COMMD10 inhibited DNA damage to promote the progression of gastric cancer
Purpose The copper metabolism MURR1 domain 10 (COMMD10) plays a role in a variety of tumors. Here, we investigated its role in gastric cancer (GC). Methods Online prediction tools, quantitative real-time PCR, western blotting and immunohistochemistry were used to evaluate the expression of COMMD10 i...
Gespeichert in:
Veröffentlicht in: | Journal of cancer research and clinical oncology 2024-06, Vol.150 (6), p.305, Article 305 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 305 |
container_title | Journal of cancer research and clinical oncology |
container_volume | 150 |
creator | Liu, Xiaohua Mao, Xiaocheng Zhu, Chao liu, Hongfei Fang, Yangyang Fu, Tianmei Fan, Linwei Liu, Mengwei Xiong, Ziqing Tang, Hong Hu, Piaoping Le, Aiping |
description | Purpose
The copper metabolism MURR1 domain 10 (COMMD10) plays a role in a variety of tumors. Here, we investigated its role in gastric cancer (GC).
Methods
Online prediction tools, quantitative real-time PCR, western blotting and immunohistochemistry were used to evaluate the expression of COMMD10 in GC. The effect of COMMD10 knockdown was investigated in the GC cell lines and in in vivo xenograft tumor experiments. Western blotting and immunofluorescence were used to explore the relationships between COMMD10 and DNA damage.
Results
The expression of COMMD10 was upregulated in GC compared to that in para-cancerous tissue and correlated with a higher clinical TNM stage (
P
= 0.044) and tumor size (
P
= 0.0366). High COMMD10 expression predicted poor prognosis in GC. Knockdown of COMMD10 resulted in the suppression of cell proliferation, migration, and invasion, accompanied by cell cycle arrest and an elevation in apoptosis rate. Moreover, the protein expression of COMMD10 was decreased in cisplatin-induced DNA-damaged GC cells. Suppression of COMMD10 impeded DNA damage repair, intensified DNA damage, and activated ATM–p53 signaling pathway in GC. Conversely, restoration of COMMD10 levels suppressed DNA damage and activation of the ATM-p53 signaling cascade. Additionally, knockdown of COMMD10 significantly restrained the growth of GC xenograft tumors while inhibiting DNA repair, augmenting DNA damage, and activating the ATM–p53 signaling pathway in xenograft tumor tissue.
Conclusion
COMMD10 is involved in DNA damage repair and maintains genomic stability in GC; knockdown of COMMD10 impedes the development of GC by exacerbating DNA damage, suggesting that COMMD10 may be new target for GC therapy. |
doi_str_mv | 10.1007/s00432-024-05817-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11176250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067605640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-37d21c69534079558a6905c27b4eb1929bf2a72df1078f6f26afeb36a0829f873</originalsourceid><addsrcrecordid>eNp9kUtPxCAUhYnR-Bj9Ay5MEzduqhco0K6MmfGV-NjomlAKHcy0jNAx0V9v6-j4WLjihPvdc7kchPYxHGMAcRIBMkpSIFkKLMcifVtD23i4wpSy9R96C-3E-ASABRNkE23RPBe4ELCNrsf3t7cTDIlrp650namSyd1ZUqlG1SbpfDIPvvFdL6dm0HUwMTrfJt4mtYpdcDrRqtUm7KINq2bR7H2eI_R4cf4wvkpv7i-vx2c3qaaMdykVFcGaF4xmIArGcsULYJqIMjMlLkhRWqIEqSwGkVtuCVfWlJQryElhc0FH6HTpO1-Ujam0abugZnIeXKPCq_TKyd-V1k1l7V8kxlhwwqB3OPp0CP55YWInGxe1mc1Ua_wiSgo8Hz6qGNDDP-iTX4S232-gBAfGs4EiS0oHH2MwdvUaDHKISi6jkn1U8iMq-dY3HfzcY9XylU0P0CUQ-1Jbm_A9-x_bd9r9ncU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067605640</pqid></control><display><type>article</type><title>COMMD10 inhibited DNA damage to promote the progression of gastric cancer</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>Springer Nature OA Free Journals</source><creator>Liu, Xiaohua ; Mao, Xiaocheng ; Zhu, Chao ; liu, Hongfei ; Fang, Yangyang ; Fu, Tianmei ; Fan, Linwei ; Liu, Mengwei ; Xiong, Ziqing ; Tang, Hong ; Hu, Piaoping ; Le, Aiping</creator><creatorcontrib>Liu, Xiaohua ; Mao, Xiaocheng ; Zhu, Chao ; liu, Hongfei ; Fang, Yangyang ; Fu, Tianmei ; Fan, Linwei ; Liu, Mengwei ; Xiong, Ziqing ; Tang, Hong ; Hu, Piaoping ; Le, Aiping</creatorcontrib><description>Purpose
The copper metabolism MURR1 domain 10 (COMMD10) plays a role in a variety of tumors. Here, we investigated its role in gastric cancer (GC).
