Effect of Secondary Phase on Passivation Layer of Super Duplex Stainless Steel UNS S 32750: Advanced Safety of Li-Ion Battery Case Materials
Aluminum, traditionally the primary material for battery casings, is increasingly being replaced by UNS S 30400 for enhanced safety. UNS S 30400 offers superior strength and corrosion resistance compared to aluminum; however, it undergoes a phase transformation owing to stress during processing and...
Gespeichert in:
Veröffentlicht in: | Materials 2024-06, Vol.17 (11), p.2760 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 2760 |
container_title | Materials |
container_volume | 17 |
creator | Shin, Byung-Hyun Kim, Seongjun Park, Jinyong Ok, Jung-Woo Kim, Dohyung Yoon, Jang-Hee |
description | Aluminum, traditionally the primary material for battery casings, is increasingly being replaced by UNS S 30400 for enhanced safety. UNS S 30400 offers superior strength and corrosion resistance compared to aluminum; however, it undergoes a phase transformation owing to stress during processing and a lower high-temperature strength. Duplex stainless steel UNS S 32750, consisting of both austenite and ferrite phases, exhibits excellent strength and corrosion resistance. However, it also precipitates secondary phases at high temperatures, which are known to form through the segregation of Cr and Mo. Various studies have investigated the corrosion resistance of UNS S 32750; however, discrepancies exist regarding the formation and thickness of the passivation layer. This study analyzed the oxygen layer on the surface of UNS S 32750 after secondary-phase precipitation. The microstructure, volume fraction, chemical composition, and depth of O after the precipitation of the secondary phases in UNS S 32750 was examined using FE-SEM, EDS, EPMA and XRD, and the surface chemical composition and passivation layer thickness were analyzed using electron probe microanalysis and glow-discharge spectroscopy. This study demonstrated the segregation of alloy elements and a reduction in the passivation-layer thickness after precipitation from 25 μm to 20 μm. The findings of the analysis aid in elucidating the impact of secondary-phase precipitation on the passivation layer. |
doi_str_mv | 10.3390/ma17112760 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11173509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797907066</galeid><sourcerecordid>A797907066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-632dc41fe20c2d57f9ea8222b100c2cfa0060110ab2bea528527d5fdc818f9ac3</originalsourceid><addsrcrecordid>eNpdks9u1DAQxiMEolXphQdAlrggpBT_SeKYC1qWApUWqBR6tmadcesqG2_jZMW-Qx-6s2wpBfvgT_ZvvvHYk2UvBT9RyvB3KxBaCKkr_iQ7FMZUuTBF8fSRPsiOU7rmNJQStTTPswNV16bgsjjMbk-9Rzey6FmDLvYtDFt2fgUJWezZOaQUNjAG0gvY4vCbm9YkPk3rDn-xZoTQd5gSKcSOXXxvWMOU1CV_z2btBnqHLWvA47jdBS9CfkZmH2EckTLNd4m-AekAXXqRPfO04PH9epRdfD79Of-aL358OZvPFrlTqhzzSsnWFcKj5E62pfYGoZZSLgWnDeeB84oLwWEplwilrEup29K3rha1N-DUUfZh77uelitsHfbjAJ1dD2FF5dsIwf570ocrexk3VgihVckNOby5dxjizYRptKuQHHYd9BinZBXXvOaKaEJf_4dex2noqT6iKnqnkuuKqJM9dQkd2tD7SIkdzRZXgf4FfaD9mTbakHW1C3i7D3BDTGlA_3B9we2uM-zfziD41eOCH9A_faDuAPwNshY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067505076</pqid></control><display><type>article</type><title>Effect of Secondary Phase on Passivation Layer of Super Duplex Stainless Steel UNS S 32750: Advanced Safety of Li-Ion Battery Case Materials</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Shin, Byung-Hyun ; Kim, Seongjun ; Park, Jinyong ; Ok, Jung-Woo ; Kim, Dohyung ; Yoon, Jang-Hee</creator><creatorcontrib>Shin, Byung-Hyun ; Kim, Seongjun ; Park, Jinyong ; Ok, Jung-Woo ; Kim, Dohyung ; Yoon, Jang-Hee</creatorcontrib><description>Aluminum, traditionally the primary material for battery casings, is increasingly being replaced by UNS S 30400 for enhanced