Synthetically enhanced: unveiling synthetic data's potential in medical imaging research
Chest X-rays (CXR) are essential for diagnosing a variety of conditions, but when used on new populations, model generalizability issues limit their efficacy. Generative AI, particularly denoising diffusion probabilistic models (DDPMs), offers a promising approach to generating synthetic images, enh...
Gespeichert in:
Veröffentlicht in: | EBioMedicine 2024-06, Vol.104, p.105174, Article 105174 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 105174 |
container_title | EBioMedicine |
container_volume | 104 |
creator | Khosravi, Bardia Li, Frank Dapamede, Theo Rouzrokh, Pouria Gamble, Cooper U. Trivedi, Hari M. Wyles, Cody C. Sellergren, Andrew B. Purkayastha, Saptarshi Erickson, Bradley J. Gichoya, Judy W. |
description | Chest X-rays (CXR) are essential for diagnosing a variety of conditions, but when used on new populations, model generalizability issues limit their efficacy. Generative AI, particularly denoising diffusion probabilistic models (DDPMs), offers a promising approach to generating synthetic images, enhancing dataset diversity. This study investigates the impact of synthetic data supplementation on the performance and generalizability of medical imaging research.
The study employed DDPMs to create synthetic CXRs conditioned on demographic and pathological characteristics from the CheXpert dataset. These synthetic images were used to supplement training datasets for pathology classifiers, with the aim of improving their performance. The evaluation involved three datasets (CheXpert, MIMIC-CXR, and Emory Chest X-ray) and various experiments, including supplementing real data with synthetic data, training with purely synthetic data, and mixing synthetic data with external datasets. Performance was assessed using the area under the receiver operating curve (AUROC).
Adding synthetic data to real datasets resulted in a notable increase in AUROC values (up to 0.02 in internal and external test sets with 1000% supplementation, p-value |
doi_str_mv | 10.1016/j.ebiom.2024.105174 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11177083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352396424002093</els_id><sourcerecordid>3063464107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-72b70570cb74bfdf7bb6b86792536f138a3c8a87f18898e94a0087d03329340c3</originalsourceid><addsrcrecordid>eNp9kc1LKzEUxYM8UVH_AkFm996m9eZjJpkHIlL8AsGFCu5CJnOnTZlmajIt9L83Y1V04yrh5nfOPeQQckJhTIEWZ_MxVq5bjBkwkSY5lWKHHDCesxEvC_Hn232fHMc4BwCaizRUe2SfK8UoMHpAXh43vp9h76xp202Gfma8xfp_tvJrdK3z0yx-ElltevM3ZsuuR98702bOZwusB23mFmY60AEjmmBnR2S3MW3E44_zkDxfXz1Nbkf3Dzd3k8v7keUC-pFklYRcgq2kqJq6kVVVVKqQJct50VCuDLfKKNlQpUqFpTAAStbAOSuTgeWH5GLru1xVKYtNyYJp9TKkQGGjO-P0zxfvZnrarTWlVEpQPDn8-3AI3esKY68XLlpsW-OxW0XNoeCiEBRkQvkWtaGLMWDztYeCHnrRc_3eix560dtekur0e8QvzWcLCTjfApg-au0w6GgdDj24gLbXded-XfAG3sqgPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063464107</pqid></control><display><type>article</type><title>Synthetically enhanced: unveiling synthetic data's potential in medical imaging research</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Khosravi, Bardia ; Li, Frank ; Dapamede, Theo ; Rouzrokh, Pouria ; Gamble, Cooper U. ; Trivedi, Hari M. ; Wyles, Cody C. ; Sellergren, Andrew B. ; Purkayastha, Saptarshi ; Erickson, Bradley J. ; Gichoya, Judy W.</creator><creatorcontrib>Khosravi, Bardia ; Li, Frank ; Dapamede, Theo ; Rouzrokh, Pouria ; Gamble, Cooper U. ; Trivedi, Hari M. ; Wyles, Cody C. ; Sellergren, Andrew B. ; Purkayastha, Saptarshi ; Erickson, Bradley J. ; Gichoya, Judy W.</creatorcontrib><description>Chest X-rays (CXR) are essential for diagnosing a variety of conditions, but when used on new populations, model generalizability issues limit their efficacy. Generative AI, particularly denoising diffusion probabilistic models (DDPMs), offers a promising approach to generating synthetic images, enhancing dataset diversity. This study investigates the impact of synthetic data supplementation on the performance and generalizability of medical imaging research.
