, Bram
Haase, Robert
Hashimoto, Daniel A.
Hoffman, Michael M.
Huisman, Merel
Jannin, Pierre
Kahn, Charles E.
Kainmueller, Dagmar
Kainz, Bernhard
Karargyris, Alexandros
Karthikesalingam, Alan
Kofler, Florian
Kopp-Schneider, Annette
Kreshuk, Anna
Kurc, Tahsin
Landman, Bennett A.
Litjens, Geert
Madani, Amin
Maier-Hein, Klaus
Martel, Anne L.
Mattson, Peter
Meijering, Erik
Menze, Bjoern
Moons, Karel G. M.
Müller, Henning
Nichyporuk, Brennan
Nickel, Felix
Petersen, Jens
Rajpoot, Nasir
Rieke, Nicola
Saez-Rodriguez, Julio
Sánchez, Clara I.
Shetty, Shravya
van Smeden, Maarten
Summers, Ronald M.
Taha, Abdel A.
Tiulpin, Aleksei
Tsaftaris, Sotirios A.
Van Calster, Ben
Varoquaux, Gaël
Jäger, Paul F.
description Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint—a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases. Metrics Reloaded is a comprehensive framework for guiding researchers in the problem-aware selection of metrics for common tasks in biomedical image analysis.
doi_str_mv 10.1038/s41592-023-02151-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11182665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925768691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-c18660925c6eaceca98aec9d90109201d66529b420e573bf890ed73c0cf60b233</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EoqXwBzigSFzKITDjr9hcqqoCirSIC5wtrzPZpkriYmdXan893qYt0AMHy9bMM-_M-GXsNcJ7BGE-ZInK8hq4KAcV1jdP2CEqaeoGQT29f4PFA_Yi50sAISRXz9mBMEI2KPGQnXyjOfUhV4mG6FtqP5ZXiONIU-vnPk656mKq-tFvqPKTH65zn6udH_ol_ZI96_yQ6dXdfcR-fv704-y8Xn3_8vXsdFUHBXauAxqtwXIVNPlAwVvjKdjWApYoYKu14nYtOZBqxLozFqhtRIDQaVhzIY7YyaJ7tV2P1Aaa5uQHd5XKZOnaRd-7fzNTf-E2cecQ0fCiXhTeLQoXj-rOT1duHwMpm8ZI2GFhj--6pfhrS3l2Y58DDYOfKG6z45ZraGzZp6BvH6GXcZvKR91SqtFG270gX6iQYs6JuocJENzeTLeY6YqZ7tZMd1OK3vy980PJvXsFEAuQS2raUPrT-z-yvwH1BKoZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925768691</pqid></control><display><type>article</type><title>Metrics reloaded: recommendations for image analysis validation</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Maier-Hein, Lena ; Reinke, Annika ; Godau, Patrick ; Tizabi, Minu D. ; Buettner, Florian ; Christodoulou, Evangelia ; Glocker, Ben ; Isensee, Fabian ; Kleesiek, Jens ; Kozubek, Michal ; Reyes, Mauricio ; Riegler, Michael A. ; Wiesenfarth, Manuel ; Kavur, A. Emre ; Sudre, Carole H. ; Baumgartner, Michael ; Eisenmann, Matthias ; Heckmann-Nötzel, Doreen ; Rädsch, Tim ; Acion, Laura ; Antonelli, Michela ; Arbel, Tal ; Bakas, Spyridon ; Benis, Arriel ; Blaschko, Matthew B. ; Cardoso, M. Jorge ; Cheplygina, Veronika ; Cimini, Beth A. ; Collins, Gary S. ; Farahani, Keyvan ; Ferrer, Luciana ; Galdran, Adrian ; van Ginneken, Bram ; Haase, Robert ; Hashimoto, Daniel A. ; Hoffman, Michael M. ; Huisman, Merel ; Jannin, Pierre ; Kahn, Charles E. ; Kainmueller, Dagmar ; Kainz, Bernhard ; Karargyris, Alexandros ; Karthikesalingam, Alan ; Kofler, Florian ; Kopp-Schneider, Annette ; Kreshuk, Anna ; Kurc, Tahsin ; Landman, Bennett A. ; Litjens, Geert ; Madani, Amin ; Maier-Hein, Klaus ; Martel, Anne L. ; Mattson, Peter ; Meijering, Erik ; Menze, Bjoern ; Moons, Karel G. M. ; Müller, Henning ; Nichyporuk, Brennan ; Nickel, Felix ; Petersen, Jens ; Rajpoot, Nasir ; Rieke, Nicola ; Saez-Rodriguez, Julio ; Sánchez, Clara I. ; Shetty, Shravya ; van Smeden, Maarten ; Summers, Ronald M. ; Taha, Abdel A. ; Tiulpin, Aleksei ; Tsaftaris, Sotirios A. ; Van Calster, Ben ; Varoquaux, Gaël ; Jäger, Paul F.