Crystal Structure Complexity and Approximate Limits of Possible Crystal Structures Based on Symmetry-Normalized Volumes

Rules that control the arrangement of chemical species within crystalline arrays of different symmetry and structural complexity are of fundamental importance in geoscience, material science, physics, and chemistry. Here, the volume of crystal phases is normalized by their ionic volume and an algebr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-05, Vol.17 (11), p.2618
Hauptverfasser: Tschauner, Oliver, Bermanec, Marko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 2618
container_title Materials
container_volume 17
creator Tschauner, Oliver
Bermanec, Marko
description Rules that control the arrangement of chemical species within crystalline arrays of different symmetry and structural complexity are of fundamental importance in geoscience, material science, physics, and chemistry. Here, the volume of crystal phases is normalized by their ionic volume and an algebraic index that is based on their space-group and crystal site symmetries. In correlation with the number of chemical formula units Z, the normalized volumes exhibit upper and lower limits of possible structures. A bottleneck of narrowing limits occurs for Z around 80 to 100, but the field of allowed crystalline configurations widens above 100 due to a change in the slope of the lower limit. For small Z, the highest count of structures is closer to the upper limit, but at large Z, most materials assume structures close to the lower limit. In particular, for large Z, the normalized volume provides rather narrow constraints for the prediction of novel crystalline phases. In addition, an index of higher and lower complexity of crystalline phases is derived from the normalized volume and tested against key criteria.
doi_str_mv 10.3390/ma17112618
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11173925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797906863</galeid><sourcerecordid>A797906863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-43c5869678ee7611879b92d82c1b6400a51f850c515797a2a40763f903114ecd3</originalsourceid><addsrcrecordid>eNpdkl1vFCEUhonR2Kb2xh9gSLwxJlM5wwwfV2bd-JVs1KTqLWEZptLAMAKjHX-9mK21FkIgh-c98MJB6DGQM0oleRE0cICWgbiHjkFK1oDsuvu31kfoNOdLUhulIFr5EB1RIWQd7TH6uU1rLtrj85IWU5Zk8TaG2dsrV1aspwFv5jnFKxd0sXjngisZxxF_ijm7va_0XX3Gr3S2A44TPl9DsCWtzYeYgvbuVw1_jX4JNj9CD0btsz29nk_QlzevP2_fNbuPb99vN7vGUNqXpqOmF0wyLqzlDEBwuZftIFoDe9YRonsYRU9MDz2XXLe6I5zRURIK0Fkz0BP08pB3XvbBDsZOJWmv5lQNpVVF7dT_O5P7pi7iDwUAnMq2rxmeXWdI8ftic1HBZWO915ONS1aUcCIIsF5W9Okd9DIuaar-KsV4T4DzrlJnB-pCe6vcNMZ6sKl9sMGZONnR1fim-pGECUar4PlBYFJ99WTHm-sDUX-KQP0rggo_uW34Bv375fQ339mtFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067501774</pqid></control><display><type>article</type><title>Crystal Structure Complexity and Approximate Limits of Possible Crystal Structures Based on Symmetry-Normalized Volumes</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tschauner, Oliver ; Bermanec, Marko</creator><creatorcontrib>Tschauner, Oliver ; Bermanec, Marko</creatorcontrib><description>Rules that control the arrangement of chemical species within crystalline arrays of different symmetry and structural complexity are of fundamental importance in geoscience, material science, physics, and chemistry. Here, the volume of crystal phases is normalized by their ionic volume and an algebraic index that is based on their space-group and crystal site symmetries. In correlation with the number of chemical formula units Z, the normalized volumes exhibit upper and lower limits of possible structures. A bottleneck of narrowing limits occurs for Z around 80 to 100, but the field of allowed crystalline configurations widens above 100 due to a change in the slope of the lower limit. For small Z, the highest count of structures is closer to the upper limit, but at large Z, most materials assume structures close to the lower limit. In particular, for large Z, the normalized volume provides rather narrow constraints for the prediction of novel crystalline phases. In addition, an index of higher and lower complexity of crystalline phases is derived from the normalized volume and tested against key criteria.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17112618</identifier><identifier>PMID: 38893882</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Asymmetry ; Complexity ; Crystal structure ; Crystals ; Minerals ; Network topologies ; Phases ; Solid solutions ; Structure ; Symmetry</subject><ispartof>Materials, 2024-05, Vol.17 (11), p.2618</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-43c5869678ee7611879b92d82c1b6400a51f850c515797a2a40763f903114ecd3</cites><orcidid>0000-0003-3364-8906 ; 0000-0001-6165-3417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173925/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173925/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38893882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tschauner, Oliver</creatorcontrib><creatorcontrib>Bermanec, Marko</creatorcontrib><title>Crystal Structure Complexity and Approximate Limits of Possible Crystal Structures Based on Symmetry-Normalized Volumes</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Rules that control the arrangement of chemical species within crystalline arrays of different symmetry and structural complexity are of fundamental importance in geoscience, material science, physics, and chemistry. Here, the volume