The study employed DDPMs to create synthetic CXRs conditioned on demographic and pathological characteristics from the CheXpert dataset. These synthetic images were used to supplement training datasets for pathology classifiers, with the aim of improving their performance. The evaluation involved three datasets (CheXpert, MIMIC-CXR, and Emory Chest X-ray) and various experiments, including supplementing real data with synthetic data, training with purely synthetic data, and mixing synthetic data with external datasets. Performance was assessed using the area under the receiver operating curve (AUROC).
Adding synthetic data to real datasets resulted in a notable increase in AUROC values (up to 0.02 in internal and external test sets with 1000% supplementation, p-value <0.01 in all instances). When classifiers were trained exclusively on synthetic data, they achieved performance levels comparable to those trained on real data with 200%–300% data supplementation. The combination of real and synthetic data from different sources demonstrated enhanced model generalizability, increasing model AUROC from 0.76 to 0.80 on the internal test set (p-value <0.01).
Synthetic data supplementation significantly improves the performance and generalizability of pathology classifiers in medical imaging.
Dr. Gichoya is a 2022 Robert Wood Johnson Foundation Harold Amos Medical Faculty Development Program and declares support from RSNA Health Disparities grant (#EIHD2204), Lacuna Fund (#67), Gordon and Betty Moore Foundation, NIH (NIBIB) MIDRC grant under contracts 75N92020C00008 and 75N92020C00021, and NHLBI Award Number R01HL167811.</description><identifier>ISSN: 2352-3964</identifier><identifier>EISSN: 2352-3964</identifier><identifier>DOI: 10.1016/j.ebiom.2024.105174</identifier><identifier>PMID: 38821021</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Chest radiographs ; Data supplementation ; Diffusion model ; Generative AI ; Synthetic data</subject><ispartof>EBioMedicine, 2024-06, Vol.104, p.105174, Article 105174</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><rights>2024 The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c340t-72b70570cb74bfdf7bb6b86792536f138a3c8a87f18898e94a0087d03329340c3</cites><orcidid>0000-0002-8024-339X ; 0000-0002-1097-316X ; 0000-0002-8205-3397 ; 0000-0002-6264-2282 ; 0000-0002-8629-7567 ; 0000-0003-3625-534X ; 0009-0009-5139-4875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177083/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177083/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38821021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khosravi, Bardia</creatorcontrib><creatorcontrib>Li, Frank</creatorcontrib><creatorcontrib>Dapamede, Theo</creatorcontrib><creatorcontrib>Rouzrokh, Pouria</creatorcontrib><creatorcontrib>Gamble, Cooper U.</creatorcontrib><creatorcontrib>Trivedi, Hari M.</creatorcontrib><creatorcontrib>Wyles, Cody C.</creatorcontrib><creatorcontrib>Sellergren, Andrew B.</creatorcontrib><creatorcontrib>Purkayastha, Saptarshi</creatorcontrib><creatorcontrib>Erickson, Bradley J.</creatorcontrib><creatorcontrib>Gichoya, Judy W.</creatorcontrib><title>Synthetically enhanced: unveiling synthetic data's potential in medical imaging research</title><title>EBioMedicine</title><addtitle>EBioMedicine</addtitle><description>Chest X-rays (CXR) are essential for diagnosing a variety of conditions, but when used on new populations, model generalizability issues limit their efficacy. Generative AI, particularly denoising diffusion probabilistic models (DDPMs), offers a promising approach to generating synthetic images, enhancing dataset diversity. This study investigates the impact of synthetic data supplementation on the performance and generalizability of medical imaging research.
The study employed DDPMs to create synthetic CXRs conditioned on demographic and pathological characteristics from the CheXpert dataset. These synthetic images were used to supplement training datasets for pathology classifiers, with the aim of improving their performance. The evaluation involved three datasets (CheXpert, MIMIC-CXR, and Emory Chest X-ray) and various experiments, including supplementing real data with synthetic data, training with purely synthetic data, and mixing synthetic data with external datasets. Performance was assessed using the area under the receiver operating curve (AUROC).