</creator><creatorcontrib>Maier-Hein, Lena ; Reinke, Annika ; Godau, Patrick ; Tizabi, Minu D. ; Buettner, Florian ; Christodoulou, Evangelia ; Glocker, Ben ; Isensee, Fabian ; Kleesiek, Jens ; Kozubek, Michal ; Reyes, Mauricio ; Riegler, Michael A. ; Wiesenfarth, Manuel ; Kavur, A. Emre ; Sudre, Carole H. ; Baumgartner, Michael ; Eisenmann, Matthias ; Heckmann-Nötzel, Doreen ; Rädsch, Tim ; Acion, Laura ; Antonelli, Michela ; Arbel, Tal ; Bakas, Spyridon ; Benis, Arriel ; Blaschko, Matthew B. ; Cardoso, M. Jorge ; Cheplygina, Veronika ; Cimini, Beth A. ; Collins, Gary S. ; Farahani, Keyvan ; Ferrer, Luciana ; Galdran, Adrian ; van Ginneken, Bram ; Haase, Robert ; Hashimoto, Daniel A. ; Hoffman, Michael M. ; Huisman, Merel ; Jannin, Pierre ; Kahn, Charles E. ; Kainmueller, Dagmar ; Kainz, Bernhard ; Karargyris, Alexandros ; Karthikesalingam, Alan ; Kofler, Florian ; Kopp-Schneider, Annette ; Kreshuk, Anna ; Kurc, Tahsin ; Landman, Bennett A. ; Litjens, Geert ; Madani, Amin ; Maier-Hein, Klaus ; Martel, Anne L. ; Mattson, Peter ; Meijering, Erik ; Menze, Bjoern ; Moons, Karel G. M. ; Müller, Henning ; Nichyporuk, Brennan ; Nickel, Felix ; Petersen, Jens ; Rajpoot, Nasir ; Rieke, Nicola ; Saez-Rodriguez, Julio ; Sánchez, Clara I. ; Shetty, Shravya ; van Smeden, Maarten ; Summers, Ronald M. ; Taha, Abdel A. ; Tiulpin, Aleksei ; Tsaftaris, Sotirios A. ; Van Calster, Ben ; Varoquaux, Gaël ; Jäger, Paul F.</creatorcontrib><description>Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint—a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases. Metrics Reloaded is a comprehensive framework for guiding researchers in the problem-aware selection of metrics for common tasks in biomedical image analysis.</description><identifier>ISSN: 1548-7091</identifier><identifier>ISSN: 1548-7105</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-023-02151-z</identifier><identifier>PMID: 38347141</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>692/308 ; 706/648/160 ; Algorithms ; Artificial intelligence ; Bioengineering ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Classification ; Consortia ; Convergence ; Fingerprints ; Flaw detection ; Image analysis ; Image classification ; Image processing ; Image Processing, Computer-Assisted ; Image segmentation ; Life Sciences ; Machine Learning ; Medical imaging ; Object recognition ; Performance measurement ; Perspective ; Proteomics ; Semantic segmentation ; Semantics ; User experience</subject><ispartof>Nature methods, 2024-02, Vol.21 (2), p.195-212</ispartof><rights>Springer Nature America, Inc. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. Springer Nature America, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-c18660925c6eaceca98aec9d90109201d66529b420e573bf890ed73c0cf60b233</citedby><cites>FETCH-LOGICAL-c509t-c18660925c6eaceca98aec9d90109201d66529b420e573bf890ed73c0cf60b233</cites><orcidid>0000-0002-4517-1562 ; 0000-0001-5733-2127 ; 0000-0002-4897-9356 ; 0000-0003-0176-9324 ; 0000-0001-9640-9318 ; 0009-0006-8087-6089 ; 0000-0002-3005-4523 ; 0000-0003-1334-6388 ; 0000-0001-7902-589X ; 0000-0002-2772-2316 ; 0000-0002-0365-7265 ; 0000-0003-1375-5501 ; 0000-0003-0241-9334 ; 0000-0003-4136-5690 ; 0000-0001-8015-8358 ; 0000-0003-4363-1876 ; 0000-0002-7415-071X ; 0000-0002-0713-8761 ; 0000-0001-5949-2327 ; 0000-0001-8734-6482 ; 0000-0003-4910-9368 ; 0000-0003-3518-0315 ; 0000-0003-4725-3104 ; 0000-0001-5213-6012 ; 0000-0003-1076-5122 ; 0000-0002-3153-2064 ; 0000-0002-9125-8300 ; 0000-0002-7852-4141 ; 0000-0002-7604-9041 ; 0000-0003-1284-2558 ; 0000-0002-8552-8976 ; 0000-0002-1810-0267 ; 0000-0001-6760-1271 ; 0000-0001-8870-3007 ; 0000-0001-8081-7376 ; 0000-0002-6243-2568 ; 0000-0002-6654-7434 ; 0000-0002-1930-3410 ; 0000-0003-1554-1291 ; 0000-0002-5984-238X ; 0000-0001-6800-9878 ; 0000-0002-7813-5023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-023-02151-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-023-02151-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38347141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-rennes.hal.science/hal-04477840$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Maier-Hein, Lena</creatorcontrib><creatorcontrib>Reinke, Annika</creatorcontrib><creatorcontrib>Godau, Patrick</creatorcontrib><creatorcontrib>Tizabi, Minu D.