Brassica rapa CURLY LEAF is a major H3K27 methyltransferase regulating flowering time

Main conclusion In Brassica rapa , the epigenetic modifier BraA.CLF orchestrates flowering by modulating H3K27me3 levels at the floral integrator genes FT , SOC1 , and SEP3 , thereby influencing their expression. CURLY LEAF (CLF) is the catalytic subunit of the plant Polycomb Repressive Complex 2 th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2024-07, Vol.260 (1), p.27-27, Article 27
Hauptverfasser: Poza-Viejo, Laura, Payá-Milans, Miriam, Wilkinson, Mark D., Piñeiro, Manuel, Jarillo, José A., Crevillén, Pedro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 1
container_start_page 27
container_title Planta
container_volume 260
creator Poza-Viejo, Laura
Payá-Milans, Miriam
Wilkinson, Mark D.
Piñeiro, Manuel
Jarillo, José A.
Crevillén, Pedro
description Main conclusion In Brassica rapa , the epigenetic modifier BraA.CLF orchestrates flowering by modulating H3K27me3 levels at the floral integrator genes FT , SOC1 , and SEP3 , thereby influencing their expression. CURLY LEAF (CLF) is the catalytic subunit of the plant Polycomb Repressive Complex 2 that mediates the trimethylation of histone H3 lysine 27 (H3K27me3), an epigenetic modification that leads to gene silencing. While the function of CURLY LEAF (CLF) has been extensively studied in Arabidopsis thaliana , its role in Brassica crops is barely known. In this study, we focused on the Brassica rapa homolog of CLF and found that the loss-of-function mutant braA.clf-1 exhibits an accelerated flowering together with pleiotropic phenotypic alterations compared to wild-type plants. In addition, we carried out transcriptomic and H3K27me3 genome-wide analyses to identify the genes regulated by BraA.CLF. Interestingly, we observed that several floral regulatory genes, including the B. rapa homologs of FT , SOC1 and SEP3 , show reduced H3K27me3 levels and increased transcript levels compared to wild-type plants, suggesting that they are direct targets of BraA.CLF and key players in regulating flowering time in this crop. In addition, the results obtained will enhance our understanding of the epigenetic mechanisms regulating key developmental traits and will aid to increase crop yield by engineering new Brassica varieties with different flowering time requirements.
doi_str_mv 10.1007/s00425-024-04454-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11169032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068754513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-dff59557fc29eb2aa77eff6c5fa2a596cd10ac589062f20f1b4ed86fabb4b0d63</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhD3BAlrhwCYy_kxMqq5ZWrISE2AMna-LY26zysdgJqP8ehy2lcICTR5rnfT0zLyHPGbxmAOZNApBcFcBlAVIqWZgHZMWk4AUHWT4kK4BcQyXUCXmS0h4gN415TE5EWWoFrFyR7buIKbUOacQD0vX20-YL3ZyfXdA2UaQ97sdIL8UHbmjvp-ubboo4pOCzytPod3OHUzvsaOjG7z4u1dT2_il5FLBL_tnte0q2F-ef15fF5uP7q_XZpnBSVVPRhKAqpUxwvPI1RzTGh6CdCshRVdo1DNCpsgLNA4fAaumbUgesa1lDo8UpeXv0Pcx17xvnhzxeZw-x7THe2BFb-2dnaK_tbvxmGWO6ytfJDq9uHeL4dfZpsn2bnO86HPw4JyuYEloJBfr_KOjSKKmYyOjLv9D9OMchn2KhDHDNtckUP1IujilFH-4GZ2CXhO0xYZsTtj8Ttovoxf2V7yS_Is2AOALpsOTh4--__2H7A3aLsOM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067026267</pqid></control><display><type>article</type><title>Brassica rapa CURLY LEAF is a major H3K27 methyltransferase regulating flowering time</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Poza-Viejo, Laura ; Payá-Milans, Miriam ; Wilkinson, Mark D. ; Piñeiro, Manuel ; Jarillo, José A. ; Crevillén, Pedro</creator><creatorcontrib>Poza-Viejo, Laura ; Payá-Milans, Miriam ; Wilkinson, Mark D. ; Piñeiro, Manuel ; Jarillo, José A. ; Crevillén, Pedro</creatorcontrib><description>Main conclusion In Brassica rapa , the epigenetic modifier BraA.CLF orchestrates flowering by modulating H3K27me3 levels at the floral integrator genes FT , SOC1 , and SEP3 , thereby influencing their expression. CURLY LEAF (CLF) is the catalytic subunit of the plant Polycomb Repressive Complex 2 that mediates the trimethylation of histone H3 lysine 27 (H3K27me3), an epigenetic modification that leads to gene silencing. While the function of CURLY LEAF (CLF) has been extensively studied in Arabidopsis thaliana , its role in Brassica