COMMD10 inhibited DNA damage to promote the progression of gastric cancer

Purpose The copper metabolism MURR1 domain 10 (COMMD10) plays a role in a variety of tumors. Here, we investigated its role in gastric cancer (GC). Methods Online prediction tools, quantitative real-time PCR, western blotting and immunohistochemistry were used to evaluate the expression of COMMD10 i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cancer research and clinical oncology 2024-06, Vol.150 (6), p.305, Article 305
Hauptverfasser: Liu, Xiaohua, Mao, Xiaocheng, Zhu, Chao, liu, Hongfei, Fang, Yangyang, Fu, Tianmei, Fan, Linwei, Liu, Mengwei, Xiong, Ziqing, Tang, Hong, Hu, Piaoping, Le, Aiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 305
container_title Journal of cancer research and clinical oncology
container_volume 150
creator Liu, Xiaohua
Mao, Xiaocheng
Zhu, Chao
liu, Hongfei
Fang, Yangyang
Fu, Tianmei
Fan, Linwei
Liu, Mengwei
Xiong, Ziqing
Tang, Hong
Hu, Piaoping
Le, Aiping
description Purpose The copper metabolism MURR1 domain 10 (COMMD10) plays a role in a variety of tumors. Here, we investigated its role in gastric cancer (GC). Methods Online prediction tools, quantitative real-time PCR, western blotting and immunohistochemistry were used to evaluate the expression of COMMD10 in GC. The effect of COMMD10 knockdown was investigated in the GC cell lines and in in vivo xenograft tumor experiments. Western blotting and immunofluorescence were used to explore the relationships between COMMD10 and DNA damage. Results The expression of COMMD10 was upregulated in GC compared to that in para-cancerous tissue and correlated with a higher clinical TNM stage ( P  = 0.044) and tumor size ( P  = 0.0366). High COMMD10 expression predicted poor prognosis in GC. Knockdown of COMMD10 resulted in the suppression of cell proliferation, migration, and invasion, accompanied by cell cycle arrest and an elevation in apoptosis rate. Moreover, the protein expression of COMMD10 was decreased in cisplatin-induced DNA-damaged GC cells. Suppression of COMMD10 impeded DNA damage repair, intensified DNA damage, and activated ATM–p53 signaling pathway in GC. Conversely, restoration of COMMD10 levels suppressed DNA damage and activation of the ATM-p53 signaling cascade. Additionally, knockdown of COMMD10 significantly restrained the growth of GC xenograft tumors while inhibiting DNA repair, augmenting DNA damage, and activating the ATM–p53 signaling pathway in xenograft tumor tissue. Conclusion COMMD10 is involved in DNA damage repair and maintains genomic stability in GC; knockdown of COMMD10 impedes the development of GC by exacerbating DNA damage, suggesting that COMMD10 may be new target for GC therapy.