</creatorcontrib><creatorcontrib>Buettner, Florian</creatorcontrib><creatorcontrib>Christodoulou, Evangelia</creatorcontrib><creatorcontrib>Glocker, Ben</creatorcontrib><creatorcontrib>Isensee, Fabian</creatorcontrib><creatorcontrib>Kleesiek, Jens</creatorcontrib><creatorcontrib>Kozubek, Michal</creatorcontrib><creatorcontrib>Reyes, Mauricio</creatorcontrib><creatorcontrib>Riegler, Michael A.</creatorcontrib><creatorcontrib>Wiesenfarth, Manuel</creatorcontrib><creatorcontrib>Kavur, A. Emre</creatorcontrib><creatorcontrib>Sudre, Carole H.</creatorcontrib><creatorcontrib>Baumgartner, Michael</creatorcontrib><creatorcontrib>Eisenmann, Matthias</creatorcontrib><creatorcontrib>Heckmann-Nötzel, Doreen</creatorcontrib><creatorcontrib>Rädsch, Tim</creatorcontrib><creatorcontrib>Acion, Laura</creatorcontrib><creatorcontrib>Antonelli, Michela</creatorcontrib><creatorcontrib>Arbel, Tal</creatorcontrib><creatorcontrib>Bakas, Spyridon</creatorcontrib><creatorcontrib>Benis, Arriel</creatorcontrib><creatorcontrib>Blaschko, Matthew B.</creatorcontrib><creatorcontrib>Cardoso, M. Jorge</creatorcontrib><creatorcontrib>Cheplygina, Veronika</creatorcontrib><creatorcontrib>Cimini, Beth A.</creatorcontrib><creatorcontrib>Collins, Gary S.</creatorcontrib><creatorcontrib>Farahani, Keyvan</creatorcontrib><creatorcontrib>Ferrer, Luciana</creatorcontrib><creatorcontrib>Galdran, Adrian</creatorcontrib><creatorcontrib>van Ginneken, Bram</creatorcontrib><creatorcontrib>Haase, Robert</creatorcontrib><creatorcontrib>Hashimoto, Daniel A.</creatorcontrib><creatorcontrib>Hoffman, Michael M.</creatorcontrib><creatorcontrib>Huisman, Merel</creatorcontrib><creatorcontrib>Jannin, Pierre</creatorcontrib><creatorcontrib>Kahn, Charles E.</creatorcontrib><creatorcontrib>Kainmueller, Dagmar</creatorcontrib><creatorcontrib>Kainz, Bernhard</creatorcontrib><creatorcontrib>Karargyris, Alexandros</creatorcontrib><creatorcontrib>Karthikesalingam, Alan</creatorcontrib><creatorcontrib>Kofler, Florian</creatorcontrib><creatorcontrib>Kopp-Schneider, Annette</creatorcontrib><creatorcontrib>Kreshuk, Anna</creatorcontrib><creatorcontrib>Kurc, Tahsin</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Litjens, Geert</creatorcontrib><creatorcontrib>Madani, Amin</creatorcontrib><creatorcontrib>Maier-Hein, Klaus</creatorcontrib><creatorcontrib>Martel, Anne L.</creatorcontrib><creatorcontrib>Mattson, Peter</creatorcontrib><creatorcontrib>Meijering, Erik</creatorcontrib><creatorcontrib>Menze, Bjoern</creatorcontrib><creatorcontrib>Moons, Karel G. M.</creatorcontrib><creatorcontrib>Müller, Henning</creatorcontrib><creatorcontrib>Nichyporuk, Brennan</creatorcontrib><creatorcontrib>Nickel, Felix</creatorcontrib><creatorcontrib>Petersen, Jens</creatorcontrib><creatorcontrib>Rajpoot, Nasir</creatorcontrib><creatorcontrib>Rieke, Nicola</creatorcontrib><creatorcontrib>Saez-Rodriguez, Julio</creatorcontrib><creatorcontrib>Sánchez, Clara I.</creatorcontrib><creatorcontrib>Shetty, Shravya</creatorcontrib><creatorcontrib>van Smeden, Maarten</creatorcontrib><creatorcontrib>Summers, Ronald M.</creatorcontrib><creatorcontrib>Taha, Abdel A.</creatorcontrib><creatorcontrib>Tiulpin, Aleksei</creatorcontrib><creatorcontrib>Tsaftaris, Sotirios A.</creatorcontrib><creatorcontrib>Van Calster, Ben</creatorcontrib><creatorcontrib>Varoquaux, Gaël</creatorcontrib><creatorcontrib>Jäger, Paul F.