safety. UNS S 30400 offers superior strength and corrosion resistance compared to aluminum; however, it undergoes a phase transformation owing to stress during processing and a lower high-temperature strength. Duplex stainless steel UNS S 32750, consisting of both austenite and ferrite phases, exhibits excellent strength and corrosion resistance. However, it also precipitates secondary phases at high temperatures, which are known to form through the segregation of Cr and Mo. Various studies have investigated the corrosion resistance of UNS S 32750; however, discrepancies exist regarding the formation and thickness of the passivation layer. This study analyzed the oxygen layer on the surface of UNS S 32750 after secondary-phase precipitation. The microstructure, volume fraction, chemical composition, and depth of O after the precipitation of the secondary phases in UNS S 32750 was examined using FE-SEM, EDS, EPMA and XRD, and the surface chemical composition and passivation layer thickness were analyzed using electron probe microanalysis and glow-discharge spectroscopy. This study demonstrated the segregation of alloy elements and a reduction in the passivation-layer thickness after precipitation from 25 μm to 20 μm. The findings of the analysis aid in elucidating the impact of secondary-phase precipitation on the passivation layer.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17112760</identifier><identifier>PMID: 38894024</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloying elements ; Alloys ; Aluminum ; Batteries ; Chemical composition ; Chemical precipitation ; Corrosion and anti-corrosives ; Corrosion resistance ; Duplex stainless steels ; Electron probe microanalysis ; Ferrite ; Glow discharges ; High temperature ; Iron compounds ; Lithium-ion batteries ; Microstructure ; Morphology ; Passivity ; Phase transitions ; Phases ; Precipitates ; Product safety ; Scanning electron microscopy ; Stainless steel ; Steel, Stainless ; Temperature ; Thickness</subject><ispartof>Materials, 2024-06, Vol.17 (11), p.2760</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-632dc41fe20c2d57f9ea8222b100c2cfa0060110ab2bea528527d5fdc818f9ac3</cites><orcidid>0009-0004-5832-7468 ; 0000-0002-9662-1156 ; 0000-0002-8494-9373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173509/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173509/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38894024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Byung-Hyun</creatorcontrib><creatorcontrib>Kim, Seongjun</creatorcontrib><creatorcontrib>Park, Jinyong</creatorcontrib><creatorcontrib>Ok, Jung-Woo</creatorcontrib><creatorcontrib>Kim, Dohyung</creatorcontrib><creatorcontrib>Yoon, Jang-Hee</creatorcontrib><title>Effect of Secondary Phase on Passivation Layer of Super Duplex Stainless Steel UNS S 32750: Advanced Safety of Li-Ion Battery Case Materials</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Aluminum, traditionally the primary material for battery casings, is increasingly being replaced by UNS S 30400 for enhanced safety. UNS S 30400 offers superior strength and corrosion resistance compared to aluminum; however, it undergoes a phase transformation owing to stress during processing and a lower high-temperature strength. Duplex stainless steel UNS S 32750, consisting of both austenite and ferrite phases, exhibits excellent strength and corrosion resistance. However, it also precipitates secondary phases at high temperatures, which are known to form through the segregation of Cr and Mo. Various studies have investigated the corrosion resistance of UNS S 32750; however, discrepancies exist regarding the formation and thickness of the passivation layer. This study analyzed the oxygen layer on the surface of UNS S 32750 after secondary-phase