Adding synthetic data to real datasets resulted in a notable increase in AUROC values (up to 0.02 in internal and external test sets with 1000% supplementation, p-value <0.01 in all instances). When classifiers were trained exclusively on synthetic data, they achieved performance levels comparable to those trained on real data with 200%–300% data supplementation. The combination of real and synthetic data from different sources demonstrated enhanced model generalizability, increasing model AUROC from 0.76 to 0.80 on the internal test set (p-value <0.01).
Synthetic data supplementation significantly improves the performance and generalizability of pathology classifiers in medical imaging.
Dr. Gichoya is a 2022 Robert Wood Johnson Foundation Harold Amos Medical Faculty Development Program and declares support from RSNA Health Disparities grant (#EIHD2204), Lacuna Fund (#67), Gordon and Betty Moore Foundation, NIH (NIBIB) MIDRC grant under contracts 75N92020C00008 and 75N92020C00021, and NHLBI Award Number R01HL167811.</description><subject>Chest radiographs</subject><subject>Data supplementation</subject><subject>Diffusion model</subject><subject>Generative AI</subject><subject>Synthetic data</subject><issn>2352-3964</issn><issn>2352-3964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1LKzEUxYM8UVH_AkFm996m9eZjJpkHIlL8AsGFCu5CJnOnTZlmajIt9L83Y1V04yrh5nfOPeQQckJhTIEWZ_MxVq5bjBkwkSY5lWKHHDCesxEvC_Hn232fHMc4BwCaizRUe2SfK8UoMHpAXh43vp9h76xp202Gfma8xfp_tvJrdK3z0yx-ElltevM3ZsuuR98702bOZwusB23mFmY60AEjmmBnR2S3MW3E44_zkDxfXz1Nbkf3Dzd3k8v7keUC-pFklYRcgq2kqJq6kVVVVKqQJct50VCuDLfKKNlQpUqFpTAAStbAOSuTgeWH5GLru1xVKYtNyYJp9TKkQGGjO-P0zxfvZnrarTWlVEpQPDn8-3AI3esKY68XLlpsW-OxW0XNoeCiEBRkQvkWtaGLMWDztYeCHnrRc_3eix560dtekur0e8QvzWcLCTjfApg-au0w6GgdDj24gLbXded-XfAG3sqgPg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Khosravi, Bardia</creator><creator>Li, Frank</creator><creator>Dapamede, Theo</creator><creator>Rouzrokh, Pouria</creator><creator>Gamble, Cooper U.</creator><creator>Trivedi, Hari M.</creator><creator>Wyles, Cody C.</creator><creator>Sellergren, Andrew B.</creator><creator>Purkayastha, Saptarshi</creator><creator>Erickson, Bradley J.</creator><creator>Gichoya, Judy W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8024-339X</orcidid><orcidid>https://orcid.org/0000-0002-1097-316X</orcidid><orcidid>https://orcid.org/0000-0002-8205-3397</orcidid><orcidid>https://orcid.org/0000-0002-6264-2282</orcidid><orcidid>https://orcid.org/0000-0002-8629-7567</orcidid><orcidid>https://orcid.org/0000-0003-3625-534X</orcidid><orcidid>https://orcid.org/0009-0009-5139-4875</orcidid></search><sort><creationdate>20240601</creationdate><title>Synthetically enhanced: unveiling synthetic data's potential in medical imaging research</title><author>Khosravi, Bardia ; Li, Frank ; Dapamede, Theo ; Rouzrokh, Pouria ; Gamble, Cooper U. ; Trivedi, Hari M. ; Wyles, Cody C. ; Sellergren, Andrew B. ; Purkayastha, Saptarshi ; Erickson, Bradley J. ; Gichoya, Judy W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-72b70570cb74bfdf7bb6b86792536f138a3c8a87f18898e94a0087d03329340c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chest radiographs</topic><topic>Data supplementation</topic><topic>Diffusion model</topic><topic>Generative AI</topic><topic>Synthetic data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khosravi, Bardia</creatorcontrib><creatorcontrib>Li, Frank</creatorcontrib><creatorcontrib>Dapamede, Theo</creatorcontrib><creatorcontrib>Rouzrokh, Pouria</creatorcontrib><creatorcontrib>Gamble, Cooper U.</creatorcontrib><creatorcontrib>Trivedi, Hari M.</creatorcontrib><creatorcontrib>Wyles, Cody C.</creatorcontrib><creatorcontrib>Sellergren, Andrew B.</creatorcontrib><creatorcontrib>Purkayastha, Saptarshi</creatorcontrib><creatorcontrib>Erickson, Bradley J.</creatorcontrib><creatorcontrib>Gichoya, Judy W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EBioMedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khosravi, Bardia</au><au>Li, Frank</au><au>Dapamede, Theo</au><au>Rouzrokh, Pouria</au><au>Gamble, Cooper U.</au><au>Trivedi, Hari M.