Hybrid deep learning and optimal graph search method for optical coherence tomography layer segmentation in diseases affecting the optic nerve

Accurate segmentation of retinal layers in optical coherence tomography (OCT) images is critical for assessing diseases that affect the optic nerve, but existing automated algorithms often fail when pathology causes irregular layer topology, such as extreme thinning of the ganglion cell-inner plexif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical optics express 2024-06, Vol.15 (6), p.3681-3698
Hauptverfasser: Chen, Zhi, Zhang, Honghai, Linton, Edward F, Johnson, Brett A, Choi, Yun Jae, Kupersmith, Mark J, Sonka, Milan, Garvin, Mona K, Kardon, Randy H, Wang, Jui-Kai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3698
container_issue 6
container_start_page 3681
container_title Biomedical optics express
container_volume 15
creator Chen, Zhi
Zhang, Honghai
Linton, Edward F
Johnson, Brett A
Choi, Yun Jae
Kupersmith, Mark J
Sonka, Milan
Garvin, Mona K
Kardon, Randy H
Wang, Jui-Kai
description Accurate segmentation of retinal layers in optical coherence tomography (OCT) images is critical for assessing diseases that affect the optic nerve, but existing automated algorithms often fail when pathology causes irregular layer topology, such as extreme thinning of the ganglion cell-inner plexiform layer (GCIPL). Deep LOGISMOS, a hybrid approach that combines the strengths of deep learning and 3D graph search to overcome their limitations, was developed to improve the accuracy, robustness and generalizability of retinal layer segmentation. The method was trained on 124 OCT volumes from both eyes of 31 non-arteritic anterior ischemic optic neuropathy (NAION) patients and tested on three cross-sectional datasets with available reference tracings: Test-NAION (40 volumes from both eyes of 20 NAION subjects), Test-G (29 volumes from 29 glaucoma subjects/eyes), and Test-JHU (35 volumes from 21 multiple sclerosis and 14 control subjects/eyes) and one longitudinal dataset without reference tracings: Test-G-L (155 volumes from 15 glaucoma patients/eyes). In the three test datasets with reference tracings (Test-NAION, Test-G, and Test-JHU), Deep LOGISMOS achieved very high Dice similarity coefficients (%) on GCIPL: 89.97±3.59, 90.63±2.56, and 94.06±1.76, respectively. In the same context, Deep LOGISMOS outperformed the Iowa reference algorithms by improving the Dice score by 17.5, 5.4, and 7.5, and also surpassed the deep learning framework nnU-Net with improvements of 4.4, 3.7, and 1.0. For the 15 severe glaucoma eyes with marked GCIPL thinning (Test-G-L), it demonstrated reliable regional GCIPL thickness measurement over five years. The proposed Deep LOGISMOS approach has potential to enhance precise quantification of retinal structures, aiding diagnosis and treatment management of optic nerve diseases.
