Crystal Structure Complexity and Approximate Limits of Possible Crystal Structures Based on Symmetry-Normalized Volumes
Rules that control the arrangement of chemical species within crystalline arrays of different symmetry and structural complexity are of fundamental importance in geoscience, material science, physics, and chemistry. Here, the volume of crystal phases is normalized by their ionic volume and an algebr...
Gespeichert in:
Veröffentlicht in: | Materials 2024-05, Vol.17 (11), p.2618 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 2618 |
container_title | Materials |
container_volume | 17 |
creator | Tschauner, Oliver Bermanec, Marko |
description | Rules that control the arrangement of chemical species within crystalline arrays of different symmetry and structural complexity are of fundamental importance in geoscience, material science, physics, and chemistry. Here, the volume of crystal phases is normalized by their ionic volume and an algebraic index that is based on their space-group and crystal site symmetries. In correlation with the number of chemical formula units Z, the normalized volumes exhibit upper and lower limits of possible structures. A bottleneck of narrowing limits occurs for Z around 80 to 100, but the field of allowed crystalline configurations widens above 100 due to a change in the slope of the lower limit. For small Z, the highest count of structures is closer to the upper limit, but at large Z, most materials assume structures close to the lower limit. In particular, for large Z, the normalized volume provides rather narrow constraints for the prediction of novel crystalline phases. In addition, an index of higher and lower complexity of crystalline phases is derived from the normalized volume and tested against key criteria. |
doi_str_mv | 10.3390/ma17112618 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11173925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797906863</galeid><sourcerecordid>A797906863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-43c5869678ee7611879b92d82c1b6400a51f850c515797a2a40763f903114ecd3</originalsourceid><addsrcrecordid>eNpdkl1vFCEUhonR2Kb2xh9gSLwxJlM5wwwfV2bd-JVs1KTqLWEZptLAMAKjHX-9mK21FkIgh-c98MJB6DGQM0oleRE0cICWgbiHjkFK1oDsuvu31kfoNOdLUhulIFr5EB1RIWQd7TH6uU1rLtrj85IWU5Zk8TaG2dsrV1aspwFv5jnFKxd0sXjngisZxxF_ijm7va_0XX3Gr3S2A44TPl9DsCWtzYeYgvbuVw1_jX4JNj9CD0btsz29nk_QlzevP2_fNbuPb99vN7vGUNqXpqOmF0wyLqzlDEBwuZftIFoDe9YRonsYRU9MDz2XXLe6I5zRURIK0Fkz0BP08pB3XvbBDsZOJWmv5lQNpVVF7dT_O5P7pi7iDwUAnMq2rxmeXWdI8ftic1HBZWO915ONS1aUcCIIsF5W9Okd9DIuaar-KsV4T4DzrlJnB-pCe6vcNMZ6sKl9sMGZONnR1fim-pGECUar4PlBYFJ99WTHm-sDUX-KQP0rggo_uW34Bv375fQ339mtFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067501774</pqid></control><display><type>article</type><title>Crystal Structure Complexity and Approximate Limits of Possible Crystal Structures Based on Symmetry-Normalized Volumes</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tschauner, Oliver ; Bermanec, Marko</creator><creatorcontrib>Tschauner, Oliver ; Bermanec, Marko</creatorcontrib><description>Rules that control the arrangement of chemical species within crystalline arrays of different symmetry and structural complexity are of fundamental importance in geoscience, material science, physics, and chemistry. Here, the volume of crystal phases is normalized by their ionic volume and an algebraic index that is based on their space-group and crystal site symmetries. In correlation with the number of chemical formula units Z, the normalized volumes exhibit upper and lower limits of possible structures. A bottleneck of narrowing limits occurs for Z around 80 to 100, but the field of allowed crystalline configurations widens above 100 due to a change in the slope of the lower limit. For small Z, the highest count of structures is closer to the upper limit, but at large Z, most materials assume structures close to the lower limit. In particular, for large Z, the normalized volume provides rather narrow constraints for the prediction of novel crystalline phases. In addition, an index of higher and lower complexity of crystalline phases is derived from the normalized volume and tested against key criteria.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17112618</identifier><identifier>PMID: 38893882</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Asymmetry ; Complexity ; Crystal structure ; Crystals ; Minerals ; Network topologies ; Phases ; Solid solutions ; Structure ; Symmetry</subject><ispartof>Materials, 2024-05, Vol.17 (11), p.2618</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-43c5869678ee7611879b92d82c1b6400a51f850c515797a2a40763f903114ecd3</cites><orcidid>0000-0003-3364-8906 ; 0000-0001-6165-3417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173925/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173925/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38893882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tschauner, Oliver</creatorcontrib><creatorcontrib>Bermanec, Marko</creatorcontrib><title>Crystal Structure Complexity and Approximate Limits of Possible Crystal Structures Based on Symmetry-Normalized Volumes</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Rules that control the arrangement of chemical species within crystalline arrays of different symmetry and structural complexity are of fundamental importance in geoscience, material science, physics, and chemistry. Here, the volume of crystal phases