</creatorcontrib><title>Metrics reloaded: recommendations for image analysis validation</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint—a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases. Metrics Reloaded is a comprehensive framework for guiding researchers in the problem-aware selection of metrics for common tasks in biomedical image analysis.</description><subject>692/308</subject><subject>706/648/160</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bioengineering</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Classification</subject><subject>Consortia</subject><subject>Convergence</subject><subject>Fingerprints</subject><subject>Flaw detection</subject><subject>Image analysis</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image segmentation</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Medical imaging</subject><subject>Object recognition</subject><subject>Performance measurement</subject><subject>Perspective</subject><subject>Proteomics</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>User experience</subject><issn>1548-7091</issn><issn>1548-7105</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1v1DAQhi0EoqXwBzigSFzKITDjr9hcqqoCirSIC5wtrzPZpkriYmdXan893qYt0AMHy9bMM-_M-GXsNcJ7BGE-ZInK8hq4KAcV1jdP2CEqaeoGQT29f4PFA_Yi50sAISRXz9mBMEI2KPGQnXyjOfUhV4mG6FtqP5ZXiONIU-vnPk656mKq-tFvqPKTH65zn6udH_ol_ZI96_yQ6dXdfcR-fv704-y8Xn3_8vXsdFUHBXauAxqtwXIVNPlAwVvjKdjWApYoYKu14nYtOZBqxLozFqhtRIDQaVhzIY7YyaJ7tV2P1Aaa5uQHd5XKZOnaRd-7fzNTf-E2cecQ0fCiXhTeLQoXj-rOT1duHwMpm8ZI2GFhj--6pfhrS3l2Y58DDYOfKG6z45ZraGzZp6BvH6GXcZvKR91SqtFG270gX6iQYs6JuocJENzeTLeY6YqZ7tZMd1OK3vy980PJvXsFEAuQS2raUPrT-z-yvwH1BKoZ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Maier-Hein, Lena</creator><creator>Reinke, Annika</creator><creator>Godau, Patrick</creator><creator>Tizabi, Minu D.</creator><creator>Buettner, Florian</creator><creator>Christodoulou, Evangelia</creator><creator>Glocker, Ben</creator><creator>Isensee, Fabian</creator><creator>Kleesiek, Jens</creator><creator>Kozubek, Michal</creator><creator>Reyes, Mauricio</creator><creator>Riegler, Michael A.</creator><creator>Wiesenfarth, Manuel</creator><creator>Kavur, A. Emre</creator><creator>Sudre, Carole H.</creator><creator>Baumgartner, Michael</creator><creator>Eisenmann, Matthias</creator><creator>Heckmann-Nötzel, Doreen</creator><creator>Rädsch, Tim</creator><creator>Acion, Laura</creator><creator>Antonelli, Michela</creator><creator>Arbel, Tal</creator><creator>Bakas, Spyridon</creator><creator>Benis, Arriel</creator><creator>Blaschko, Matthew B.</creator><creator>Cardoso, M. Jorge</creator><creator>Cheplygina, Veronika</creator><creator>Cimini, Beth A.</creator><creator>Collins, Gary S.</creator><creator>Farahani, Keyvan</creator><creator>Ferrer, Luciana</creator><creator>Galdran, Adrian</creator><creator>van Ginneken, Bram</creator><creator>Haase, Robert</creator><creator>Hashimoto, Daniel A.</creator><creator>Hoffman, Michael M.</creator><creator>Huisman, Merel</creator><creator>Jannin, Pierre</creator><creator>Kahn, Charles E.</creator><creator>Kainmueller, Dagmar</creator><creator>Kainz, Bernhard</creator><creator>Karargyris, Alexandros</creator><creator>Karthikesalingam, Alan</creator><creator>Kofler, Florian</creator><creator>Kopp-Schneider, Annette</creator><creator>Kreshuk, Anna</creator><creator>Kurc, Tahsin</creator><creator>Landman, Bennett A.</creator><creator>Litjens, Geert</creator><creator>Madani, Amin</creator><creator>Maier-Hein, Klaus</creator><creator>Martel, Anne L.</creator><creator>Mattson, Peter</creator><creator>Meijering, Erik</creator><creator>Menze, Bjoern</creator><creator>Moons, Karel G. M.</creator><creator>Müller, Henning</creator><creator>Nichyporuk, Brennan</creator><creator>Nickel, Felix</creator><creator>Petersen, Jens</creator><creator>Rajpoot, Nasir</creator><creator>Rieke, Nicola</creator><creator>Saez-Rodriguez, Julio</creator><creator>Sánchez, Clara I.