precipitation. The microstructure, volume fraction, chemical composition, and depth of O after the precipitation of the secondary phases in UNS S 32750 was examined using FE-SEM, EDS, EPMA and XRD, and the surface chemical composition and passivation layer thickness were analyzed using electron probe microanalysis and glow-discharge spectroscopy. This study demonstrated the segregation of alloy elements and a reduction in the passivation-layer thickness after precipitation from 25 μm to 20 μm. The findings of the analysis aid in elucidating the impact of secondary-phase precipitation on the passivation layer.</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Batteries</subject><subject>Chemical composition</subject><subject>Chemical precipitation</subject><subject>Corrosion and anti-corrosives</subject><subject>Corrosion resistance</subject><subject>Duplex stainless steels</subject><subject>Electron probe microanalysis</subject><subject>Ferrite</subject><subject>Glow discharges</subject><subject>High temperature</subject><subject>Iron compounds</subject><subject>Lithium-ion batteries</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Passivity</subject><subject>Phase transitions</subject><subject>Phases</subject><subject>Precipitates</subject><subject>Product safety</subject><subject>Scanning electron microscopy</subject><subject>Stainless steel</subject><subject>Steel, Stainless</subject><subject>Temperature</subject><subject>Thickness</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdks9u1DAQxiMEolXphQdAlrggpBT_SeKYC1qWApUWqBR6tmadcesqG2_jZMW-Qx-6s2wpBfvgT_ZvvvHYk2UvBT9RyvB3KxBaCKkr_iQ7FMZUuTBF8fSRPsiOU7rmNJQStTTPswNV16bgsjjMbk-9Rzey6FmDLvYtDFt2fgUJWezZOaQUNjAG0gvY4vCbm9YkPk3rDn-xZoTQd5gSKcSOXXxvWMOU1CV_z2btBnqHLWvA47jdBS9CfkZmH2EckTLNd4m-AekAXXqRPfO04PH9epRdfD79Of-aL358OZvPFrlTqhzzSsnWFcKj5E62pfYGoZZSLgWnDeeB84oLwWEplwilrEup29K3rha1N-DUUfZh77uelitsHfbjAJ1dD2FF5dsIwf570ocrexk3VgihVckNOby5dxjizYRptKuQHHYd9BinZBXXvOaKaEJf_4dex2noqT6iKnqnkuuKqJM9dQkd2tD7SIkdzRZXgf4FfaD9mTbakHW1C3i7D3BDTGlA_3B9we2uM-zfziD41eOCH9A_faDuAPwNshY</recordid><startdate>20240605</startdate><enddate>20240605</enddate><creator>Shin, Byung-Hyun</creator><creator>Kim, Seongjun</creator><creator>Park, Jinyong</creator><creator>Ok, Jung-Woo</creator><creator>Kim, Dohyung</creator><creator>Yoon, Jang-Hee</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0004-5832-7468</orcidid><orcidid>https://orcid.org/0000-0002-9662-1156</orcidid><orcidid>https://orcid.org/0000-0002-8494-9373</orcidid></search><sort><creationdate>20240605</creationdate><title>Effect of Secondary Phase on Passivation Layer of Super Duplex Stainless Steel UNS S 32750: Advanced Safety of Li-Ion Battery Case Materials</title><author>Shin, Byung-Hyun ; Kim, Seongjun ; Park, Jinyong ; Ok, Jung-Woo ; Kim, Dohyung ; Yoon, Jang-Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-632dc41fe20c2d57f9ea8222b100c2cfa0060110ab2bea528527d5fdc818f9ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Batteries</topic><topic>Chemical composition</topic><topic>Chemical precipitation</topic><topic>Corrosion and anti-corrosives</topic><topic>Corrosion resistance</topic><topic>Duplex stainless steels</topic><topic>Electron probe microanalysis</topic><topic>Ferrite</topic><topic>Glow discharges</topic><topic>High temperature</topic><topic>Iron compounds</topic><topic>Lithium-ion batteries</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Passivity</topic><topic>Phase transitions</topic><topic>Phases</topic><topic>Precipitates</topic><topic>Product safety</topic><topic>Scanning electron microscopy</topic><topic>Stainless