is normalized by their ionic volume and an algebraic index that is based on their space-group and crystal site symmetries. In correlation with the number of chemical formula units Z, the normalized volumes exhibit upper and lower limits of possible structures. A bottleneck of narrowing limits occurs for Z around 80 to 100, but the field of allowed crystalline configurations widens above 100 due to a change in the slope of the lower limit. For small Z, the highest count of structures is closer to the upper limit, but at large Z, most materials assume structures close to the lower limit. In particular, for large Z, the normalized volume provides rather narrow constraints for the prediction of novel crystalline phases. In addition, an index of higher and lower complexity of crystalline phases is derived from the normalized volume and tested against key criteria.</description><subject>Asymmetry</subject><subject>Complexity</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Minerals</subject><subject>Network topologies</subject><subject>Phases</subject><subject>Solid solutions</subject><subject>Structure</subject><subject>Symmetry</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkl1vFCEUhonR2Kb2xh9gSLwxJlM5wwwfV2bd-JVs1KTqLWEZptLAMAKjHX-9mK21FkIgh-c98MJB6DGQM0oleRE0cICWgbiHjkFK1oDsuvu31kfoNOdLUhulIFr5EB1RIWQd7TH6uU1rLtrj85IWU5Zk8TaG2dsrV1aspwFv5jnFKxd0sXjngisZxxF_ijm7va_0XX3Gr3S2A44TPl9DsCWtzYeYgvbuVw1_jX4JNj9CD0btsz29nk_QlzevP2_fNbuPb99vN7vGUNqXpqOmF0wyLqzlDEBwuZftIFoDe9YRonsYRU9MDz2XXLe6I5zRURIK0Fkz0BP08pB3XvbBDsZOJWmv5lQNpVVF7dT_O5P7pi7iDwUAnMq2rxmeXWdI8ftic1HBZWO915ONS1aUcCIIsF5W9Okd9DIuaar-KsV4T4DzrlJnB-pCe6vcNMZ6sKl9sMGZONnR1fim-pGECUar4PlBYFJ99WTHm-sDUX-KQP0rggo_uW34Bv375fQ339mtFQ</recordid><startdate>20240529</startdate><enddate>20240529</enddate><creator>Tschauner, Oliver</creator><creator>Bermanec, Marko</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3364-8906</orcidid><orcidid>https://orcid.org/0000-0001-6165-3417</orcidid></search><sort><creationdate>20240529</creationdate><title>Crystal Structure Complexity and Approximate Limits of Possible Crystal Structures Based on Symmetry-Normalized Volumes</title><author>Tschauner, Oliver ; Bermanec, Marko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-43c5869678ee7611879b92d82c1b6400a51f850c515797a2a40763f903114ecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymmetry</topic><topic>Complexity</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Minerals</topic><topic>Network topologies</topic><topic>Phases</topic><topic>Solid solutions</topic><topic>Structure</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tschauner, Oliver</creatorcontrib><creatorcontrib>Bermanec, Marko</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tschauner, Oliver</au><au>Bermanec, Marko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Structure Complexity and Approximate Limits of Possible Crystal Structures Based on Symmetry-Normalized Volumes</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-05-29</date><risdate>2024</risdate><volume>17</volume><issue>11</issue><spage>2618</spage><pages>2618-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Rules that control the arrangement of chemical species within crystalline arrays of different symmetry and structural complexity are of fundamental importance in geoscience, material science, physics, and chemistry. Here, the volume of crystal phases is normalized by their ionic volume and an algebraic index that is based on their space-group and crystal site symmetries. In correlation with the number of chemical formula units Z, the normalized volumes exhibit upper and lower limits of possible structures. A bottleneck of narrowing limits occurs for Z around 80 to 100, but the field of allowed crystalline configurations widens above 100 due to a change in the slope of the lower limit. For small Z, the highest count of structures is closer to the upper limit, but at large Z, most materials assume structures close to the lower limit. In particular, for large Z, the normalized volume provides rather narrow constraints for the prediction of novel crystalline phases. In addition, an index of higher and lower complexity of crystalline phases is derived from the normalized volume and tested against key criteria.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38893882</pmid><doi>10.3390/ma17112618</doi><orcidid>https://orcid.org/0000-0003-3364-8906</orcidid><orcidid>https://orcid.org/0000-0001-6165-3417</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-05, Vol.17 (11), p.2618 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11173925 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Asymmetry Complexity Crystal structure Crystals Minerals Network topologies Phases Solid solutions Structure Symmetry |
title | Crystal Structure Complexity and Approximate Limits of Possible Crystal Structures Based on Symmetry-Normalized Volumes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Structure%20Complexity%20and%20Approximate%20Limits%20of%20Possible%20Crystal%20Structures%20Based%20on%20Symmetry-Normalized%20Volumes&rft.jtitle=Materials&rft.au=Tschauner,%20Oliver&rft.date=2024-05-29&rft.volume=17&rft.issue=11&rft.spage=2618&rft.pages=2618-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17112618&rft_dat=%3Cgale_pubme%3EA797906863%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067501774&rft_id=info:pmid/38893882&rft_galeid=A797906863&rfr_iscdi=true |