doi_str_mv 10.1364/BOE.516045
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11166436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067917356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-7dcdd3cc37871d8a659f07fd8734a0e31cf95f61da3a88db5dbf91bbe49ec78a3</originalsourceid><addsrcrecordid>eNpVkcFqGzEQhkVJaUKaSx-g6BgCTqVoV9KeShLSuhDIpT0LrTTyquxKW0k2-CXyzJHt1CRz0cD_zT8jfoS-UHJNGW--3T09XLeUk6b9gM5uaMsXgsj25E1_ii5y_ktqNY0gTH5Cp0xKLmqdoefltk_eYgsw4xF0Cj6ssA4Wx7n4SY94lfQ84FwlM-AJyhAtdjHtdVN1EwdIEAzgEqe4p7d41FtIdWg1QSi6-BiwD9j6apMhY-0cmLLbVAY4OOEAaQOf0UenxwwXr-85-vPj4ff9cvH49PPX_e3jwtxwWRbCGmuZMUxIQa3UvO0cEc5KwRpNgFHjutZxajXTUtq-tb3raN9D04ERUrNz9P3gO6_7CaypVyY9qjnVL6etitqr90rwg1rFjaKUct4wXh0uXx1S_LeGXNTks4Fx1AHiOitGuOioYO0OvTqgJsWcE7jjHkrULkRVQ1SHECv89e1lR_R_ZOwFH2OcXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067917356</pqid></control><display><type>article</type><title>Hybrid deep learning and optimal graph search method for optical coherence tomography layer segmentation in diseases affecting the optic nerve</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Chen, Zhi ; Zhang, Honghai ; Linton, Edward F ; Johnson, Brett A ; Choi, Yun Jae ; Kupersmith, Mark J ; Sonka, Milan ; Garvin, Mona K ; Kardon, Randy H ; Wang, Jui-Kai</creator><creatorcontrib>Chen, Zhi ; Zhang, Honghai ; Linton, Edward F ; Johnson, Brett A ; Choi, Yun Jae ; Kupersmith, Mark J ; Sonka, Milan ; Garvin, Mona K ; Kardon, Randy H ; Wang, Jui-Kai</creatorcontrib><description>Accurate segmentation of retinal layers in optical coherence tomography (OCT) images is critical for assessing diseases that affect the optic nerve, but existing automated algorithms often fail when pathology causes irregular layer topology, such as extreme thinning of the ganglion cell-inner plexiform layer (GCIPL). Deep LOGISMOS, a hybrid approach that combines the strengths of deep learning and 3D graph search to overcome their limitations, was developed to improve the accuracy, robustness and generalizability of retinal layer segmentation. The method was trained on 124 OCT volumes from both eyes of 31 non-arteritic anterior ischemic optic neuropathy (NAION) patients and tested on three cross-sectional datasets with available reference tracings: Test-NAION (40 volumes from both eyes of 20 NAION subjects), Test-G (29 volumes from 29 glaucoma subjects/eyes), and Test-JHU (35 volumes from 21 multiple sclerosis and 14 control subjects/eyes) and one longitudinal dataset without reference tracings: Test-G-L (155 volumes from 15 glaucoma patients/eyes). In the three test datasets with reference tracings (Test-NAION, Test-G, and Test-JHU), Deep LOGISMOS achieved very high Dice similarity coefficients (%) on GCIPL: 89.97±3.59, 90.63±2.56, and 94.06±1.76, respectively. In the same context, Deep LOGISMOS outperformed the Iowa reference algorithms by improving the Dice score by 17.5, 5.4, and 7.5, and also surpassed the deep learning framework nnU-Net with improvements of 4.4, 3.7, and 1.0. For the 15 severe glaucoma eyes with marked GCIPL thinning (Test-G-L), it demonstrated reliable regional GCIPL thickness measurement over five years. The proposed Deep LOGISMOS approach has potential to enhance precise quantification of retinal structures, aiding diagnosis and treatment management of optic nerve diseases.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.516045</identifier><identifier>PMID: 38867777</identifier><language>eng</language><publisher>United States: Optica Publishing Group</publisher><ispartof>Biomedical optics express, 2024-06, Vol.15 (6), p.3681-3698</ispartof><rights>2024 Optica Publishing Group.