crops is barely known. In this study, we focused on the Brassica rapa homolog of CLF and found that the loss-of-function mutant braA.clf-1 exhibits an accelerated flowering together with pleiotropic phenotypic alterations compared to wild-type plants. In addition, we carried out transcriptomic and H3K27me3 genome-wide analyses to identify the genes regulated by BraA.CLF. Interestingly, we observed that several floral regulatory genes, including the B. rapa homologs of FT , SOC1 and SEP3 , show reduced H3K27me3 levels and increased transcript levels compared to wild-type plants, suggesting that they are direct targets of BraA.CLF and key players in regulating flowering time in this crop. In addition, the results obtained will enhance our understanding of the epigenetic mechanisms regulating key developmental traits and will aid to increase crop yield by engineering new Brassica varieties with different flowering time requirements.</description><identifier>ISSN: 0032-0935</identifier><identifier>ISSN: 1432-2048</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-024-04454-7</identifier><identifier>PMID: 38865018</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - physiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biomedical and Life Sciences ; Brassica ; Brassica rapa ; Brassica rapa - genetics ; Brassica rapa - growth &amp; development ; Brassica rapa - physiology ; Crop yield ; Ecology ; Epigenesis, Genetic ; Epigenetics ; Flowering ; Flowers - genetics ; Flowers - growth &amp; development ; Flowers - physiology ; Forestry ; Gene Expression Regulation, Plant ; Gene silencing ; Genes ; Histone H3 ; Histone-Lysine N-Methyltransferase - genetics ; Histone-Lysine N-Methyltransferase - metabolism ; Histones ; Histones - genetics ; Histones - metabolism ; Leaves ; Life Sciences ; loss-of-function mutation ; Lysine ; Methylation ; Methyltransferase ; methyltransferases ; mutants ; New varieties ; Original ; Original Article ; phenotype ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Sciences ; Plants (botany) ; Polycomb group proteins ; protein subunits ; Transcriptomics</subject><ispartof>Planta, 2024-07, Vol.260 (1), p.27-27, Article 27</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c459t-dff59557fc29eb2aa77eff6c5fa2a596cd10ac589062f20f1b4ed86fabb4b0d63</cites><orcidid>0000-0003-1276-9792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00425-024-04454-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00425-024-04454-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38865018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poza-Viejo, Laura</creatorcontrib><creatorcontrib>Payá-Milans, Miriam</creatorcontrib><creatorcontrib>Wilkinson, Mark D.</creatorcontrib><creatorcontrib>Piñeiro, Manuel</creatorcontrib><creatorcontrib>Jarillo, José A.</creatorcontrib><creatorcontrib>Crevillén, Pedro</creatorcontrib><title>Brassica rapa CURLY LEAF is a major H3K27 methyltransferase regulating flowering time</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Main conclusion In Brassica rapa , the epigenetic modifier BraA.CLF orchestrates flowering by modulating H3K27me3 levels at the floral integrator genes FT , SOC1 , and SEP3 , thereby influencing their expression. CURLY LEAF (CLF) is the catalytic subunit of the plant Polycomb Repressive Complex 2 that mediates the trimethylation of histone H3 lysine 27 (H3K27me3), an epigenetic modification that leads to gene silencing. While the function of CURLY LEAF (CLF) has been extensively studied in Arabidopsis thaliana , its role in Brassica crops is barely known. In this study, we focused on the Brassica rapa homolog of CLF and found that the loss-of-function mutant braA.clf-1 exhibits an accelerated flowering together with pleiotropic phenotypic alterations compared to wild-type plants. In addition, we carried out transcriptomic and H3K27me3 genome-wide analyses to identify the genes regulated by BraA.CLF. Interestingly, we observed that several floral regulatory genes, including the B. rapa homologs of FT , SOC1 and SEP3 , show reduced H3K27me3 levels and increased transcript levels compared to wild-type plants, suggesting that they are direct targets of BraA.CLF and key players in regulating flowering time in this crop. In addition, the results obtained will enhance our understanding of the epigenetic mechanisms regulating key developmental traits and will aid to increase crop yield by engineering new Brassica varieties with different flowering time requirements.