steel</topic><topic>Steel, Stainless</topic><topic>Temperature</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Byung-Hyun</creatorcontrib><creatorcontrib>Kim, Seongjun</creatorcontrib><creatorcontrib>Park, Jinyong</creatorcontrib><creatorcontrib>Ok, Jung-Woo</creatorcontrib><creatorcontrib>Kim, Dohyung</creatorcontrib><creatorcontrib>Yoon, Jang-Hee</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Byung-Hyun</au><au>Kim, Seongjun</au><au>Park, Jinyong</au><au>Ok, Jung-Woo</au><au>Kim, Dohyung</au><au>Yoon, Jang-Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Secondary Phase on Passivation Layer of Super Duplex Stainless Steel UNS S 32750: Advanced Safety of Li-Ion Battery Case Materials</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-06-05</date><risdate>2024</risdate><volume>17</volume><issue>11</issue><spage>2760</spage><pages>2760-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Aluminum, traditionally the primary material for battery casings, is increasingly being replaced by UNS S 30400 for enhanced safety. UNS S 30400 offers superior strength and corrosion resistance compared to aluminum; however, it undergoes a phase transformation owing to stress during processing and a lower high-temperature strength. Duplex stainless steel UNS S 32750, consisting of both austenite and ferrite phases, exhibits excellent strength and corrosion resistance. However, it also precipitates secondary phases at high temperatures, which are known to form through the segregation of Cr and Mo. Various studies have investigated the corrosion resistance of UNS S 32750; however, discrepancies exist regarding the formation and thickness of the passivation layer. This study analyzed the oxygen layer on the surface of UNS S 32750 after secondary-phase precipitation. The microstructure, volume fraction, chemical composition, and depth of O after the precipitation of the secondary phases in UNS S 32750 was examined using FE-SEM, EDS, EPMA and XRD, and the surface chemical composition and passivation layer thickness were analyzed using electron probe microanalysis and glow-discharge spectroscopy. This study demonstrated the segregation of alloy elements and a reduction in the passivation-layer thickness after precipitation from 25 μm to 20 μm. The findings of the analysis aid in elucidating the impact of secondary-phase precipitation on the passivation layer.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38894024</pmid><doi>10.3390/ma17112760</doi><orcidid>https://orcid.org/0009-0004-5832-7468</orcidid><orcidid>https://orcid.org/0000-0002-9662-1156</orcidid><orcidid>https://orcid.org/0000-0002-8494-9373</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-06, Vol.17 (11), p.2760 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11173509 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Alloying elements Alloys Aluminum Batteries Chemical composition Chemical precipitation Corrosion and anti-corrosives Corrosion resistance Duplex stainless steels Electron probe microanalysis Ferrite Glow discharges High temperature Iron compounds Lithium-ion batteries Microstructure Morphology Passivity Phase transitions Phases Precipitates Product safety Scanning electron microscopy Stainless steel Steel, Stainless Temperature Thickness |
title | Effect of Secondary Phase on Passivation Layer of Super Duplex Stainless Steel UNS S 32750: Advanced Safety of Li-Ion Battery Case Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Secondary%20Phase%20on%20Passivation%20Layer%20of%20Super%20Duplex%20Stainless%20Steel%20UNS%20S%2032750:%20Advanced%20Safety%20of%20Li-Ion%20Battery%20Case%20Materials&rft.jtitle=Materials&rft.au=Shin,%20Byung-Hyun&rft.date=2024-06-05&rft.volume=17&rft.issue=11&rft.spage=2760&rft.pages=2760-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17112760&rft_dat=%3Cgale_pubme%3EA797907066%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067505076&rft_id=info:pmid/38894024&rft_galeid=A797907066&rfr_iscdi=true |