Methods
Online prediction tools, quantitative real-time PCR, western blotting and immunohistochemistry were used to evaluate the expression of COMMD10 in GC. The effect of COMMD10 knockdown was investigated in the GC cell lines and in in vivo xenograft tumor experiments. Western blotting and immunofluorescence were used to explore the relationships between COMMD10 and DNA damage.
Results
The expression of COMMD10 was upregulated in GC compared to that in para-cancerous tissue and correlated with a higher clinical TNM stage (
P
= 0.044) and tumor size (
P
= 0.0366). High COMMD10 expression predicted poor prognosis in GC. Knockdown of COMMD10 resulted in the suppression of cell proliferation, migration, and invasion, accompanied by cell cycle arrest and an elevation in apoptosis rate. Moreover, the protein expression of COMMD10 was decreased in cisplatin-induced DNA-damaged GC cells. Suppression of COMMD10 impeded DNA damage repair, intensified DNA damage, and activated ATM–p53 signaling pathway in GC. Conversely, restoration of COMMD10 levels suppressed DNA damage and activation of the ATM-p53 signaling cascade. Additionally, knockdown of COMMD10 significantly restrained the growth of GC xenograft tumors while inhibiting DNA repair, augmenting DNA damage, and activating the ATM–p53 signaling pathway in xenograft tumor tissue.
Conclusion
COMMD10 is involved in DNA damage repair and maintains genomic stability in GC; knockdown of COMMD10 impedes the development of GC by exacerbating DNA damage, suggesting that COMMD10 may be new target for GC therapy.</description><identifier>ISSN: 1432-1335</identifier><identifier>ISSN: 0171-5216</identifier><identifier>EISSN: 1432-1335</identifier><identifier>DOI: 10.1007/s00432-024-05817-z</identifier><identifier>PMID: 38871970</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Animals ; Apoptosis ; Cancer Research ; Cell cycle ; Cell Line, Tumor ; Cell migration ; Cell Movement ; Cell Proliferation ; Cisplatin ; Disease Progression ; DNA Damage ; DNA repair ; Female ; Gastric cancer ; Gene Expression Regulation, Neoplastic ; Hematology ; Humans ; Immunofluorescence ; Immunohistochemistry ; Internal Medicine ; Male ; Medicine ; Medicine & Public Health ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Middle Aged ; Oncology ; p53 Protein ; Prognosis ; Signal transduction ; Stomach Neoplasms - genetics ; Stomach Neoplasms - metabolism ; Stomach Neoplasms - pathology ; Tumors ; Western blotting ; Xenograft Model Antitumor Assays ; Xenografts</subject><ispartof>Journal of cancer research and clinical oncology, 2024-06, Vol.150 (6), p.305, Article 305</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-37d21c69534079558a6905c27b4eb1929bf2a72df1078f6f26afeb36a0829f873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00432-024-05817-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s00432-024-05817-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38871970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiaohua</creatorcontrib><creatorcontrib>Mao, Xiaocheng</creatorcontrib><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>liu, Hongfei</creatorcontrib><creatorcontrib>Fang, Yangyang</creatorcontrib><creatorcontrib>Fu, Tianmei</creatorcontrib><creatorcontrib>Fan, Linwei</creatorcontrib><creatorcontrib>Liu, Mengwei</creatorcontrib><creatorcontrib>Xiong, Ziqing</creatorcontrib><creatorcontrib>Tang, Hong</creatorcontrib><creatorcontrib>Hu, Piaoping</creatorcontrib><creatorcontrib>Le, Aiping</creatorcontrib><title>COMMD10 inhibited DNA damage to promote the progression of gastric cancer</title><title>Journal of cancer research and clinical oncology</title><addtitle>J Cancer Res Clin Oncol</addtitle><addtitle>J Cancer Res Clin Oncol</addtitle><description>Purpose
The copper metabolism MURR1 domain 10 (COMMD10) plays a role in a variety of tumors. Here, we investigated its role in gastric cancer (GC).