</description><subject>Agriculture</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biomedical and Life Sciences</subject><subject>Brassica</subject><subject>Brassica rapa</subject><subject>Brassica rapa - genetics</subject><subject>Brassica rapa - growth &amp; development</subject><subject>Brassica rapa - physiology</subject><subject>Crop yield</subject><subject>Ecology</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Flowering</subject><subject>Flowers - genetics</subject><subject>Flowers - growth &amp; development</subject><subject>Flowers - physiology</subject><subject>Forestry</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Histone H3</subject><subject>Histone-Lysine N-Methyltransferase - genetics</subject><subject>Histone-Lysine N-Methyltransferase - metabolism</subject><subject>Histones</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>loss-of-function mutation</subject><subject>Lysine</subject><subject>Methylation</subject><subject>Methyltransferase</subject><subject>methyltransferases</subject><subject>mutants</subject><subject>New varieties</subject><subject>Original</subject><subject>Original Article</subject><subject>phenotype</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Plants (botany)</subject><subject>Polycomb group proteins</subject><subject>protein subunits</subject><subject>Transcriptomics</subject><issn>0032-0935</issn><issn>1432-2048</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhD3BAlrhwCYy_kxMqq5ZWrISE2AMna-LY26zysdgJqP8ehy2lcICTR5rnfT0zLyHPGbxmAOZNApBcFcBlAVIqWZgHZMWk4AUHWT4kK4BcQyXUCXmS0h4gN415TE5EWWoFrFyR7buIKbUOacQD0vX20-YL3ZyfXdA2UaQ97sdIL8UHbmjvp-ubboo4pOCzytPod3OHUzvsaOjG7z4u1dT2_il5FLBL_tnte0q2F-ef15fF5uP7q_XZpnBSVVPRhKAqpUxwvPI1RzTGh6CdCshRVdo1DNCpsgLNA4fAaumbUgesa1lDo8UpeXv0Pcx17xvnhzxeZw-x7THe2BFb-2dnaK_tbvxmGWO6ytfJDq9uHeL4dfZpsn2bnO86HPw4JyuYEloJBfr_KOjSKKmYyOjLv9D9OMchn2KhDHDNtckUP1IujilFH-4GZ2CXhO0xYZsTtj8Ttovoxf2V7yS_Is2AOALpsOTh4--__2H7A3aLsOM</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Poza-Viejo, Laura</creator><creator>Payá-Milans, Miriam</creator><creator>Wilkinson, Mark D.</creator><creator>Piñeiro, Manuel</creator><creator>Jarillo, José A.</creator><creator>Crevillén, Pedro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1276-9792</orcidid></search><sort><creationdate>20240701</creationdate><title>Brassica rapa CURLY LEAF is a major H3K27 methyltransferase regulating flowering time</title><author>Poza-Viejo, Laura ; Payá-Milans, Miriam ; Wilkinson, Mark D. ; Piñeiro, Manuel ; Jarillo, José A. ; Crevillén, Pedro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-dff59557fc29eb2aa77eff6c5fa2a596cd10ac589062f20f1b4ed86fabb4b0d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biomedical and Life Sciences</topic><topic>Brassica</topic><topic>Brassica rapa</topic><topic>Brassica rapa - genetics</topic><topic>Brassica rapa - growth &amp; development</topic><topic>Brassica rapa - physiology</topic><topic>Crop yield</topic><topic>Ecology</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Flowering</topic><topic>Flowers - genetics</topic><topic>Flowers - growth &amp; development</topic><topic>Flowers - physiology</topic><topic>Forestry</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Histone H3</topic><topic>Histone-Lysine N-Methyltransferase - genetics</topic><topic>Histone-Lysine N-Methyltransferase - metabolism</topic><topic>Histones</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>loss-of-function mutation</topic><topic>Lysine</topic><topic>Methylation</topic><topic>Methyltransferase</topic><topic>methyltransferases</topic><topic>mutants</topic><topic>New varieties</topic><topic>Original</topic><topic>Original Article</topic><topic>phenotype</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Plants (botany)</topic><topic>Polycomb group proteins</topic><topic>protein subunits</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poza-Viejo, Laura</creatorcontrib><creatorcontrib>Payá-Milans, Miriam</creatorcontrib><creatorcontrib>Wilkinson, Mark D.