Effect of Secondary Phase on Passivation Layer of Super Duplex Stainless Steel UNS S 32750: Advanced Safety of Li-Ion Battery Case Materials

Aluminum, traditionally the primary material for battery casings, is increasingly being replaced by UNS S 30400 for enhanced safety. UNS S 30400 offers superior strength and corrosion resistance compared to aluminum; however, it undergoes a phase transformation owing to stress during processing and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-06, Vol.17 (11), p.2760
Hauptverfasser: Shin, Byung-Hyun, Kim, Seongjun, Park, Jinyong, Ok, Jung-Woo, Kim, Dohyung, Yoon, Jang-Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 2760
container_title Materials
container_volume 17
creator Shin, Byung-Hyun
Kim, Seongjun
Park, Jinyong
Ok, Jung-Woo
Kim, Dohyung
Yoon, Jang-Hee
description Aluminum, traditionally the primary material for battery casings, is increasingly being replaced by UNS S 30400 for enhanced safety. UNS S 30400 offers superior strength and corrosion resistance compared to aluminum; however, it undergoes a phase transformation owing to stress during processing and a lower high-temperature strength. Duplex stainless steel UNS S 32750, consisting of both austenite and ferrite phases, exhibits excellent strength and corrosion resistance. However, it also precipitates secondary phases at high temperatures, which are known to form through the segregation of Cr and Mo. Various studies have investigated the corrosion resistance of UNS S 32750; however, discrepancies exist regarding the formation and thickness of the passivation layer. This study analyzed the oxygen layer on the surface of UNS S 32750 after secondary-phase precipitation. The microstructure, volume fraction, chemical composition, and depth of O after the precipitation of the secondary phases in UNS S 32750 was examined using FE-SEM, EDS, EPMA and XRD, and the surface chemical composition and passivation layer thickness were analyzed using electron probe microanalysis and glow-discharge spectroscopy. This study demonstrated the segregation of alloy elements and a reduction in the passivation-layer thickness after precipitation from 25 μm to 20 μm. The findings of the analysis aid in elucidating the impact of secondary-phase precipitation on the passivation layer.
doi_str_mv 10.3390/ma17112760
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11173509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797907066</galeid><sourcerecordid>A797907066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-632dc41fe20c2d57f9ea8222b100c2cfa0060110ab2bea528527d5fdc818f9ac3</originalsourceid><addsrcrecordid>eNpdks9u1DAQxiMEolXphQdAlrggpBT_SeKYC1qWApUWqBR6tmadcesqG2_jZMW-Qx-6s2wpBfvgT_ZvvvHYk2UvBT9RyvB3KxBaCKkr_iQ7FMZUuTBF8fSRPsiOU7rmNJQStTTPswNV16bgsjjMbk-9Rzey6FmDLvYtDFt2fgUJWezZOaQUNjAG0gvY4vCbm9YkPk3rDn-xZoTQd5gSKcSOXXxvWMOU1CV_z2btBnqHLWvA47jdBS9CfkZmH2EckTLNd4m-AekAXXqRPfO04PH9epRdfD79Of-aL358OZvPFrlTqhzzSsnWFcKj5E62pfYGoZZSLgWnDeeB84oLwWEplwilrEup29K3rha1N-DUUfZh77uelitsHfbjAJ1dD2FF5dsIwf570ocrexk3VgihVckNOby5dxjizYRptKuQHHYd9BinZBXXvOaKaEJf_4dex2noqT6iKnqnkuuKqJM9dQkd2tD7SIkdzRZXgf4FfaD9mTbakHW1C3i7D3BDTGlA_3B9we2uM-zfziD41eOCH9A_faDuAPwNshY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067505076</pqid></control><display><type>article</type><title>Effect of Secondary Phase on Passivation Layer of Super Duplex Stainless Steel UNS S 32750: Advanced Safety of Li-Ion Battery Case Materials</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Shin, Byung-Hyun ; Kim, Seongjun ; Park, Jinyong ; Ok, Jung-Woo ; Kim, Dohyung ; Yoon, Jang-Hee</creator><creatorcontrib>Shin, Byung-Hyun ; Kim, Seongjun ; Park, Jinyong ; Ok, Jung-Woo ; Kim, Dohyung ; Yoon, Jang-Hee</creatorcontrib><description>Aluminum, traditionally the primary material for battery casings, is