Methods
Online prediction tools, quantitative real-time PCR, western blotting and immunohistochemistry were used to evaluate the expression of COMMD10 in GC. The effect of COMMD10 knockdown was investigated in the GC cell lines and in in vivo xenograft tumor experiments. Western blotting and immunofluorescence were used to explore the relationships between COMMD10 and DNA damage.
Results
The expression of COMMD10 was upregulated in GC compared to that in para-cancerous tissue and correlated with a higher clinical TNM stage (
P
= 0.044) and tumor size (
P
= 0.0366). High COMMD10 expression predicted poor prognosis in GC. Knockdown of COMMD10 resulted in the suppression of cell proliferation, migration, and invasion, accompanied by cell cycle arrest and an elevation in apoptosis rate. Moreover, the protein expression of COMMD10 was decreased in cisplatin-induced DNA-damaged GC cells. Suppression of COMMD10 impeded DNA damage repair, intensified DNA damage, and activated ATM–p53 signaling pathway in GC. Conversely, restoration of COMMD10 levels suppressed DNA damage and activation of the ATM-p53 signaling cascade. Additionally, knockdown of COMMD10 significantly restrained the growth of GC xenograft tumors while inhibiting DNA repair, augmenting DNA damage, and activating the ATM–p53 signaling pathway in xenograft tumor tissue.
Conclusion
COMMD10 is involved in DNA damage repair and maintains genomic stability in GC; knockdown of COMMD10 impedes the development of GC by exacerbating DNA damage, suggesting that COMMD10 may be new target for GC therapy.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Cancer Research</subject><subject>Cell cycle</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell Movement</subject><subject>Cell Proliferation</subject><subject>Cisplatin</subject><subject>Disease Progression</subject><subject>DNA Damage</subject><subject>DNA repair</subject><subject>Female</subject><subject>Gastric cancer</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Hematology</subject><subject>Humans</subject><subject>Immunofluorescence</subject><subject>Immunohistochemistry</subject><subject>Internal Medicine</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Middle Aged</subject><subject>Oncology</subject><subject>p53 Protein</subject><subject>Prognosis</subject><subject>Signal transduction</subject><subject>Stomach Neoplasms - genetics</subject><subject>Stomach Neoplasms - metabolism</subject><subject>Stomach Neoplasms - pathology</subject><subject>Tumors</subject><subject>Western blotting</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Xenografts</subject><issn>1432-1335</issn><issn>0171-5216</issn><issn>1432-1335</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtPxCAUhYnR-Bj9Ay5MEzduqhco0K6MmfGV-NjomlAKHcy0jNAx0V9v6-j4WLjihPvdc7kchPYxHGMAcRIBMkpSIFkKLMcifVtD23i4wpSy9R96C-3E-ASABRNkE23RPBe4ELCNrsf3t7cTDIlrp650namSyd1ZUqlG1SbpfDIPvvFdL6dm0HUwMTrfJt4mtYpdcDrRqtUm7KINq2bR7H2eI_R4cf4wvkpv7i-vx2c3qaaMdykVFcGaF4xmIArGcsULYJqIMjMlLkhRWqIEqSwGkVtuCVfWlJQryElhc0FH6HTpO1-Ujam0abugZnIeXKPCq_TKyd-V1k1l7V8kxlhwwqB3OPp0CP55YWInGxe1mc1Ua_wiSgo8Hz6qGNDDP-iTX4S232-gBAfGs4EiS0oHH2MwdvUaDHKISi6jkn1U8iMq-dY3HfzcY9XylU0P0CUQ-1Jbm_A9-x_bd9r9ncU</recordid><startdate>20240613</startdate><enddate>20240613</enddate><creator>Liu, Xiaohua</creator><creator>Mao, Xiaocheng</creator><creator>Zhu, Chao</creator><creator>liu, Hongfei</creator><creator>Fang, Yangyang</creator><creator>Fu, Tianmei</creator><creator>Fan, Linwei</creator><creator>Liu, Mengwei</creator><creator>Xiong, Ziqing</creator><creator>Tang, Hong</creator><creator>Hu, Piaoping</creator><creator>Le, Aiping</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240613</creationdate><title>COMMD10 