</au><au>Wyles, Cody C.</au><au>Sellergren, Andrew B.</au><au>Purkayastha, Saptarshi</au><au>Erickson, Bradley J.</au><au>Gichoya, Judy W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetically enhanced: unveiling synthetic data's potential in medical imaging research</atitle><jtitle>EBioMedicine</jtitle><addtitle>EBioMedicine</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>104</volume><spage>105174</spage><pages>105174-</pages><artnum>105174</artnum><issn>2352-3964</issn><eissn>2352-3964</eissn><abstract>Chest X-rays (CXR) are essential for diagnosing a variety of conditions, but when used on new populations, model generalizability issues limit their efficacy. Generative AI, particularly denoising diffusion probabilistic models (DDPMs), offers a promising approach to generating synthetic images, enhancing dataset diversity. This study investigates the impact of synthetic data supplementation on the performance and generalizability of medical imaging research.
The study employed DDPMs to create synthetic CXRs conditioned on demographic and pathological characteristics from the CheXpert dataset. These synthetic images were used to supplement training datasets for pathology classifiers, with the aim of improving their performance. The evaluation involved three datasets (CheXpert, MIMIC-CXR, and Emory Chest X-ray) and various experiments, including supplementing real data with synthetic data, training with purely synthetic data, and mixing synthetic data with external datasets. Performance was assessed using the area under the receiver operating curve (AUROC).
Adding synthetic data to real datasets resulted in a notable increase in AUROC values (up to 0.02 in internal and external test sets with 1000% supplementation, p-value <0.01 in all instances). When classifiers were trained exclusively on synthetic data, they achieved performance levels comparable to those trained on real data with 200%–300% data supplementation. The combination of real and synthetic data from different sources demonstrated enhanced model generalizability, increasing model AUROC from 0.76 to 0.80 on the internal test set (p-value <0.01).
Synthetic data supplementation significantly improves the performance and generalizability of pathology classifiers in medical imaging.
Dr. Gichoya is a 2022 Robert Wood Johnson Foundation Harold Amos Medical Faculty Development Program and declares support from RSNA Health Disparities grant (#EIHD2204), Lacuna Fund (#67), Gordon and Betty Moore Foundation, NIH (NIBIB) MIDRC grant under contracts 75N92020C00008 and 75N92020C00021, and NHLBI Award Number R01HL167811.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38821021</pmid><doi>10.1016/j.ebiom.2024.105174</doi><orcidid>https://orcid.org/0000-0002-8024-339X</orcidid><orcidid>https://orcid.org/0000-0002-1097-316X</orcidid><orcidid>https://orcid.org/0000-0002-8205-3397</orcidid><orcidid>https://orcid.org/0000-0002-6264-2282</orcidid><orcidid>https://orcid.org/0000-0002-8629-7567</orcidid><orcidid>https://orcid.org/0000-0003-3625-534X</orcidid><orcidid>https://orcid.org/0009-0009-5139-4875</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2352-3964 |
ispartof | EBioMedicine, 2024-06, Vol.104, p.105174, Article 105174 |
issn | 2352-3964 2352-3964 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11177083 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Chest radiographs Data supplementation Diffusion model Generative AI Synthetic data |
title | Synthetically enhanced: unveiling synthetic data's potential in medical imaging research |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetically%20enhanced:%20unveiling%20synthetic%20data's%20potential%20in%20medical%20imaging%20research&rft.jtitle=EBioMedicine&rft.au=Khosravi,%20Bardia&rft.date=2024-06-01&rft.volume=104&rft.spage=105174&rft.pages=105174-&rft.artnum=105174&rft.issn=2352-3964&rft.eissn=2352-3964&rft_id=info:doi/10.1016/j.ebiom.2024.105174&rft_dat=%3Cproquest_pubme%3E3063464107%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3063464107&rft_id=info:pmid/38821021&rft_els_id=S2352396424002093&rfr_iscdi=true |