increasingly being replaced by UNS S 30400 for enhanced safety. UNS S 30400 offers superior strength and corrosion resistance compared to aluminum; however, it undergoes a phase transformation owing to stress during processing and a lower high-temperature strength. Duplex stainless steel UNS S 32750, consisting of both austenite and ferrite phases, exhibits excellent strength and corrosion resistance. However, it also precipitates secondary phases at high temperatures, which are known to form through the segregation of Cr and Mo. Various studies have investigated the corrosion resistance of UNS S 32750; however, discrepancies exist regarding the formation and thickness of the passivation layer. This study analyzed the oxygen layer on the surface of UNS S 32750 after secondary-phase precipitation. The microstructure, volume fraction, chemical composition, and depth of O after the precipitation of the secondary phases in UNS S 32750 was examined using FE-SEM, EDS, EPMA and XRD, and the surface chemical composition and passivation layer thickness were analyzed using electron probe microanalysis and glow-discharge spectroscopy. This study demonstrated the segregation of alloy elements and a reduction in the passivation-layer thickness after precipitation from 25 μm to 20 μm. The findings of the analysis aid in elucidating the impact of secondary-phase precipitation on the passivation layer.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17112760</identifier><identifier>PMID: 38894024</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloying elements ; Alloys ; Aluminum ; Batteries ; Chemical composition ; Chemical precipitation ; Corrosion and anti-corrosives ; Corrosion resistance ; Duplex stainless steels ; Electron probe microanalysis ; Ferrite ; Glow discharges ; High temperature ; Iron compounds ; Lithium-ion batteries ; Microstructure ; Morphology ; Passivity ; Phase transitions ; Phases ; Precipitates ; Product safety ; Scanning electron microscopy ; Stainless steel ; Steel, Stainless ; Temperature ; Thickness</subject><ispartof>Materials, 2024-06, Vol.17 (11), p.2760</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-632dc41fe20c2d57f9ea8222b100c2cfa0060110ab2bea528527d5fdc818f9ac3</cites><orcidid>0009-0004-5832-7468 ; 0000-0002-9662-1156 ; 0000-0002-8494-9373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173509/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173509/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38894024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Byung-Hyun</creatorcontrib><creatorcontrib>Kim, Seongjun</creatorcontrib><creatorcontrib>Park, Jinyong</creatorcontrib><creatorcontrib>Ok, Jung-Woo</creatorcontrib><creatorcontrib>Kim, Dohyung</creatorcontrib><creatorcontrib>Yoon, Jang-Hee</creatorcontrib><title>Effect of Secondary Phase on Passivation Layer of Super Duplex Stainless Steel UNS S 32750: Advanced Safety of Li-Ion Battery Case Materials</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Aluminum, traditionally the primary material for battery casings, is increasingly being replaced by UNS S 30400 for enhanced safety. UNS S 30400 offers superior strength and corrosion resistance compared to aluminum; however, it undergoes a phase transformation owing to stress during processing and a lower high-temperature strength. Duplex stainless steel UNS S 32750, consisting of both austenite and ferrite phases, exhibits excellent strength and corrosion resistance. However, it also precipitates secondary phases at high temperatures, which are known to form through the segregation of Cr and Mo. Various studies have investigated the corrosion resistance of UNS S 32750; however, discrepancies exist regarding the formation and thickness of the passivation layer. This study analyzed the oxygen layer on the