inhibited DNA damage to promote the progression of gastric cancer</title><author>Liu, Xiaohua ; Mao, Xiaocheng ; Zhu, Chao ; liu, Hongfei ; Fang, Yangyang ; Fu, Tianmei ; Fan, Linwei ; Liu, Mengwei ; Xiong, Ziqing ; Tang, Hong ; Hu, Piaoping ; Le, Aiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-37d21c69534079558a6905c27b4eb1929bf2a72df1078f6f26afeb36a0829f873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Cancer Research</topic><topic>Cell cycle</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell Movement</topic><topic>Cell Proliferation</topic><topic>Cisplatin</topic><topic>Disease Progression</topic><topic>DNA Damage</topic><topic>DNA repair</topic><topic>Female</topic><topic>Gastric cancer</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Hematology</topic><topic>Humans</topic><topic>Immunofluorescence</topic><topic>Immunohistochemistry</topic><topic>Internal Medicine</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Middle Aged</topic><topic>Oncology</topic><topic>p53 Protein</topic><topic>Prognosis</topic><topic>Signal transduction</topic><topic>Stomach Neoplasms - genetics</topic><topic>Stomach Neoplasms - metabolism</topic><topic>Stomach Neoplasms - pathology</topic><topic>Tumors</topic><topic>Western blotting</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaohua</creatorcontrib><creatorcontrib>Mao, Xiaocheng</creatorcontrib><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>liu, Hongfei</creatorcontrib><creatorcontrib>Fang, Yangyang</creatorcontrib><creatorcontrib>Fu, Tianmei</creatorcontrib><creatorcontrib>Fan, Linwei</creatorcontrib><creatorcontrib>Liu, Mengwei</creatorcontrib><creatorcontrib>Xiong, Ziqing</creatorcontrib><creatorcontrib>Tang, Hong</creatorcontrib><creatorcontrib>Hu, Piaoping</creatorcontrib><creatorcontrib>Le, Aiping</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cancer research and clinical oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaohua</au><au>Mao, Xiaocheng</au><au>Zhu, Chao</au><au>liu, Hongfei</au><au>Fang, Yangyang</au><au>Fu, Tianmei</au><au>Fan, Linwei</au><au>Liu, Mengwei</au><au>Xiong, Ziqing</au><au>Tang, Hong</au><au>Hu, Piaoping</au><au>Le, Aiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COMMD10 inhibited DNA damage to promote the progression of gastric cancer</atitle><jtitle>Journal of cancer research and clinical oncology</jtitle><stitle>J Cancer Res Clin Oncol</stitle><addtitle>J Cancer Res Clin Oncol</addtitle><date>2024-06-13</date><risdate>2024</risdate><volume>150</volume><issue>6</issue><spage>305</spage><pages>305-</pages><artnum>305</artnum><issn>1432-1335</issn><issn>0171-5216</issn><eissn>1432-1335</eissn><abstract>Purpose
The copper metabolism MURR1 domain 10 (COMMD10) plays a role in a variety of tumors. Here, we investigated its role in gastric cancer (GC).