</creator><creator>Shetty, Shravya</creator><creator>van Smeden, Maarten</creator><creator>Summers, Ronald M.</creator><creator>Taha, Abdel A.</creator><creator>Tiulpin, Aleksei</creator><creator>Tsaftaris, Sotirios A.</creator><creator>Van Calster, Ben</creator><creator>Varoquaux, Gaël</creator><creator>Jäger, Paul F.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4517-1562</orcidid><orcidid>https://orcid.org/0000-0001-5733-2127</orcidid><orcidid>https://orcid.org/0000-0002-4897-9356</orcidid><orcidid>https://orcid.org/0000-0003-0176-9324</orcidid><orcidid>https://orcid.org/0000-0001-9640-9318</orcidid><orcidid>https://orcid.org/0009-0006-8087-6089</orcidid><orcidid>https://orcid.org/0000-0002-3005-4523</orcidid><orcidid>https://orcid.org/0000-0003-1334-6388</orcidid><orcidid>https://orcid.org/0000-0001-7902-589X</orcidid><orcidid>https://orcid.org/0000-0002-2772-2316</orcidid><orcidid>https://orcid.org/0000-0002-0365-7265</orcidid><orcidid>https://orcid.org/0000-0003-1375-5501</orcidid><orcidid>https://orcid.org/0000-0003-0241-9334</orcidid><orcidid>https://orcid.org/0000-0003-4136-5690</orcidid><orcidid>https://orcid.org/0000-0001-8015-8358</orcidid><orcidid>https://orcid.org/0000-0003-4363-1876</orcidid><orcidid>https://orcid.org/0000-0002-7415-071X</orcidid><orcidid>https://orcid.org/0000-0002-0713-8761</orcidid><orcidid>https://orcid.org/0000-0001-5949-2327</orcidid><orcidid>https://orcid.org/0000-0001-8734-6482</orcidid><orcidid>https://orcid.org/0000-0003-4910-9368</orcidid><orcidid>https://orcid.org/0000-0003-3518-0315</orcidid><orcidid>https://orcid.org/0000-0003-4725-3104</orcidid><orcidid>https://orcid.org/0000-0001-5213-6012</orcidid><orcidid>https://orcid.org/0000-0003-1076-5122</orcidid><orcidid>https://orcid.org/0000-0002-3153-2064</orcidid><orcidid>https://orcid.org/0000-0002-9125-8300</orcidid><orcidid>https://orcid.org/0000-0002-7852-4141</orcidid><orcidid>https://orcid.org/0000-0002-7604-9041</orcidid><orcidid>https://orcid.org/0000-0003-1284-2558</orcidid><orcidid>https://orcid.org/0000-0002-8552-8976</orcidid><orcidid>https://orcid.org/0000-0002-1810-0267</orcidid><orcidid>https://orcid.org/0000-0001-6760-1271</orcidid><orcidid>https://orcid.org/0000-0001-8870-3007</orcidid><orcidid>https://orcid.org/0000-0001-8081-7376</orcidid><orcidid>https://orcid.org/0000-0002-6243-2568</orcidid><orcidid>https://orcid.org/0000-0002-6654-7434</orcidid><orcidid>https://orcid.org/0000-0002-1930-3410</orcidid><orcidid>https://orcid.org/0000-0003-1554-1291</orcidid><orcidid>https://orcid.org/0000-0002-5984-238X</orcidid><orcidid>https://orcid.org/0000-0001-6800-9878</orcidid><orcidid>https://orcid.org/0000-0002-7813-5023</orcidid></search><sort><creationdate>20240201</creationdate><title>Metrics reloaded: recommendations for image analysis validation</title><author>Maier-Hein, Lena ; Reinke, Annika ; Godau, Patrick ; Tizabi, Minu D. ; Buettner, Florian ; Christodoulou, Evangelia ; Glocker, Ben ; Isensee, Fabian ; Kleesiek, Jens ; Kozubek, Michal ; Reyes, Mauricio ; Riegler, Michael A. ; Wiesenfarth, Manuel ; Kavur, A. Emre ; Sudre, Carole H. ; Baumgartner, Michael ; Eisenmann, Matthias ; Heckmann-Nötzel, Doreen ; Rädsch, Tim ; Acion, Laura ; Antonelli, Michela ; Arbel, Tal ; Bakas, Spyridon ; Benis, Arriel ; Blaschko, Matthew B. ; Cardoso, M. Jorge ; Cheplygina, Veronika ; Cimini, Beth A. ; Collins, Gary S. ; Farahani, Keyvan ; Ferrer, Luciana ; Galdran, Adrian ; van Ginneken, Bram ; Haase, Robert ; Hashimoto, Daniel A. ; Hoffman, Michael M. ; Huisman, Merel ; Jannin, Pierre ; Kahn, Charles E. ; Kainmueller, Dagmar ; Kainz, Bernhard ; Karargyris, Alexandros ; Karthikesalingam, Alan ; Kofler, Florian ; Kopp-Schneider, Annette ; Kreshuk, Anna ; Kurc, Tahsin ; Landman, Bennett A. ; Litjens, Geert ; Madani, Amin ; Maier-Hein, Klaus ; Martel, Anne L. ; Mattson, Peter ; Meijering, Erik ; Menze, Bjoern ; Moons, Karel G. M. ; Müller, Henning ; Nichyporuk, Brennan ; Nickel, Felix ; Petersen, Jens ; Rajpoot, Nasir ; Rieke, Nicola ; Saez-Rodriguez, Julio ; Sánchez, Clara I. ; Shetty, Shravya ; van Smeden, Maarten ; Summers, Ronald M. ; Taha, Abdel A. ; Tiulpin, Aleksei ; Tsaftaris, Sotirios A. ; Van Calster, Ben ; Varoquaux, Gaël ; Jäger, Paul F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-c18660925c6eaceca98aec9d90109201d66529b420e573bf890ed73c0cf60b233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>692/308</topic><topic>706/648/160</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bioengineering</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Classification</topic><topic>Consortia</topic><topic>Convergence</topic><topic>Fingerprints</topic><topic>Flaw detection</topic><topic>Image analysis</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image segmentation</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Medical imaging</topic><topic>Object recognition</topic><topic>Performance measurement</topic><topic>Perspective</topic><topic>Proteomics</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>User experience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maier-Hein, Lena</creatorcontrib><creatorcontrib>Reinke, Annika</creatorcontrib><creatorcontrib>Godau, Patrick</creatorcontrib><creatorcontrib>Tizabi, Minu D.</creatorcontrib><creatorcontrib>Buettner, Florian</creatorcontrib><creatorcontrib>Christodoulou, Evangelia</creatorcontrib><creatorcontrib>Glocker, Ben</creatorcontrib><creatorcontrib>Isensee, Fabian</creatorcontrib><creatorcontrib>Kleesiek, Jens</creatorcontrib><creatorcontrib>Kozubek, Michal</creatorcontrib><creatorcontrib>Reyes, Mauricio</creatorcontrib><creatorcontrib>Riegler, Michael A.</creatorcontrib><creatorcontrib>Wiesenfarth, Manuel</creatorcontrib><creatorcontrib>Kavur, A. Emre</creatorcontrib><creatorcontrib>Sudre, Carole H.</creatorcontrib><creatorcontrib>Baumgartner, Michael</creatorcontrib><creatorcontrib>Eisenmann, Matthias</creatorcontrib><creatorcontrib>Heckmann-Nötzel, Doreen</creatorcontrib><creatorcontrib>Rädsch, Tim</creatorcontrib><creatorcontrib>Acion, Laura</creatorcontrib><creatorcontrib>Antonelli, Michela</creatorcontrib><creatorcontrib>Arbel, Tal</creatorcontrib><creatorcontrib>Bakas, Spyridon</creatorcontrib><creatorcontrib>Benis, Arriel</creatorcontrib><creatorcontrib>Blaschko, Matthew B.</creatorcontrib><creatorcontrib>Cardoso, M. Jorge</creatorcontrib><creatorcontrib>Cheplygina, Veronika</creatorcontrib><creatorcontrib>Cimini, Beth A.</creatorcontrib><creatorcontrib>Collins, Gary S.</creatorcontrib><creatorcontrib>Farahani, Keyvan</creatorcontrib><creatorcontrib>Ferrer, Luciana</creatorcontrib><creatorcontrib>Galdran, Adrian</creatorcontrib><creatorcontrib>van Ginneken, Bram</creatorcontrib><creatorcontrib>Haase, Robert</creatorcontrib><creatorcontrib>Hashimoto, Daniel A.</creatorcontrib><creatorcontrib>Hoffman, Michael M.</creatorcontrib><creatorcontrib>Huisman, Merel</creatorcontrib><creatorcontrib>Jannin, Pierre</creatorcontrib><creatorcontrib>Kahn, Charles E.</creatorcontrib><creatorcontrib>Kainmueller, Dagmar</creatorcontrib><creatorcontrib>Kainz, Bernhard</creatorcontrib><creatorcontrib>Karargyris, Alexandros</creatorcontrib><creatorcontrib>Karthikesalingam, Alan</creatorcontrib><creatorcontrib>Kofler, Florian</creatorcontrib><creatorcontrib>Kopp-Schneider, Annette</creatorcontrib><creatorcontrib>Kreshuk, Anna</creatorcontrib><creatorcontrib>Kurc, Tahsin</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Litjens, Geert</creatorcontrib><creatorcontrib>Madani, Amin</creatorcontrib><creatorcontrib>Maier-Hein, Klaus</creatorcontrib><creatorcontrib>Martel, Anne L.