surface of UNS S 32750 after secondary-phase precipitation. The microstructure, volume fraction, chemical composition, and depth of O after the precipitation of the secondary phases in UNS S 32750 was examined using FE-SEM, EDS, EPMA and XRD, and the surface chemical composition and passivation layer thickness were analyzed using electron probe microanalysis and glow-discharge spectroscopy. This study demonstrated the segregation of alloy elements and a reduction in the passivation-layer thickness after precipitation from 25 μm to 20 μm. The findings of the analysis aid in elucidating the impact of secondary-phase precipitation on the passivation layer.</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Batteries</subject><subject>Chemical composition</subject><subject>Chemical precipitation</subject><subject>Corrosion and anti-corrosives</subject><subject>Corrosion resistance</subject><subject>Duplex stainless steels</subject><subject>Electron probe microanalysis</subject><subject>Ferrite</subject><subject>Glow discharges</subject><subject>High temperature</subject><subject>Iron compounds</subject><subject>Lithium-ion batteries</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Passivity</subject><subject>Phase transitions</subject><subject>Phases</subject><subject>Precipitates</subject><subject>Product safety</subject><subject>Scanning electron microscopy</subject><subject>Stainless steel</subject><subject>Steel, Stainless</subject><subject>Temperature</subject><subject>Thickness</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdks9u1DAQxiMEolXphQdAlrggpBT_SeKYC1qWApUWqBR6tmadcesqG2_jZMW-Qx-6s2wpBfvgT_ZvvvHYk2UvBT9RyvB3KxBaCKkr_iQ7FMZUuTBF8fSRPsiOU7rmNJQStTTPswNV16bgsjjMbk-9Rzey6FmDLvYtDFt2fgUJWezZOaQUNjAG0gvY4vCbm9YkPk3rDn-xZoTQd5gSKcSOXXxvWMOU1CV_z2btBnqHLWvA47jdBS9CfkZmH2EckTLNd4m-AekAXXqRPfO04PH9epRdfD79Of-aL358OZvPFrlTqhzzSsnWFcKj5E62pfYGoZZSLgWnDeeB84oLwWEplwilrEup29K3rha1N-DUUfZh77uelitsHfbjAJ1dD2FF5dsIwf570ocrexk3VgihVckNOby5dxjizYRptKuQHHYd9BinZBXXvOaKaEJf_4dex2noqT6iKnqnkuuKqJM9dQkd2tD7SIkdzRZXgf4FfaD9mTbakHW1C3i7D3BDTGlA_3B9we2uM-zfziD41eOCH9A_faDuAPwNshY</recordid><startdate>20240605</startdate><enddate>20240605</enddate><creator>Shin, Byung-Hyun</creator><creator>Kim, Seongjun</creator><creator>Park, Jinyong</creator><creator>Ok, Jung-Woo</creator><creator>Kim, Dohyung</creator><creator>Yoon, Jang-Hee</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0004-5832-7468</orcidid><orcidid>https://orcid.org/0000-0002-9662-1156</orcidid><orcidid>https://orcid.org/0000-0002-8494-9373</orcidid></search><sort><creationdate>20240605</creationdate><title>Effect of Secondary Phase on Passivation Layer of Super Duplex Stainless Steel UNS S 32750: Advanced Safety of Li-Ion Battery Case Materials</title><author>Shin, Byung-Hyun ; Kim, Seongjun ; Park, Jinyong ; Ok, Jung-Woo ; Kim, Dohyung ; Yoon, Jang-Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-632dc41fe20c2d57f9ea8222b100c2cfa0060110ab2bea528527d5fdc818f9ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Batteries</topic><topic>Chemical composition</topic><topic>Chemical precipitation</topic><topic>Corrosion and anti-corrosives</topic><topic>Corrosion resistance</topic><topic>Duplex stainless steels</topic><topic>Electron probe microanalysis</topic><topic>Ferrite</topic><topic>Glow discharges</topic><topic>High temperature</topic><topic>Iron compounds</topic><topic>Lithium-ion batteries</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Passivity</topic><topic>Phase transitions</topic><topic>Phases</topic><topic>Precipitates</topic><topic>Product safety</topic><topic>Scanning electron microscopy</topic><topic>Stainless