doi_str_mv 10.1007/s00432-024-05817-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11176250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067605640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-37d21c69534079558a6905c27b4eb1929bf2a72df1078f6f26afeb36a0829f873</originalsourceid><addsrcrecordid>eNp9kUtPxCAUhYnR-Bj9Ay5MEzduqhco0K6MmfGV-NjomlAKHcy0jNAx0V9v6-j4WLjihPvdc7kchPYxHGMAcRIBMkpSIFkKLMcifVtD23i4wpSy9R96C-3E-ASABRNkE23RPBe4ELCNrsf3t7cTDIlrp650namSyd1ZUqlG1SbpfDIPvvFdL6dm0HUwMTrfJt4mtYpdcDrRqtUm7KINq2bR7H2eI_R4cf4wvkpv7i-vx2c3qaaMdykVFcGaF4xmIArGcsULYJqIMjMlLkhRWqIEqSwGkVtuCVfWlJQryElhc0FH6HTpO1-Ujam0abugZnIeXKPCq_TKyd-V1k1l7V8kxlhwwqB3OPp0CP55YWInGxe1mc1Ua_wiSgo8Hz6qGNDDP-iTX4S232-gBAfGs4EiS0oHH2MwdvUaDHKISi6jkn1U8iMq-dY3HfzcY9XylU0P0CUQ-1Jbm_A9-x_bd9r9ncU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067605640</pqid></control><display><type>article</type><title>COMMD10 inhibited DNA damage to promote the progression of gastric cancer</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>Springer Nature OA Free Journals</source><creator>Liu, Xiaohua ; Mao, Xiaocheng ; Zhu, Chao ; liu, Hongfei ; Fang, Yangyang ; Fu, Tianmei ; Fan, Linwei ; Liu, Mengwei ; Xiong, Ziqing ; Tang, Hong ; Hu, Piaoping ; Le, Aiping</creator><creatorcontrib>Liu, Xiaohua ; Mao, Xiaocheng ; Zhu, Chao ; liu, Hongfei ; Fang, Yangyang ; Fu, Tianmei ; Fan, Linwei ; Liu, Mengwei ; Xiong, Ziqing ; Tang, Hong ; Hu, Piaoping ; Le, Aiping</creatorcontrib><description>Purpose The copper metabolism MURR1 domain 10 (COMMD10) plays a role in a variety of tumors. Here, we investigated its role in gastric cancer (GC). Methods Online prediction tools, quantitative real-time PCR, western blotting and immunohistochemistry were used to evaluate the expression of COMMD10 in GC. The effect of COMMD10 knockdown was investigated in the GC cell lines and in in vivo xenograft tumor experiments. Western blotting and immunofluorescence were used to explore the relationships between COMMD10 and DNA damage. Results The expression of COMMD10 was upregulated in GC compared to that in para-cancerous tissue and correlated with a higher clinical TNM stage ( P  = 0.044) and tumor size ( P  = 0.0366). High COMMD10 expression predicted poor prognosis in GC. Knockdown of COMMD10 resulted in the suppression of cell proliferation, migration, and invasion, accompanied by cell cycle arrest and an elevation in apoptosis rate. Moreover, the protein expression of COMMD10 was decreased in cisplatin-induced DNA-damaged GC cells. Suppression of COMMD10 impeded DNA damage repair, intensified DNA damage, and activated ATM–p53 signaling pathway in GC. Conversely, restoration of COMMD10 levels suppressed DNA damage and activation of the ATM-p53 signaling cascade. Additionally, knockdown of COMMD10 significantly restrained the growth of GC xenograft tumors while inhibiting DNA repair, augmenting DNA damage, and activating the ATM–p53 signaling pathway in xenograft tumor tissue. Conclusion COMMD10 is involved in DNA damage repair and maintains genomic stability in GC; knockdown of COMMD10 impedes the development of GC by exacerbating DNA damage, suggesting that COMMD10 may be new target for GC therapy.</description><identifier>ISSN: 1432-1335</identifier><identifier>ISSN: 0171-5216</identifier><identifier>EISSN: 1432-1335</identifier><identifier>DOI: 10.1007/s00432-024-05817-z</identifier><identifier>PMID: 38871970</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Animals ; Apoptosis ; Cancer Research ; Cell cycle ; Cell Line, Tumor ; Cell migration ; Cell Movement ; Cell Proliferation ; Cisplatin ; Disease Progression ; DNA Damage ; DNA repair ; Female ; Gastric cancer ; Gene Expression Regulation, Neoplastic ; Hematology ; Humans ; Immunofluorescence ; Immunohistochemistry ; Internal Medicine ; Male ; Medicine ; Medicine &amp; Public Health ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Middle Aged ; Oncology ; p53 Protein ; Prognosis ; Signal transduction ; Stomach Neoplasms - genetics ; Stomach Neoplasms - metabolism ; Stomach Neoplasms - pathology ; Tumors ; Western blotting ; Xenograft Model Antitumor Assays ; Xenografts</subject><ispartof>Journal of cancer research and clinical oncology, 2024-06, Vol.150 (6), p.305, Article 305</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-37d21c69534079558a6905c27b4eb1929bf2a72df1078f6f26afeb36a0829f873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00432-024-05817-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s00432-024-05817-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38871970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiaohua</creatorcontrib><creatorcontrib>Mao, Xiaocheng</creatorcontrib><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>liu, Hongfei</creatorcontrib><creatorcontrib>Fang, Yangyang</creatorcontrib><creatorcontrib>Fu, Tianmei</creatorcontrib><creatorcontrib>Fan, Linwei</creatorcontrib><creatorcontrib>Liu, Mengwei</creatorcontrib><creatorcontrib>Xiong, Ziqing</creatorcontrib><creatorcontrib>Tang, Hong</creatorcontrib><creatorcontrib>Hu, Piaoping</creatorcontrib><creatorcontrib>Le, Aiping</creatorcontrib><title>COMMD10 inhibited DNA damage to promote the progression of gastric cancer</title><title>Journal of cancer research and clinical oncology</title><addtitle>J Cancer Res Clin Oncol</addtitle><addtitle>J Cancer Res Clin Oncol</addtitle><description>Purpose The copper metabolism MURR1 domain 10 (COMMD10) plays a role in a variety of tumors. Here, we investigated its role in gastric cancer (GC). Methods Online prediction tools, quantitative real-time PCR, western blotting and immunohistochemistry were used to evaluate the expression of COMMD10 in GC. The effect of COMMD10 knockdown was investigated in the GC cell lines and in in vivo xenograft tumor experiments. Western blotting and immunofluorescence were used to explore the relationships between COMMD10 and DNA damage. Results The expression of COMMD10 was upregulated in GC compared to that in para-cancerous tissue and correlated with a higher clinical TNM stage ( P  = 0.044) and tumor size ( P  = 0.0366). High COMMD10 expression predicted poor prognosis in GC. Knockdown of COMMD10 resulted in the suppression of cell proliferation, migration, and invasion, accompanied by cell cycle arrest and an elevation in apoptosis rate. Moreover, the protein expression of COMMD10 was decreased in cisplatin-induced DNA-damaged GC cells. Suppression of COMMD10 impeded DNA damage repair, intensified DNA damage, and activated ATM–p53 signaling pathway in GC. Conversely, restoration of COMMD10 levels suppressed DNA damage and activation of the ATM-p53 signaling cascade. Additionally, knockdown of COMMD10 significantly restrained the growth of GC xenograft tumors while inhibiting DNA repair, augmenting DNA damage, and activating the ATM–p53 signaling pathway in xenograft tumor tissue. Conclusion COMMD10 is involved in DNA damage repair and maintains genomic stability in GC; knockdown of COMMD10 impedes the development of GC by exacerbating DNA damage, suggesting that COMMD10 may be new target for GC therapy.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Cancer Research</subject><subject>Cell cycle</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell Movement</subject><subject>Cell Proliferation</subject><subject>Cisplatin</subject><subject>Disease Progression</subject><subject>DNA Damage</subject><subject>DNA repair</subject><subject>Female</subject><subject>Gastric cancer</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Hematology</subject><subject>Humans</subject><subject>Immunofluorescence</subject><subject>Immunohistochemistry</subject><subject>Internal Medicine</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Middle