of crystal phases is normalized by their ionic volume and an algebraic index that is based on their space-group and crystal site symmetries. In correlation with the number of chemical formula units Z, the normalized volumes exhibit upper and lower limits of possible structures. A bottleneck of narrowing limits occurs for Z around 80 to 100, but the field of allowed crystalline configurations widens above 100 due to a change in the slope of the lower limit. For small Z, the highest count of structures is closer to the upper limit, but at large Z, most materials assume structures close to the lower limit. In particular, for large Z, the normalized volume provides rather narrow constraints for the prediction of novel crystalline phases. In addition, an index of higher and lower complexity of crystalline phases is derived from the normalized volume and tested against key criteria.</description><subject>Asymmetry</subject><subject>Complexity</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Minerals</subject><subject>Network topologies</subject><subject>Phases</subject><subject>Solid solutions</subject><subject>Structure</subject><subject>Symmetry</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkl1vFCEUhonR2Kb2xh9gSLwxJlM5wwwfV2bd-JVs1KTqLWEZptLAMAKjHX-9mK21FkIgh-c98MJB6DGQM0oleRE0cICWgbiHjkFK1oDsuvu31kfoNOdLUhulIFr5EB1RIWQd7TH6uU1rLtrj85IWU5Zk8TaG2dsrV1aspwFv5jnFKxd0sXjngisZxxF_ijm7va_0XX3Gr3S2A44TPl9DsCWtzYeYgvbuVw1_jX4JNj9CD0btsz29nk_QlzevP2_fNbuPb99vN7vGUNqXpqOmF0wyLqzlDEBwuZftIFoDe9YRonsYRU9MDz2XXLe6I5zRURIK0Fkz0BP08pB3XvbBDsZOJWmv5lQNpVVF7dT_O5P7pi7iDwUAnMq2rxmeXWdI8ftic1HBZWO915ONS1aUcCIIsF5W9Okd9DIuaar-KsV4T4DzrlJnB-pCe6vcNMZ6sKl9sMGZONnR1fim-pGECUar4PlBYFJ99WTHm-sDUX-KQP0rggo_uW34Bv375fQ339mtFQ</recordid><startdate>20240529</startdate><enddate>20240529</enddate><creator>Tschauner, Oliver</creator><creator>Bermanec, Marko</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3364-8906</orcidid><orcidid>https://orcid.org/0000-0001-6165-3417</orcidid></search><sort><creationdate>20240529</creationdate><title>Crystal Structure Complexity and Approximate Limits of Possible Crystal Structures Based on Symmetry-Normalized Volumes</title><author>Tschauner, Oliver ; Bermanec, Marko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-43c5869678ee7611879b92d82c1b6400a51f850c515797a2a40763f903114ecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymmetry</topic><topic>Complexity</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Minerals</topic><topic>Network topologies</topic><topic>Phases</topic><topic>Solid solutions</topic><topic>Structure</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tschauner, Oliver</creatorcontrib><creatorcontrib>Bermanec, Marko</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tschauner, Oliver</au><au>Bermanec, Marko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Structure Complexity and Approximate Limits of Possible Crystal Structures Based on Symmetry-Normalized Volumes</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-05-29</date><risdate>2024</risdate><volume>17</volume><issue>11</issue><spage>2618</spage><pages>2618-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Rules that control the arrangement of chemical species within crystalline arrays of different symmetry and structural complexity are of fundamental importance in geoscience, material science, physics, and chemistry. Here, the volume of crystal phases is normalized by their ionic volume and an algebraic index that is based on their space-group and crystal site symmetries. In correlation with the number of chemical formula units Z, the normalized volumes exhibit upper and lower limits of possible structures. A bottleneck of narrowing limits occurs for Z around 80 to 100, but the field of allowed crystalline configurations widens above 100 due to a change in the slope of the lower limit. For small Z, the highest count of structures is closer to the upper limit, but at large Z, most materials assume structures close to the lower limit. In particular, for large Z, the normalized volume provides rather narrow constraints for the prediction of novel crystalline phases. In addition, an index of higher and lower complexity of crystalline phases is derived from the normalized volume and tested against key criteria.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38893882</pmid><doi>10.3390/ma17112618</doi><orcidid>https://orcid.org/0000-0003-3364-8906</orcidid><orcidid>https://orcid.org/0000-0001-6165-3417</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-05, Vol.17 (11), p.2618
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11173925
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Asymmetry
Complexity
Crystal structure
Crystals
Minerals
Network topologies
Phases
Solid solutions
Structure
Symmetry
title Crystal Structure Complexity and Approximate Limits of Possible Crystal Structures Based on Symmetry-Normalized Volumes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Structure%20Complexity%20and%20Approximate%20Limits%20of%20Possible%20Crystal%20Structures%20Based%20on%20Symmetry-Normalized%20Volumes&rft.jtitle=Materials&rft.au=Tschauner,%20Oliver&rft.date=2024-05-29&rft.volume=17&rft.issue=11&rft.spage=2618&rft.pages=2618-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17112618&rft_dat=%3Cgale_pubme%3EA797906863%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067501774&rft_id=info:pmid/38893882&rft_galeid=A797906863&rfr_iscdi=true