</creatorcontrib><creatorcontrib>Mattson, Peter</creatorcontrib><creatorcontrib>Meijering, Erik</creatorcontrib><creatorcontrib>Menze, Bjoern</creatorcontrib><creatorcontrib>Moons, Karel G. M.</creatorcontrib><creatorcontrib>Müller, Henning</creatorcontrib><creatorcontrib>Nichyporuk, Brennan</creatorcontrib><creatorcontrib>Nickel, Felix</creatorcontrib><creatorcontrib>Petersen, Jens</creatorcontrib><creatorcontrib>Rajpoot, Nasir</creatorcontrib><creatorcontrib>Rieke, Nicola</creatorcontrib><creatorcontrib>Saez-Rodriguez, Julio</creatorcontrib><creatorcontrib>Sánchez, Clara I.</creatorcontrib><creatorcontrib>Shetty, Shravya</creatorcontrib><creatorcontrib>van Smeden, Maarten</creatorcontrib><creatorcontrib>Summers, Ronald M.</creatorcontrib><creatorcontrib>Taha, Abdel A.</creatorcontrib><creatorcontrib>Tiulpin, Aleksei</creatorcontrib><creatorcontrib>Tsaftaris, Sotirios A.</creatorcontrib><creatorcontrib>Van Calster, Ben</creatorcontrib><creatorcontrib>Varoquaux, Gaël</creatorcontrib><creatorcontrib>Jäger, Paul F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maier-Hein, Lena</au><au>Reinke, Annika</au><au>Godau, Patrick</au><au>Tizabi, Minu D.</au><au>Buettner, Florian</au><au>Christodoulou, Evangelia</au><au>Glocker, Ben</au><au>Isensee, Fabian</au><au>Kleesiek, Jens</au><au>Kozubek, Michal</au><au>Reyes, Mauricio</au><au>Riegler, Michael A.</au><au>Wiesenfarth, Manuel</au><au>Kavur, A. Emre</au><au>Sudre, Carole H.</au><au>Baumgartner, Michael</au><au>Eisenmann, Matthias</au><au>Heckmann-Nötzel, Doreen</au><au>Rädsch, Tim</au><au>Acion, Laura</au><au>Antonelli, Michela</au><au>Arbel, Tal</au><au>Bakas, Spyridon</au><au>Benis, Arriel</au><au>Blaschko, Matthew B.</au><au>Cardoso, M. Jorge</au><au>Cheplygina, Veronika</au><au>Cimini, Beth A.</au><au>Collins, Gary S.</au><au>Farahani, Keyvan</au><au>Ferrer, Luciana</au><au>Galdran, Adrian</au><au>van Ginneken, Bram</au><au>Haase, Robert</au><au>Hashimoto, Daniel A.</au><au>Hoffman, Michael M.</au><au>Huisman, Merel</au><au>Jannin, Pierre</au><au>Kahn, Charles E.</au><au>Kainmueller, Dagmar</au><au>Kainz, Bernhard</au><au>Karargyris, Alexandros</au><au>Karthikesalingam, Alan</au><au>Kofler, Florian</au><au>Kopp-Schneider, Annette</au><au>Kreshuk, Anna</au><au>Kurc, Tahsin</au><au>Landman, Bennett A.</au><au>Litjens, Geert</au><au>Madani, Amin</au><au>Maier-Hein, Klaus</au><au>Martel, Anne L.</au><au>Mattson, Peter</au><au>Meijering, Erik</au><au>Menze, Bjoern</au><au>Moons, Karel G. M.</au><au>Müller, Henning</au><au>Nichyporuk, Brennan</au><au>Nickel, Felix</au><au>Petersen, Jens</au><au>Rajpoot, Nasir</au><au>Rieke, Nicola</au><au>Saez-Rodriguez, Julio</au><au>Sánchez, Clara I.</au><au>Shetty, Shravya</au><au>van Smeden, Maarten</au><au>Summers, Ronald M.</au><au>Taha, Abdel A.</au><au>Tiulpin, Aleksei</au><au>Tsaftaris, Sotirios A.</au><au>Van Calster, Ben</au><au>Varoquaux, Gaël</au><au>Jäger, Paul F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metrics reloaded: recommendations for image analysis validation</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>21</volume><issue>2</issue><spage>195</spage><epage>212</epage><pages>195-212</pages><issn>1548-7091</issn><issn>1548-7105</issn><eissn>1548-7105</eissn><abstract>Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint—a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases. Metrics Reloaded is a comprehensive framework for guiding researchers in the problem-aware selection of metrics for common tasks in biomedical image analysis.