Generation of allogeneic and xenogeneic functional muscle stem cells for intramuscular transplantation

Satellite cells, the stem cells of skeletal muscle tissue, hold a remarkable regeneration capacity and therapeutic potential in regenerative medicine. However, low satellite cell yield from autologous or donor-derived muscles hinders the adoption of satellite cell transplantation for the treatment o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2024-06, Vol.134 (12)
Hauptverfasser: Lenardic, Ajda, Domenig, Seraina A, Zvick, Joel, Bundschuh, Nicola, Tarnowska- Sengul, Monika, Furrer, Regula, Noe, Falko, Trautmann, Christine L, Ghosh, Adhideb, Bacchin, Giada, Gjonlleshaj, Pjeter, Qabrati, Xhem, Masschelein, Evi, De Bock, Katrien, Handschin, Christoph, Bar-Nur, Ori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title The Journal of clinical investigation
container_volume 134
creator Lenardic, Ajda
Domenig, Seraina A
Zvick, Joel
Bundschuh, Nicola
Tarnowska- Sengul, Monika
Furrer, Regula
Noe, Falko
Trautmann, Christine L
Ghosh, Adhideb
Bacchin, Giada
Gjonlleshaj, Pjeter
Qabrati, Xhem
Masschelein, Evi
De Bock, Katrien
Handschin, Christoph
Bar-Nur, Ori
description Satellite cells, the stem cells of skeletal muscle tissue, hold a remarkable regeneration capacity and therapeutic potential in regenerative medicine. However, low satellite cell yield from autologous or donor-derived muscles hinders the adoption of satellite cell transplantation for the treatment of muscle diseases, including Duchenne muscular dystrophy (DMD). To address this limitation, here we investigated whether satellite cells can be derived in allogeneic or xenogeneic animal hosts. First, injection of CRISPR/Cas9-corrected [Dmd.sup.mdx] mouse induced pluripotent stem cells (iPSCs) into mouse blastocysts carrying an ablation system of host satellite cells gave rise to intraspecies chimeras exclusively carrying iPSC-derived satellite cells. Furthermore, injection of genetically corrected DMD iPSCs into rat blastocysts resulted in the formation of interspecies rat-mouse chimeras harboring mouse satellite cells. Notably, iPSC-derived satellite cells or derivative myoblasts produced in intraspecies or interspecies chimeras restored dystrophin expression in DMD mice following intramuscular transplantation and contributed to the satellite cell pool. Collectively, this study demonstrates the feasibility of producing therapeutically competent stem cells across divergent animal species, raising the possibility of generating human muscle stem cells in large animals for regenerative medicine purposes.
doi_str_mv 10.1172/JCI166998
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11178549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A801951045</galeid><sourcerecordid>A801951045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-d62fe3ef83c0ab338f7276960a5c6436f9c737bb96f2d1739440f07a82b9a3483</originalsourceid><addsrcrecordid>eNqNkk1v3CAQhq2qVZOmPfQfIFWq2oMTMGDDqYpWSbpVpEj9uiKMBy8Vhq2xq-TfBydplJX2EHFgmHnmFbxMUbwn-JiQpjr5tlqTupZSvCgOCeeiFBUVL5_EB8WblP5gTBjj7HVxQEVDKKfVYWEvIMCoJxcDihZp72OfM84gHTp0DeH_0c7BLJT2aJiT8YDSBAMy4H1CNo7IhWnUS2n2ekQ5DmnrdZjutN8Wr6z2Cd497EfFr_Ozn6uv5eXVxXp1elkaxpqp7OrKAgUrqMG6pVTYpmpqWWPNTc1obaVpaNO2srZVRxoqGcMWN1pUrdSUCXpUfLnX3c7tAJ2B5VJebUc36PFGRe3UbiW4jerjP0WykYIzmRU-PSiM8e8MaVKDS8srdYA4J0Uxr7hktWAZ_XCP9tqDcsHGLGkWXJ0KTCQnmPFMlXuo_s52HwNYl9M7_PEePq8OBmf2NnzeacjMBNdTr-eU1PrH9-ezV7932Y9P2A1oP21S9PPyn2mvqBljSiPYR78JVsuAqscBpbc3kNRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052594684</pqid></control><display><type>article</type><title>Generation of allogeneic and xenogeneic functional muscle stem cells for intramuscular transplantation</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lenardic, Ajda ; Domenig, Seraina A ; Zvick, Joel ; Bundschuh, Nicola ; Tarnowska- Sengul, Monika ; Furrer, Regula ; Noe, Falko ; Trautmann, Christine L ; Ghosh, Adhideb ; Bacchin, Giada ; Gjonlleshaj, Pjeter ; Qabrati, Xhem ; Masschelein, Evi ; De Bock, Katrien ; Handschin, Christoph ; Bar-Nur, Ori</creator><creatorcontrib>Lenardic, Ajda ; Domenig, Seraina A ; Zvick, Joel ; Bundschuh, Nicola ; Tarnowska- Sengul, Monika ; Furrer, Regula ; Noe, Falko ; Trautmann, Christine L ; Ghosh, Adhideb ; Bacchin, Giada ; Gjonlleshaj, Pjeter ; Qabrati, Xhem ; Masschelein, Evi ; De Bock, Katrien ; Handschin, Christoph ; Bar-Nur, Ori</creatorcontrib><description>Satellite cells, the stem cells of skeletal muscle tissue, hold a remarkable regeneration capacity and therapeutic potential in regenerative medicine. However, low satellite cell yield from autologous or donor-derived muscles hinders the adoption of satellite cell transplantation for the treatment of muscle diseases, including Duchenne muscular dystrophy (DMD). To address this limitation, here we investigated whether satellite cells can be derived in allogeneic or xenogeneic animal hosts. First, injection of CRISPR/Cas9-corrected [Dmd.sup.mdx] mouse induced pluripotent stem cells (iPSCs) into mouse blastocysts carrying an ablation system of host satellite cells gave rise to intraspecies chimeras exclusively carrying iPSC-derived satellite cells. Furthermore, injection of genetically corrected DMD iPSCs into rat blastocysts resulted in the formation of interspecies rat-mouse chimeras harboring mouse satellite cells. Notably, iPSC-derived satellite cells or derivative myoblasts produced in intraspecies or interspecies chimeras restored dystrophin expression in DMD mice following intramuscular transplantation and contributed to the satellite cell pool. Collectively, this study demonstrates the feasibility of producing therapeutically competent stem cells across divergent animal species, raising the possibility of generating human muscle stem cells in large animals for regenerative medicine purposes.</description><identifier>ISSN: 1558-8238</identifier><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI166998</identifier><identifier>PMID: 38713532</identifier><language>eng</language><publisher>American Society for Clinical Investigation</publisher><subject>Care and treatment ; Degeneration (Pathology) ; Duchenne muscular dystrophy ; Dystrophin ; Genetic aspects ; Health aspects ; Muscles ; Physiological aspects ; Regenerative medicine ; Stem cell research ; Stem cells ; Transplantation ; Utrophin</subject><ispartof>The Journal of clinical investigation, 2024-06, Vol.134 (12)</ispartof><rights>COPYRIGHT 2024 American Society for Clinical Investigation</rights><rights>2024 Lenardič et al. 2024 Lenardič et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c447t-d62fe3ef83c0ab338f7276960a5c6436f9c737bb96f2d1739440f07a82b9a3483</cites><orcidid>0000-0001-8232-4663 ; 0000-0002-5160-4571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178549/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178549/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids></links><search><creatorcontrib>Lenardic, Ajda</creatorcontrib><creatorcontrib>Domenig, Seraina A</creatorcontrib><creatorcontrib>Zvick, Joel</creatorcontrib><creatorcontrib>Bundschuh, Nicola</creatorcontrib><creatorcontrib>Tarnowska- Sengul, Monika</creatorcontrib><creatorcontrib>Furrer, Regula</creatorcontrib><creatorcontrib>Noe, Falko</creatorcontrib><creatorcontrib>Trautmann, Christine L</creatorcontrib><creatorcontrib>Ghosh, Adhideb</creatorcontrib><creatorcontrib>Bacchin, Giada</creatorcontrib><creatorcontrib>Gjonlleshaj, Pjeter</creatorcontrib><creatorcontrib>Qabrati, Xhem</creatorcontrib><creatorcontrib>Masschelein, Evi</creatorcontrib><creatorcontrib>De Bock, Katrien</creatorcontrib><creatorcontrib>Handschin, Christoph</creatorcontrib><creatorcontrib>Bar-Nur, Ori</creatorcontrib><title>Generation of allogeneic and xenogeneic functional muscle stem cells for intramuscular transplantation</title><title>The Journal of clinical investigation</title><description>Satellite cells, the stem cells of skeletal muscle tissue, hold a remarkable regeneration capacity and therapeutic potential in regenerative medicine. However, low satellite cell yield from autologous or donor-derived muscles hinders the adoption of satellite cell transplantation for the treatment of muscle diseases, including Duchenne muscular dystrophy (DMD). To address this