steel</topic><topic>Steel, Stainless</topic><topic>Temperature</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Byung-Hyun</creatorcontrib><creatorcontrib>Kim, Seongjun</creatorcontrib><creatorcontrib>Park, Jinyong</creatorcontrib><creatorcontrib>Ok, Jung-Woo</creatorcontrib><creatorcontrib>Kim, Dohyung</creatorcontrib><creatorcontrib>Yoon, Jang-Hee</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Byung-Hyun</au><au>Kim, Seongjun</au><au>Park, Jinyong</au><au>Ok, Jung-Woo</au><au>Kim, Dohyung</au><au>Yoon, Jang-Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Secondary Phase on Passivation Layer of Super Duplex Stainless Steel UNS S 32750: Advanced Safety of Li-Ion Battery Case Materials</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-06-05</date><risdate>2024</risdate><volume>17</volume><issue>11</issue><spage>2760</spage><pages>2760-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Aluminum, traditionally the primary material for battery casings, is increasingly being replaced by UNS S 30400 for enhanced safety. UNS S 30400 offers superior strength and corrosion resistance compared to aluminum; however, it undergoes a phase transformation owing to stress during processing and a lower high-temperature strength. Duplex stainless steel UNS S 32750, consisting of both austenite and ferrite phases, exhibits excellent strength and corrosion resistance. However, it also precipitates secondary phases at high temperatures, which are known to form through the segregation of Cr and Mo. Various studies have investigated the corrosion resistance of UNS S 32750; however, discrepancies exist regarding the formation and thickness of the passivation layer. This study analyzed the oxygen layer on the surface of UNS S 32750 after secondary-phase precipitation. The microstructure, volume fraction, chemical composition, and depth of O after the precipitation of the secondary phases in UNS S 32750 was examined using FE-SEM, EDS, EPMA and XRD, and the surface chemical composition and passivation layer thickness were analyzed using electron probe microanalysis and glow-discharge spectroscopy. This study demonstrated the segregation of alloy elements and a reduction in the passivation-layer thickness after precipitation from 25 μm to 20 μm. The findings of the analysis aid in elucidating the impact of secondary-phase precipitation on the passivation layer.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38894024</pmid><doi>10.3390/ma17112760</doi><orcidid>https://orcid.org/0009-0004-5832-7468</orcidid><orcidid>https://orcid.org/0000-0002-9662-1156</orcidid><orcidid>https://orcid.org/0000-0002-8494-9373</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-06, Vol.17 (11), p.2760
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11173509
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Alloying elements
Alloys
Aluminum
Batteries
Chemical composition
Chemical precipitation
Corrosion and anti-corrosives
Corrosion resistance
Duplex stainless steels
Electron probe microanalysis
Ferrite
Glow discharges
High temperature
Iron compounds
Lithium-ion batteries
Microstructure
Morphology
Passivity
Phase transitions
Phases
Precipitates
Product safety
Scanning electron microscopy
Stainless steel
Steel, Stainless
Temperature
Thickness
title Effect of Secondary Phase on Passivation Layer of Super Duplex Stainless Steel UNS S 32750: Advanced Safety of Li-Ion Battery Case Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Secondary%20Phase%20on%20Passivation%20Layer%20of%20Super%20Duplex%20Stainless%20Steel%20UNS%20S%2032750:%20Advanced%20Safety%20of%20Li-Ion%20Battery%20Case%20Materials&rft.jtitle=Materials&rft.au=Shin,%20Byung-Hyun&rft.date=2024-06-05&rft.volume=17&rft.issue=11&rft.spage=2760&rft.pages=2760-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17112760&rft_dat=%3Cgale_pubme%3EA797907066%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067505076&rft_id=info:pmid/38894024&rft_galeid=A797907066&rfr_iscdi=true