Aged</subject><subject>Oncology</subject><subject>p53 Protein</subject><subject>Prognosis</subject><subject>Signal transduction</subject><subject>Stomach Neoplasms - genetics</subject><subject>Stomach Neoplasms - metabolism</subject><subject>Stomach Neoplasms - pathology</subject><subject>Tumors</subject><subject>Western blotting</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Xenografts</subject><issn>1432-1335</issn><issn>0171-5216</issn><issn>1432-1335</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtPxCAUhYnR-Bj9Ay5MEzduqhco0K6MmfGV-NjomlAKHcy0jNAx0V9v6-j4WLjihPvdc7kchPYxHGMAcRIBMkpSIFkKLMcifVtD23i4wpSy9R96C-3E-ASABRNkE23RPBe4ELCNrsf3t7cTDIlrp650namSyd1ZUqlG1SbpfDIPvvFdL6dm0HUwMTrfJt4mtYpdcDrRqtUm7KINq2bR7H2eI_R4cf4wvkpv7i-vx2c3qaaMdykVFcGaF4xmIArGcsULYJqIMjMlLkhRWqIEqSwGkVtuCVfWlJQryElhc0FH6HTpO1-Ujam0abugZnIeXKPCq_TKyd-V1k1l7V8kxlhwwqB3OPp0CP55YWInGxe1mc1Ua_wiSgo8Hz6qGNDDP-iTX4S232-gBAfGs4EiS0oHH2MwdvUaDHKISi6jkn1U8iMq-dY3HfzcY9XylU0P0CUQ-1Jbm_A9-x_bd9r9ncU</recordid><startdate>20240613</startdate><enddate>20240613</enddate><creator>Liu, Xiaohua</creator><creator>Mao, Xiaocheng</creator><creator>Zhu, Chao</creator><creator>liu, Hongfei</creator><creator>Fang, Yangyang</creator><creator>Fu, Tianmei</creator><creator>Fan, Linwei</creator><creator>Liu, Mengwei</creator><creator>Xiong, Ziqing</creator><creator>Tang, Hong</creator><creator>Hu, Piaoping</creator><creator>Le, Aiping</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240613</creationdate><title>COMMD10 inhibited DNA damage to promote the progression of gastric cancer</title><author>Liu, Xiaohua ; Mao, Xiaocheng ; Zhu, Chao ; liu, Hongfei ; Fang, Yangyang ; Fu, Tianmei ; Fan, Linwei ; Liu, Mengwei ; Xiong, Ziqing ; Tang, Hong ; Hu, Piaoping ; Le, Aiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-37d21c69534079558a6905c27b4eb1929bf2a72df1078f6f26afeb36a0829f873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Cancer Research</topic><topic>Cell cycle</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell Movement</topic><topic>Cell Proliferation</topic><topic>Cisplatin</topic><topic>Disease Progression</topic><topic>DNA Damage</topic><topic>DNA repair</topic><topic>Female</topic><topic>Gastric cancer</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Hematology</topic><topic>Humans</topic><topic>Immunofluorescence</topic><topic>Immunohistochemistry</topic><topic>Internal Medicine</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Middle Aged</topic><topic>Oncology</topic><topic>p53 Protein</topic><topic>Prognosis</topic><topic>Signal transduction</topic><topic>Stomach Neoplasms - genetics</topic><topic>Stomach Neoplasms - metabolism</topic><topic>Stomach Neoplasms - pathology</topic><topic>Tumors</topic><topic>Western blotting</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaohua</creatorcontrib><creatorcontrib>Mao, Xiaocheng</creatorcontrib><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>liu, Hongfei</creatorcontrib><creatorcontrib>Fang, Yangyang</creatorcontrib><creatorcontrib>Fu, Tianmei</creatorcontrib><creatorcontrib>Fan, Linwei</creatorcontrib><creatorcontrib>Liu, Mengwei</creatorcontrib><creatorcontrib>Xiong, Ziqing</creatorcontrib><creatorcontrib>Tang, Hong</creatorcontrib><creatorcontrib>Hu, Piaoping</creatorcontrib><creatorcontrib>Le, Aiping</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cancer research and clinical oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaohua</au><au>Mao, Xiaocheng</au><au>Zhu, Chao</au><au>liu, Hongfei</au><au>Fang, Yangyang</au><au>Fu, Tianmei</au><au>Fan, Linwei</au><au>Liu, Mengwei</au><au>Xiong, Ziqing</au><au>Tang, Hong</au><au>Hu, Piaoping</au><au>Le, Aiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COMMD10 inhibited DNA damage to promote the progression of gastric cancer</atitle><jtitle>Journal of cancer