limitation, here we investigated whether satellite cells can be derived in allogeneic or xenogeneic animal hosts. First, injection of CRISPR/Cas9-corrected [Dmd.sup.mdx] mouse induced pluripotent stem cells (iPSCs) into mouse blastocysts carrying an ablation system of host satellite cells gave rise to intraspecies chimeras exclusively carrying iPSC-derived satellite cells. Furthermore, injection of genetically corrected DMD iPSCs into rat blastocysts resulted in the formation of interspecies rat-mouse chimeras harboring mouse satellite cells. Notably, iPSC-derived satellite cells or derivative myoblasts produced in intraspecies or interspecies chimeras restored dystrophin expression in DMD mice following intramuscular transplantation and contributed to the satellite cell pool. Collectively, this study demonstrates the feasibility of producing therapeutically competent stem cells across divergent animal species, raising the possibility of generating human muscle stem cells in large animals for regenerative medicine purposes.</description><subject>Care and treatment</subject><subject>Degeneration (Pathology)</subject><subject>Duchenne muscular dystrophy</subject><subject>Dystrophin</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Muscles</subject><subject>Physiological aspects</subject><subject>Regenerative medicine</subject><subject>Stem cell research</subject><subject>Stem cells</subject><subject>Transplantation</subject><subject>Utrophin</subject><issn>1558-8238</issn><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkk1v3CAQhq2qVZOmPfQfIFWq2oMTMGDDqYpWSbpVpEj9uiKMBy8Vhq2xq-TfBydplJX2EHFgmHnmFbxMUbwn-JiQpjr5tlqTupZSvCgOCeeiFBUVL5_EB8WblP5gTBjj7HVxQEVDKKfVYWEvIMCoJxcDihZp72OfM84gHTp0DeH_0c7BLJT2aJiT8YDSBAMy4H1CNo7IhWnUS2n2ekQ5DmnrdZjutN8Wr6z2Cd497EfFr_Ozn6uv5eXVxXp1elkaxpqp7OrKAgUrqMG6pVTYpmpqWWPNTc1obaVpaNO2srZVRxoqGcMWN1pUrdSUCXpUfLnX3c7tAJ2B5VJebUc36PFGRe3UbiW4jerjP0WykYIzmRU-PSiM8e8MaVKDS8srdYA4J0Uxr7hktWAZ_XCP9tqDcsHGLGkWXJ0KTCQnmPFMlXuo_s52HwNYl9M7_PEePq8OBmf2NnzeacjMBNdTr-eU1PrH9-ezV7932Y9P2A1oP21S9PPyn2mvqBljSiPYR78JVsuAqscBpbc3kNRQ</recordid><startdate>20240615</startdate><enddate>20240615</enddate><creator>Lenardic, Ajda</creator><creator>Domenig, Seraina A</creator><creator>Zvick, Joel</creator><creator>Bundschuh, Nicola</creator><creator>Tarnowska- Sengul, Monika</creator><creator>Furrer, Regula</creator><creator>Noe, Falko</creator><creator>Trautmann, Christine L</creator><creator>Ghosh, Adhideb</creator><creator>Bacchin, Giada</creator><creator>Gjonlleshaj, Pjeter</creator><creator>Qabrati, Xhem</creator><creator>Masschelein, Evi</creator><creator>De Bock, Katrien</creator><creator>Handschin, Christoph</creator><creator>Bar-Nur, Ori</creator><general>American Society for Clinical Investigation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8232-4663</orcidid><orcidid>https://orcid.org/0000-0002-5160-4571</orcidid></search><sort><creationdate>20240615</creationdate><title>Generation of allogeneic and xenogeneic functional muscle stem cells for intramuscular transplantation</title><author>Lenardic, Ajda ; Domenig, Seraina A ; Zvick, Joel ; Bundschuh, Nicola ; Tarnowska- Sengul, Monika ; Furrer, Regula ; Noe, Falko ; Trautmann, Christine L ; Ghosh, Adhideb ; Bacchin, Giada ; Gjonlleshaj, Pjeter ; Qabrati, Xhem ; Masschelein, Evi ; De Bock, Katrien ; Handschin, Christoph ; Bar-Nur, Ori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-d62fe3ef83c0ab338f7276960a5c6436f9c737bb96f2d1739440f07a82b9a3483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Care and treatment</topic><topic>Degeneration (Pathology)</topic><topic>Duchenne muscular dystrophy</topic><topic>Dystrophin</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Muscles</topic><topic>Physiological aspects</topic><topic>Regenerative medicine</topic><topic>Stem cell research</topic><topic>Stem cells</topic><topic>Transplantation</topic><topic>Utrophin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenardic, Ajda</creatorcontrib><creatorcontrib>Domenig, Seraina