Methods
Online prediction tools, quantitative real-time PCR, western blotting and immunohistochemistry were used to evaluate the expression of COMMD10 in GC. The effect of COMMD10 knockdown was investigated in the GC cell lines and in in vivo xenograft tumor experiments. Western blotting and immunofluorescence were used to explore the relationships between COMMD10 and DNA damage.
Results
The expression of COMMD10 was upregulated in GC compared to that in para-cancerous tissue and correlated with a higher clinical TNM stage (
P
= 0.044) and tumor size (
P
= 0.0366). High COMMD10 expression predicted poor prognosis in GC. Knockdown of COMMD10 resulted in the suppression of cell proliferation, migration, and invasion, accompanied by cell cycle arrest and an elevation in apoptosis rate. Moreover, the protein expression of COMMD10 was decreased in cisplatin-induced DNA-damaged GC cells. Suppression of COMMD10 impeded DNA damage repair, intensified DNA damage, and activated ATM–p53 signaling pathway in GC. Conversely, restoration of COMMD10 levels suppressed DNA damage and activation of the ATM-p53 signaling cascade. Additionally, knockdown of COMMD10 significantly restrained the growth of GC xenograft tumors while inhibiting DNA repair, augmenting DNA damage, and activating the ATM–p53 signaling pathway in xenograft tumor tissue.
Conclusion
COMMD10 is involved in DNA damage repair and maintains genomic stability in GC; knockdown of COMMD10 impedes the development of GC by exacerbating DNA damage, suggesting that COMMD10 may be new target for GC therapy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38871970</pmid><doi>10.1007/s00432-024-05817-z</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-1335 |
ispartof | Journal of cancer research and clinical oncology, 2024-06, Vol.150 (6), p.305, Article 305 |
issn | 1432-1335 0171-5216 1432-1335 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11176250 |
source | MEDLINE; DOAJ Directory of Open Access Journals; SpringerLink Journals; Springer Nature OA Free Journals |
subjects | Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Animals Apoptosis Cancer Research Cell cycle Cell Line, Tumor Cell migration Cell Movement Cell Proliferation Cisplatin Disease Progression DNA Damage DNA repair Female Gastric cancer Gene Expression Regulation, Neoplastic Hematology Humans Immunofluorescence Immunohistochemistry Internal Medicine Male Medicine Medicine & Public Health Mice Mice, Inbred BALB C Mice, Nude Middle Aged Oncology p53 Protein Prognosis Signal transduction Stomach Neoplasms - genetics Stomach Neoplasms - metabolism Stomach Neoplasms - pathology Tumors Western blotting Xenograft Model Antitumor Assays Xenografts |
title | COMMD10 inhibited DNA damage to promote the progression of gastric cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A58%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COMMD10%20inhibited%20DNA%20damage%20to%20promote%20the%20progression%20of%20gastric%20cancer&rft.jtitle=Journal%20of%20cancer%20research%20and%20clinical%20oncology&rft.au=Liu,%20Xiaohua&rft.date=2024-06-13&rft.volume=150&rft.issue=6&rft.spage=305&rft.pages=305-&rft.artnum=305&rft.issn=1432-1335&rft.eissn=1432-1335&rft_id=info:doi/10.1007/s00432-024-05817-z&rft_dat=%3Cproquest_pubme%3E3067605640%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067605640&rft_id=info:pmid/38871970&rfr_iscdi=true |