</rights><rights>2024 Optica Publishing Group 2024 Optica Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-7dcdd3cc37871d8a659f07fd8734a0e31cf95f61da3a88db5dbf91bbe49ec78a3</cites><orcidid>0000-0002-2725-6239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166436/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166436/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38867777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Zhi</creatorcontrib><creatorcontrib>Zhang, Honghai</creatorcontrib><creatorcontrib>Linton, Edward F</creatorcontrib><creatorcontrib>Johnson, Brett A</creatorcontrib><creatorcontrib>Choi, Yun Jae</creatorcontrib><creatorcontrib>Kupersmith, Mark J</creatorcontrib><creatorcontrib>Sonka, Milan</creatorcontrib><creatorcontrib>Garvin, Mona K</creatorcontrib><creatorcontrib>Kardon, Randy H</creatorcontrib><creatorcontrib>Wang, Jui-Kai</creatorcontrib><title>Hybrid deep learning and optimal graph search method for optical coherence tomography layer segmentation in diseases affecting the optic nerve</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>Accurate segmentation of retinal layers in optical coherence tomography (OCT) images is critical for assessing diseases that affect the optic nerve, but existing automated algorithms often fail when pathology causes irregular layer topology, such as extreme thinning of the ganglion cell-inner plexiform layer (GCIPL). Deep LOGISMOS, a hybrid approach that combines the strengths of deep learning and 3D graph search to overcome their limitations, was developed to improve the accuracy, robustness and generalizability of retinal layer segmentation. The method was trained on 124 OCT volumes from both eyes of 31 non-arteritic anterior ischemic optic neuropathy (NAION) patients and tested on three cross-sectional datasets with available reference tracings: Test-NAION (40 volumes from both eyes of 20 NAION subjects), Test-G (29 volumes from 29 glaucoma subjects/eyes), and Test-JHU (35 volumes from 21 multiple sclerosis and 14 control subjects/eyes) and one longitudinal dataset without reference tracings: Test-G-L (155 volumes from 15 glaucoma patients/eyes). In the three test datasets with reference tracings (Test-NAION, Test-G, and Test-JHU), Deep LOGISMOS achieved very high Dice similarity coefficients (%) on GCIPL: 89.97±3.59, 90.63±2.56, and 94.06±1.76, respectively. In the same context, Deep LOGISMOS outperformed the Iowa reference algorithms by improving the Dice score by 17.5, 5.4, and 7.5, and also surpassed the deep learning framework nnU-Net with improvements of 4.4, 3.7, and 1.0. For the 15 severe glaucoma eyes with marked GCIPL thinning (Test-G-L), it demonstrated reliable regional GCIPL thickness measurement over five years. The proposed Deep LOGISMOS approach has potential to enhance precise quantification of retinal structures, aiding diagnosis and treatment management of optic nerve diseases.</description><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkcFqGzEQhkVJaUKaSx-g6BgCTqVoV9KeShLSuhDIpT0LrTTyquxKW0k2-CXyzJHt1CRz0cD_zT8jfoS-UHJNGW--3T09XLeUk6b9gM5uaMsXgsj25E1_ii5y_ktqNY0gTH5Cp0xKLmqdoefltk_eYgsw4xF0Cj6ssA4Wx7n4SY94lfQ84FwlM-AJyhAtdjHtdVN1EwdIEAzgEqe4p7d41FtIdWg1QSi6-BiwD9j6apMhY-0cmLLbVAY4OOEAaQOf0UenxwwXr-85-vPj4ff9cvH49PPX_e3jwtxwWRbCGmuZMUxIQa3UvO0cEc5KwRpNgFHjutZxajXTUtq-tb3raN9D04ERUrNz9P3gO6_7CaypVyY9qjnVL6etitqr90rwg1rFjaKUct4wXh0uXx1S_LeGXNTks4Fx1AHiOitGuOioYO0OvTqgJsWcE7jjHkrULkRVQ1SHECv89e1lR_R_ZOwFH2OcXg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Chen, Zhi</creator><creator>Zhang, Honghai</creator><creator>Linton, Edward F</creator><creator>Johnson, Brett A</creator><creator>Choi, Yun Jae</creator><creator>Kupersmith, Mark J</creator><creator>Sonka, Milan</creator><creator>Garvin, Mona K</creator><creator>Kardon, Randy H</creator><creator>Wang, Jui-Kai</creator><general>Optica Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2725-6239</orcidid></search><sort><creationdate>20240601</creationdate><title>Hybrid deep learning and optimal graph search method for optical coherence tomography layer segmentation in diseases affecting the optic nerve</title><author>Chen, Zhi ; Zhang, Honghai ; Linton, Edward F ; Johnson, Brett A ; Choi, Yun Jae ; Kupersmith, Mark J ; Sonka, Milan ; Garvin, Mona K ; Kardon, Randy H ; Wang, Jui-Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-7dcdd3cc37871d8a659f07fd8734a0e31cf95f61da3a88db5dbf91bbe49ec78a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhi</creatorcontrib><creatorcontrib>Zhang, Honghai</creatorcontrib><creatorcontrib>Linton, Edward