research and clinical oncology</jtitle><stitle>J Cancer Res Clin Oncol</stitle><addtitle>J Cancer Res Clin Oncol</addtitle><date>2024-06-13</date><risdate>2024</risdate><volume>150</volume><issue>6</issue><spage>305</spage><pages>305-</pages><artnum>305</artnum><issn>1432-1335</issn><issn>0171-5216</issn><eissn>1432-1335</eissn><abstract>Purpose The copper metabolism MURR1 domain 10 (COMMD10) plays a role in a variety of tumors. Here, we investigated its role in gastric cancer (GC). Methods Online prediction tools, quantitative real-time PCR, western blotting and immunohistochemistry were used to evaluate the expression of COMMD10 in GC. The effect of COMMD10 knockdown was investigated in the GC cell lines and in in vivo xenograft tumor experiments. Western blotting and immunofluorescence were used to explore the relationships between COMMD10 and DNA damage. Results The expression of COMMD10 was upregulated in GC compared to that in para-cancerous tissue and correlated with a higher clinical TNM stage ( P  = 0.044) and tumor size ( P  = 0.0366). High COMMD10 expression predicted poor prognosis in GC. Knockdown of COMMD10 resulted in the suppression of cell proliferation, migration, and invasion, accompanied by cell cycle arrest and an elevation in apoptosis rate. Moreover, the protein expression of COMMD10 was decreased in cisplatin-induced DNA-damaged GC cells. Suppression of COMMD10 impeded DNA damage repair, intensified DNA damage, and activated ATM–p53 signaling pathway in GC. Conversely, restoration of COMMD10 levels suppressed DNA damage and activation of the ATM-p53 signaling cascade. Additionally, knockdown of COMMD10 significantly restrained the growth of GC xenograft tumors while inhibiting DNA repair, augmenting DNA damage, and activating the ATM–p53 signaling pathway in xenograft tumor tissue. Conclusion COMMD10 is involved in DNA damage repair and maintains genomic stability in GC; knockdown of COMMD10 impedes the development of GC by exacerbating DNA damage, suggesting that COMMD10 may be new target for GC therapy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38871970</pmid><doi>10.1007/s00432-024-05817-z</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-1335
ispartof Journal of cancer research and clinical oncology, 2024-06, Vol.150 (6), p.305, Article 305
issn 1432-1335
0171-5216
1432-1335
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11176250
source MEDLINE; DOAJ Directory of Open Access Journals; SpringerLink Journals; Springer Nature OA Free Journals
subjects Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Animals
Apoptosis
Cancer Research
Cell cycle
Cell Line, Tumor
Cell migration
Cell Movement
Cell Proliferation
Cisplatin
Disease Progression
DNA Damage
DNA repair
Female
Gastric cancer
Gene Expression Regulation, Neoplastic
Hematology
Humans
Immunofluorescence
Immunohistochemistry
Internal Medicine
Male
Medicine
Medicine & Public Health
Mice
Mice, Inbred BALB C
Mice, Nude
Middle Aged
Oncology
p53 Protein
Prognosis
Signal transduction
Stomach Neoplasms - genetics
Stomach Neoplasms - metabolism
Stomach Neoplasms - pathology
Tumors
Western blotting
Xenograft Model Antitumor Assays
Xenografts
title COMMD10 inhibited DNA damage to promote the progression of gastric cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A58%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COMMD10%20inhibited%20DNA%20damage%20to%20promote%20the%20progression%20of%20gastric%20cancer&rft.jtitle=Journal%20of%20cancer%20research%20and%20clinical%20oncology&rft.au=Liu,%20Xiaohua&rft.date=2024-06-13&rft.volume=150&rft.issue=6&rft.spage=305&rft.pages=305-&rft.artnum=305&rft.issn=1432-1335&rft.eissn=1432-1335&rft_id=info:doi/10.1007/s00432-024-05817-z&rft_dat=%3Cproquest_pubme%3E3067605640%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067605640&rft_id=info:pmid/38871970&rfr_iscdi=true