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>38347141</pmid><doi>10.1038/s41592-023-02151-z</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4517-1562</orcidid><orcidid>https://orcid.org/0000-0001-5733-2127</orcidid><orcidid>https://orcid.org/0000-0002-4897-9356</orcidid><orcidid>https://orcid.org/0000-0003-0176-9324</orcidid><orcidid>https://orcid.org/0000-0001-9640-9318</orcidid><orcidid>https://orcid.org/0009-0006-8087-6089</orcidid><orcidid>https://orcid.org/0000-0002-3005-4523</orcidid><orcidid>https://orcid.org/0000-0003-1334-6388</orcidid><orcidid>https://orcid.org/0000-0001-7902-589X</orcidid><orcidid>https://orcid.org/0000-0002-2772-2316</orcidid><orcidid>https://orcid.org/0000-0002-0365-7265</orcidid><orcidid>https://orcid.org/0000-0003-1375-5501</orcidid><orcidid>https://orcid.org/0000-0003-0241-9334</orcidid><orcidid>https://orcid.org/0000-0003-4136-5690</orcidid><orcidid>https://orcid.org/0000-0001-8015-8358</orcidid><orcidid>https://orcid.org/0000-0003-4363-1876</orcidid><orcidid>https://orcid.org/0000-0002-7415-071X</orcidid><orcidid>https://orcid.org/0000-0002-0713-8761</orcidid><orcidid>https://orcid.org/0000-0001-5949-2327</orcidid><orcidid>https://orcid.org/0000-0001-8734-6482</orcidid><orcidid>https://orcid.org/0000-0003-4910-9368</orcidid><orcidid>https://orcid.org/0000-0003-3518-0315</orcidid><orcidid>https://orcid.org/0000-0003-4725-3104</orcidid><orcidid>https://orcid.org/0000-0001-5213-6012</orcidid><orcidid>https://orcid.org/0000-0003-1076-5122</orcidid><orcidid>https://orcid.org/0000-0002-3153-2064</orcidid><orcidid>https://orcid.org/0000-0002-9125-8300</orcidid><orcidid>https://orcid.org/0000-0002-7852-4141</orcidid><orcidid>https://orcid.org/0000-0002-7604-9041</orcidid><orcidid>https://orcid.org/0000-0003-1284-2558</orcidid><orcidid>https://orcid.org/0000-0002-8552-8976</orcidid><orcidid>https://orcid.org/0000-0002-1810-0267</orcidid><orcidid>https://orcid.org/0000-0001-6760-1271</orcidid><orcidid>https://orcid.org/0000-0001-8870-3007</orcidid><orcidid>https://orcid.org/0000-0001-8081-7376</orcidid><orcidid>https://orcid.org/0000-0002-6243-2568</orcidid><orcidid>https://orcid.org/0000-0002-6654-7434</orcidid><orcidid>https://orcid.org/0000-0002-1930-3410</orcidid><orcidid>https://orcid.org/0000-0003-1554-1291</orcidid><orcidid>https://orcid.org/0000-0002-5984-238X</orcidid><orcidid>https://orcid.org/0000-0001-6800-9878</orcidid><orcidid>https://orcid.org/0000-0002-7813-5023</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2024-02, Vol.21 (2), p.195-212
issn 1548-7091
1548-7105
1548-7105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11182665
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 692/308
706/648/160
Algorithms
Artificial intelligence
Bioengineering
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Classification
Consortia
Convergence
Fingerprints
Flaw detection
Image analysis
Image classification
Image processing
Image Processing, Computer-Assisted
Image segmentation
Life Sciences
Machine Learning
Medical imaging
Object recognition
Performance measurement
Perspective
Proteomics
Semantic segmentation
Semantics
User experience
title Metrics reloaded: recommendations for image analysis validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A41%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metrics%20reloaded:%20recommendations%20for%20image%20analysis%20validation&rft.jtitle=Nature%20methods&rft.au=Maier-Hein,%20Lena&rft.date=2024-02-01&rft.volume=21&rft.issue=2&rft.spage=195&rft.epage=212&rft.pages=195-212&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-023-02151-z&rft_dat=%3Cproquest_pubme%3E2925768691%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925768691&rft_id=info:pmid/38347141&rfr_iscdi=true