F</creatorcontrib><creatorcontrib>Johnson, Brett A</creatorcontrib><creatorcontrib>Choi, Yun Jae</creatorcontrib><creatorcontrib>Kupersmith, Mark J</creatorcontrib><creatorcontrib>Sonka, Milan</creatorcontrib><creatorcontrib>Garvin, Mona K</creatorcontrib><creatorcontrib>Kardon, Randy H</creatorcontrib><creatorcontrib>Wang, Jui-Kai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhi</au><au>Zhang, Honghai</au><au>Linton, Edward F</au><au>Johnson, Brett A</au><au>Choi, Yun Jae</au><au>Kupersmith, Mark J</au><au>Sonka, Milan</au><au>Garvin, Mona K</au><au>Kardon, Randy H</au><au>Wang, Jui-Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid deep learning and optimal graph search method for optical coherence tomography layer segmentation in diseases affecting the optic nerve</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>15</volume><issue>6</issue><spage>3681</spage><epage>3698</epage><pages>3681-3698</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>Accurate segmentation of retinal layers in optical coherence tomography (OCT) images is critical for assessing diseases that affect the optic nerve, but existing automated algorithms often fail when pathology causes irregular layer topology, such as extreme thinning of the ganglion cell-inner plexiform layer (GCIPL). Deep LOGISMOS, a hybrid approach that combines the strengths of deep learning and 3D graph search to overcome their limitations, was developed to improve the accuracy, robustness and generalizability of retinal layer segmentation. The method was trained on 124 OCT volumes from both eyes of 31 non-arteritic anterior ischemic optic neuropathy (NAION) patients and tested on three cross-sectional datasets with available reference tracings: Test-NAION (40 volumes from both eyes of 20 NAION subjects), Test-G (29 volumes from 29 glaucoma subjects/eyes), and Test-JHU (35 volumes from 21 multiple sclerosis and 14 control subjects/eyes) and one longitudinal dataset without reference tracings: Test-G-L (155 volumes from 15 glaucoma patients/eyes). In the three test datasets with reference tracings (Test-NAION, Test-G, and Test-JHU), Deep LOGISMOS achieved very high Dice similarity coefficients (%) on GCIPL: 89.97±3.59, 90.63±2.56, and 94.06±1.76, respectively. In the same context, Deep LOGISMOS outperformed the Iowa reference algorithms by improving the Dice score by 17.5, 5.4, and 7.5, and also surpassed the deep learning framework nnU-Net with improvements of 4.4, 3.7, and 1.0. For the 15 severe glaucoma eyes with marked GCIPL thinning (Test-G-L), it demonstrated reliable regional GCIPL thickness measurement over five years. The proposed Deep LOGISMOS approach has potential to enhance precise quantification of retinal structures, aiding diagnosis and treatment management of optic nerve diseases.</abstract><cop>United States</cop><pub>Optica Publishing Group</pub><pmid>38867777</pmid><doi>10.1364/BOE.516045</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2725-6239</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2156-7085
ispartof Biomedical optics express, 2024-06, Vol.15 (6), p.3681-3698
issn 2156-7085
2156-7085
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11166436
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
title Hybrid deep learning and optimal graph search method for optical coherence tomography layer segmentation in diseases affecting the optic nerve
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A28%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20deep%20learning%20and%20optimal%20graph%20search%20method%20for%20optical%20coherence%20tomography%20layer%20segmentation%20in%20diseases%20affecting%20the%20optic%20nerve&rft.jtitle=Biomedical%20optics%20express&rft.au=Chen,%20Zhi&rft.date=2024-06-01&rft.volume=15&rft.issue=6&rft.spage=3681&rft.epage=3698&rft.pages=3681-3698&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.516045&rft_dat=%3Cproquest_pubme%3E3067917356%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067917356&rft_id=info:pmid/38867777&rfr_iscdi=true