</creatorcontrib><creatorcontrib>Piñeiro, Manuel</creatorcontrib><creatorcontrib>Jarillo, José A.</creatorcontrib><creatorcontrib>Crevillén, Pedro</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poza-Viejo, Laura</au><au>Payá-Milans, Miriam</au><au>Wilkinson, Mark D.</au><au>Piñeiro, Manuel</au><au>Jarillo, José A.</au><au>Crevillén, Pedro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brassica rapa CURLY LEAF is a major H3K27 methyltransferase regulating flowering time</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>260</volume><issue>1</issue><spage>27</spage><epage>27</epage><pages>27-27</pages><artnum>27</artnum><issn>0032-0935</issn><issn>1432-2048</issn><eissn>1432-2048</eissn><abstract>Main conclusion In Brassica rapa , the epigenetic modifier BraA.CLF orchestrates flowering by modulating H3K27me3 levels at the floral integrator genes FT , SOC1 , and SEP3 , thereby influencing their expression. CURLY LEAF (CLF) is the catalytic subunit of the plant Polycomb Repressive Complex 2 that mediates the trimethylation of histone H3 lysine 27 (H3K27me3), an epigenetic modification that leads to gene silencing. While the function of CURLY LEAF (CLF) has been extensively studied in Arabidopsis thaliana , its role in Brassica crops is barely known. In this study, we focused on the Brassica rapa homolog of CLF and found that the loss-of-function mutant braA.clf-1 exhibits an accelerated flowering together with pleiotropic phenotypic alterations compared to wild-type plants. In addition, we carried out transcriptomic and H3K27me3 genome-wide analyses to identify the genes regulated by BraA.CLF. Interestingly, we observed that several floral regulatory genes, including the B. rapa homologs of FT , SOC1 and SEP3 , show reduced H3K27me3 levels and increased transcript levels compared to wild-type plants, suggesting that they are direct targets of BraA.CLF and key players in regulating flowering time in this crop. In addition, the results obtained will enhance our understanding of the epigenetic mechanisms regulating key developmental traits and will aid to increase crop yield by engineering new Brassica varieties with different flowering time requirements.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38865018</pmid><doi>10.1007/s00425-024-04454-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1276-9792</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2024-07, Vol.260 (1), p.27-27, Article 27
issn 0032-0935
1432-2048
1432-2048
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11169032
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Agriculture
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - physiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biomedical and Life Sciences
Brassica
Brassica rapa
Brassica rapa - genetics
Brassica rapa - growth & development
Brassica rapa - physiology
Crop yield
Ecology
Epigenesis, Genetic
Epigenetics
Flowering
Flowers - genetics
Flowers - growth & development
Flowers - physiology
Forestry
Gene Expression Regulation, Plant
Gene silencing
Genes
Histone H3
Histone-Lysine N-Methyltransferase - genetics
Histone-Lysine N-Methyltransferase - metabolism
Histones
Histones - genetics
Histones - metabolism
Leaves
Life Sciences
loss-of-function mutation
Lysine
Methylation
Methyltransferase
methyltransferases
mutants
New varieties
Original
Original Article
phenotype
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Sciences
Plants (botany)
Polycomb group proteins
protein subunits
Transcriptomics
title Brassica rapa CURLY LEAF is a major H3K27 methyltransferase regulating flowering time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A25%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brassica%20rapa%20CURLY%20LEAF%20is%20a%20major%20H3K27%20methyltransferase%20regulating%20flowering%20time&rft.jtitle=Planta&rft.au=Poza-Viejo,%20Laura&rft.date=2024-07-01&rft.volume=260&rft.issue=1&rft.spage=27&rft.epage=27&rft.pages=27-27&rft.artnum=27&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-024-04454-7&rft_dat=%3Cproquest_pubme%3E3068754513%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067026267&rft_id=info:pmid/38865018&rfr_iscdi=true