A</creatorcontrib><creatorcontrib>Zvick, Joel</creatorcontrib><creatorcontrib>Bundschuh, Nicola</creatorcontrib><creatorcontrib>Tarnowska- Sengul, Monika</creatorcontrib><creatorcontrib>Furrer, Regula</creatorcontrib><creatorcontrib>Noe, Falko</creatorcontrib><creatorcontrib>Trautmann, Christine L</creatorcontrib><creatorcontrib>Ghosh, Adhideb</creatorcontrib><creatorcontrib>Bacchin, Giada</creatorcontrib><creatorcontrib>Gjonlleshaj, Pjeter</creatorcontrib><creatorcontrib>Qabrati, Xhem</creatorcontrib><creatorcontrib>Masschelein, Evi</creatorcontrib><creatorcontrib>De Bock, Katrien</creatorcontrib><creatorcontrib>Handschin, Christoph</creatorcontrib><creatorcontrib>Bar-Nur, Ori</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenardic, Ajda</au><au>Domenig, Seraina A</au><au>Zvick, Joel</au><au>Bundschuh, Nicola</au><au>Tarnowska- Sengul, Monika</au><au>Furrer, Regula</au><au>Noe, Falko</au><au>Trautmann, Christine L</au><au>Ghosh, Adhideb</au><au>Bacchin, Giada</au><au>Gjonlleshaj, Pjeter</au><au>Qabrati, Xhem</au><au>Masschelein, Evi</au><au>De Bock, Katrien</au><au>Handschin, Christoph</au><au>Bar-Nur, Ori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of allogeneic and xenogeneic functional muscle stem cells for intramuscular transplantation</atitle><jtitle>The Journal of clinical investigation</jtitle><date>2024-06-15</date><risdate>2024</risdate><volume>134</volume><issue>12</issue><issn>1558-8238</issn><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Satellite cells, the stem cells of skeletal muscle tissue, hold a remarkable regeneration capacity and therapeutic potential in regenerative medicine. However, low satellite cell yield from autologous or donor-derived muscles hinders the adoption of satellite cell transplantation for the treatment of muscle diseases, including Duchenne muscular dystrophy (DMD). To address this limitation, here we investigated whether satellite cells can be derived in allogeneic or xenogeneic animal hosts. First, injection of CRISPR/Cas9-corrected [Dmd.sup.mdx] mouse induced pluripotent stem cells (iPSCs) into mouse blastocysts carrying an ablation system of host satellite cells gave rise to intraspecies chimeras exclusively carrying iPSC-derived satellite cells. Furthermore, injection of genetically corrected DMD iPSCs into rat blastocysts resulted in the formation of interspecies rat-mouse chimeras harboring mouse satellite cells. Notably, iPSC-derived satellite cells or derivative myoblasts produced in intraspecies or interspecies chimeras restored dystrophin expression in DMD mice following intramuscular transplantation and contributed to the satellite cell pool. Collectively, this study demonstrates the feasibility of producing therapeutically competent stem cells across divergent animal species, raising the possibility of generating human muscle stem cells in large animals for regenerative medicine purposes.</abstract><pub>American Society for Clinical Investigation</pub><pmid>38713532</pmid><doi>10.1172/JCI166998</doi><orcidid>https://orcid.org/0000-0001-8232-4663</orcidid><orcidid>https://orcid.org/0000-0002-5160-4571</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1558-8238
ispartof The Journal of clinical investigation, 2024-06, Vol.134 (12)
issn 1558-8238
0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11178549
source EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Care and treatment
Degeneration (Pathology)
Duchenne muscular dystrophy
Dystrophin
Genetic aspects
Health aspects
Muscles
Physiological aspects
Regenerative medicine
Stem cell research
Stem cells
Transplantation
Utrophin
title Generation of allogeneic and xenogeneic functional muscle stem cells for intramuscular transplantation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20allogeneic%20and%20xenogeneic%20functional%20muscle%20stem%20cells%20for%20intramuscular%20transplantation&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Lenardic,%20Ajda&rft.date=2024-06-15&rft.volume=134&rft.issue=12&rft.issn=1558-8238&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI166998&rft_dat=%3Cgale_pubme%3EA801951045%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052594684&rft_id=info:pmid/38713532&rft_galeid=A801951045&rfr_iscdi=true